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Abstract
The use of molecular string representations for deep learning in chemistry has been steadily
increasing in recent years. The complexity of existing string representations, and the difficulty in
creating meaningful tokens from them, lead to the development of new string representations for
chemical structures. In this study, the translation of chemical structure depictions in the form of
bitmap images to corresponding molecular string representations was examined. An analysis of
the recently developed DeepSMILES and SELFIES representations in comparison with the
most commonly used SMILES representation is presented where the ability to translate image
features into string representations with transformer models was specifically tested. The
SMILES representation exhibits the best overall performance whereas SELFIES guarantee valid
chemical structures. DeepSMILES perform in between SMILES and SELFIES, InChIs are not
appropriate for the learning task. All investigations were performed using publicly available
datasets and the code used to train and evaluate the models has been made available to the
public.
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Introduction
Deep learning in chemistry is increasingly used to address problems in chemistry and
cheminformatics 1. One of these problems is Optical Chemical Structure Recognition (OCSR),
which aims to decode a 2D bitmap image of a chemical structure into a computer-readable file
or string representation. OCSR techniques are necessary, for example, to extract chemical
structure information buried graphically in the chemical literature and patents 2 and store it in
publicly available databases to enable their comprehensive retrieval with chemical structure,
substructure or similarity searches. In a recent review paper, we surveyed the available OCSR
tools, most of which rely on rule-based approaches 3–5 , and proposed deep learning solutions
as a promising alternative 6.

OCSR approaches with deep learning utilize complex neural networks that require appropriate
representations of chemical structures to encode and decode molecular information. Commonly,
a 2D bitmap image of a chemical structure depiction is converted back into a textual
representation - a character string - of that same structure. The human-readable SMILES 7

representation is one of the most widely used molecular string formats. But for deep learning
purposes this line notation was shown to consist of a number of problems 8 which are primarily
caused by the tokenization of its character string. As an example, structural branches are
introduced with an opening bracket "(" and closed at a subsequent string position with a closing
bracket ")". The same holds for ring openings and closures which are marked by a number
where a ring opens or closes. However, once SMILES strings are partitioned into tokens based
on characters, the precise placement of these markers at potentially distant positions within the
text string causes problems for many deep neural networks. Due to these apparent
inefficiencies new textual representations of chemical structures like DeepSMILES 8 and
SELFIES 9 have recently been developed to overcome the sketeched problems. The
DeepSMILES string representation aims at avoiding the problems due to branches in SMILES
by using closing brackets only for branches where the number of brackets indicates the branch
length. For ring closures a single symbol at the ring-closure location is used instead of two
symbols at the ring-opening and ring-closing locations. In contrast to SMILES and DeepSMILES
which have to be partitioned into single character tokens, the SELFIES representation defines
separate enclosed tokens within square brackets "[...]" so that discrete meaningful tokens are
provided by the representation itself (see Figure 1).
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Figure 1: SMILES, DeepSMILES, and SELFIES are divided into tokens which are separated
with spaces.

In a recent OCSR study 10, we encountered similar problems with SMILES representations
which eventually led to a SELFIES based implementation. By using SELFIES as the output
representation, a predicted SELFIES string always converts into a valid molecule due to the
SELFIES decoding algorithm. In contrast, predicted SMILES may be invalid due to syntax errors
such as mismatched binding symbols, branching, or ring closure. Other recent OCSR
approaches 11–14 that used SMILES strings for output representation did not specifically address
their inherent problems.

To further support OCSR development this work reports findings of a comparative case study for
chemical image to chemical structure translation with SMILES, DeepSMILES and SELFIES. In
addition, InChIs are included as an output which was proposed by a recent Kaggle competition
15.
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Methods

Data
In this study, all data were taken from ChEMBL 16 and PubChem 17 databases. The data was
originally downloaded in SDF format. Using the Chemistry Development Kit (CDK) 18 the
chemical structures were converted into SMILES strings with and without stereochemistry
information. After the SMILES conversion, the DECIMER filtering rules 10 were applied to obtain
a balanced dataset. Then two datasets were created, one containing SMILES without
stereochemistry and one with stereochemistry information.

The filtering rules for the datasets without stereochemistry included the following,

● have a molecular weight of fewer than 1500 Daltons,
● not possess counter ions,
● only contain the elements C, H, O, N, P, S, F, Cl, Br, I, Se and B,
● not contain isotopes of Hydrogens (D, T),
● have 3 - 40 bonds,
● only contain implicit hydrogens, except in functional groups,
● have less than 40 SMILES tokens,
● no stereochemistry was allowed.

After filtering, a total of 1,655,225 molecules were obtained from ChEMBL. Dataset partitioning
into training and test datasets is a challenging task: With a simple random partitioning, the test
dataset may not cover the relevant chemical space which could lead to biased results. To avoid
this problem, the RDKit 19 MaxMin 20 algorithm was applied, so that equally diverse training and
test subsets were created which cover a similar chemical space.

A set of 3 million molecules from PubChem was used to investigate whether the network
performs better with more data. Here, the dataset was twice as large as the ChEMBL dataset.
The PubChem dataset was filtered using the same rules as above, and the RDKit MaxMin
algorithm was again applied to create the test set.

For the datasets with stereochemistry, a total of 1,653,833 molecules were obtained from
ChEMBL and 3 million molecules from PubChem. Again, the RDKit MaxMin algorithm was used
to select diverse training and test subsets.  Table 1 provides an overview of the datasets.

The dataset with stereochemistry obtained from ChEMBL was a little smaller than the
corresponding dataset without stereochemistry since stereochemistry adds new characters to
SMILES, thereby lowering the number of available molecules due to the applied ruleset. With
PubChem, however, the dataset size can be managed, since PubChem is much larger than
ChEMBL.
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Table 1: Overview of the datasets used in this study.

Database name ChEMBL PubChem

Dataset name Dataset 1 Dataset 2 Dataset 3 Dataset 4

Dataset

description

Without

stereochemistry

With

stereochemistry

Without

stereochemistry

Without

stereochemistry

Train dataset

size 1536000 1536000 3072000 3072000

Test dataset

size 119225 117833 250000 250000

To visualize the training and test dataset diversity, Morgan fingerprints 21 were generated using
RDKit and a Principal Component Analysis (PCA) 22 was performed on the generated
fingerprints, see Figure 1.
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Figure 1: PCA plots visualising similar diversity of training and test datasets listed in Table 1.



Textual Data

The generated molecule sets were then converted into different textual representations of the
chemical structures: SMILES, DeepSMILES, SELFIES and InChIs 23 and then split into tokens.
For SELFIES this was a straightforward process since they already inherit a token-like word
representation. Thus, SELFIES were split into tokens by using a space between the squared
brackets “] [”.

For splitting SMILES, DeepSMILES and InChIs into tokens another set of rules had to be
applied. They were split after,

● every heavy atom,
● every open bracket and close bracket “(”,”)”,
● every bond symbol “=”,”#”,
● every single-digit number and
● all the characters inside the squared brackets were retained as-is.

The "InChI=1S/" token was kept as one single token. As it is common in all InChIs, it was not
used as a token during training but was later added to the predicted strings during
post-processing to evaluate the results. The InChIs representation showed an inferior
performance for the ChEMBL datasets compared to the other representations, so it was not
included in the datasets generated from PubChem.
In addition to the token count, the maximum string length found in the datasets was calculated.
This refers to the length of the longest string available in each dataset and also plays a role
during training and testing. During training, the input vocabulary size which the network can
handle was determined by comparing the number of tokens with the maximum length. In cases
where the maximum length found in a dataset was smaller than the number of tokens available
in the dataset, the input vocabulary size would be the number of tokens, otherwise, it would be
the maximum length. During testing, the maximum length was used to determine when to stop
predicting a structure if the end token is not met. Table 2 summarizes the number of tokens and
the maximum string length found in each dataset. Datasets with stereochemistry information
contain more tokens than datasets without. SELFIES representation led to more tokens than
SMILES or DeepSMILES representation. InChIs had the lowest number of tokens but the
largest maximum length of the longest string. With datasets 1 and 2, it became clear that InChIs
perform significantly worse than the other string representations, so they were omitted in
training and testing datasets 3 and 4.

https://paperpile.com/c/2rGwOb/IhsP


Table 2: Overview of the token count and the maximum length.

Database

name ChEMBL PubChem

Dataset 1
(Without

stereochemistry)

Dataset 2

(With stereochemistry)

Dataset 3

(Without

stereochemistry)

Dataset 4

(With stereochemistry)

Number of
tokens

Maximum
Length of

String
Number of

tokens

Maximum
Length of

String
Number of

tokens

Maximum
Length of

String
Number of

tokens

Maximum
Length of

String

SMILES 52 81 104 81 73 87 125 83

SELFIES 69 80 187 88 98 84 205 90

DeepSMILE
S 76

93
127

101
97

93
148

96

InChI 32 236 41 273 -- -- -- --

Image Data
A production-quality bitmap image of each molecule was generated with the CDK Structure
Diagram Generator (SDG) at a resolution of 300x300 pixels. Each molecule was rotated by a
random angle ranging from 0 to 360° and depicted. The generated images were saved in 8-bit
PNG format. Each image contains a single structure only.
The features from these images were extracted as vectors by using the pre-trained weights of
the 'noisy student’ 24 trained EfficientNet-B3 25 model. The extracted image features were then
saved into NumPy arrays 26. These topics were discussed in detail in our previous publication27.
The extracted image features combined with the tokenized textual data were then converted
into TFRecords 28. TFRecords are binary records that can be used to train a model faster using
Cloud Tensor Processing Units (TPUs) 29 on the Google Cloud Platform(GCP).
For training purposes, each TFRecord contains 128 data points consisting of 128 image feature
vectors accompanied by 128 tokenized string representations. The TFRecords were generated
on an in-house server and then moved into a Google Cloud Storage bucket.
Each dataset contains the same image data but different string representations.

Network, Training and Testing.
In this work, we use the same network as in [15], a transformer-based network model similar to
the “Base model” as explained in Google's publication, Attention Is All You Need 30. This
network uses four encoder-decoder layers and eight attention heads. Attention has a dimension

https://paperpile.com/c/2rGwOb/cHEw
https://paperpile.com/c/2rGwOb/0Y1c
https://paperpile.com/c/2rGwOb/tWfc
https://paperpile.com/c/2rGwOb/8N6S
https://paperpile.com/c/2rGwOb/1Q1n
https://paperpile.com/c/2rGwOb/qj8m
https://paperpile.com/c/2rGwOb/dmCb


size of 512 and feed-forward networks have a dimension size of 2048. The columns and rows
here correspond to the image features we extracted as vectors, which are 10 × 10 × 1536. A
dropout rate of 10% is used to prevent overfitting. According to the publication “Attention Is All
You Need” the network is trained using the Adam optimizer with a custom learning rate
scheduler. The loss is calculated by using sparse categorical cross-entropy between the real
and predicted SELFIES. The network was coded with Python 3 using Tensorflow 2.3 31 on the
backend.

Throughout the training process, all models were trained on TPU v3-8 devices in the Google
cloud. When comparing the training speed and network performance, a batch size of 1024 was
found to be an adequate choice. The models were trained until the training loss had converged.
In total, we trained eight models on datasets 1 and 2, and six models on datasets 3 and 4.

Once the models were fully converged, they were tested on an in-house server equipped with a
GPU. To determine how many of the predictions were identical, the predictions were compared
to the original strings. After the identical prediction calculations, all the predictions were
converted to SMILES.

An analysis of the Tanimoto 32 similarity index was conducted between the original and predicted
SMILES using PubChem fingerprints available in the CDK. The Tanimoto similarity indices help
to understand how well the network was able to learn chemical string representations since
sometimes the predictions were not identical but only similar to the original structures and even
for isomorphic structures, there can be many different SMILES.

Results and Discussion
Transformer models can learn image and string representations more accurately and generalize
well on unseen datasets. The purpose of this study is to examine different chemical string
representations that are available for deep learning in chemistry and their performance on
chemical image to string translation. Predictions were valid if the images get translated into
structures correctly.

All the test results were assessed as following,

● Valid DeepSMILES/SELFIES/InChI: The predicted DeepSMILES, SELFIES and InChIs
that could decode back into SMILES strings. The rest were deemed invalid.

● Valid SMILES: Predicted SMILES and decoded SMILES which could be parsed to
calculate the Tanimoto similarity calculations. The rest were classified as invalid
SMILES.

● Identical Predictions: This calculation identifies how many predictions match the original
string representations. This was accomplished by using a one-to-one character string
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match. If a single character was wrong in the predicted string, it was considered as a
wrong prediction.

● Average Tanimoto: The Tanimoto similarity between the original and predicted SMILES
was calculated from the valid SMILES and the average Tanimoto similarity index was
calculated against the entire test dataset.

● Tanimoto 1.0 Percentage: The number of Tanimoto 1.0 counts on the calculated
Tanimoto similarity indices of the valid SMILES and the percentage against the total test
dataset.

Results for the ChEMBL dataset

From ChEMBL two datasets were obtained to train and test, one with stereochemistry (Dataset
1) and one without stereochemistry (Dataset 2). Table 3 summarizes the test results obtained
with training on images from Dataset 1.

Table 3: Test results on dataset 1 (without stereochemistry)

SMILES DeepSMILES SELFIES InChI

Test dataset size 119225 119225 119225 119225

Invalid
DeepSMILES/SELFIES/InChI 0.00% 0.07% 0.00% 30.79%

Valid DeepSMILES/SELFIES/InChI 100.00% 99.93% 100.00% 69.21%

Invalid SMILES 0.35% 0.10% 0.00% 0.00%

Valid SMILES 99.65% 99.83% 100.00% 69.21%

Identical Predictions (String match) 80.87% 78.67% 68.85% 64.28%

Tanimoto 1.0 Percentage (Not
Identical) 86.30% 84.11% 73.88% 65.53%

Average Tanimoto 0.97 0.97 0.95 0.69

SMILES performed best in comparison to the other representations. Comparing the identical
predictions and the Tanimoto 1.0 count, SMILES based models were more accurate. This was
due to fewer tokens in the SMILES language space. Additionally, the maximum SMILES string
was shorter than the rest. As a result, the model learns the representations better. Even though
the InChIs have fewer tokens compared to the other representations, having a lesser number of
tokens increases the maximum length of each string compared to the other representations,



which ultimately creates more errors for learning and predicting. In addition, valid InChI
predictions were predominantly identical to the original string.
Even though SELFIES has the most valid structures, the overall predictivity of the
SELFIES-based model was lower than that of SMILES and DeepSMILES. Overall, SMILES
were more simple to learn - but for guaranteed valid structures, SELFIES were the best option.
To estimate the impact of stereochemistry, the same procedure was repeated with Dataset 2
where the models were trained from scratch. The results are summarized in Table 4.

Table 4: Test results on Dataset 2 (with stereochemistry)

SMILES DeepSMILES SELFIES InChI
Test dataset size 117833 117833 117833 117833

Invalid DeepSMILES/SELFIES/InChI 0.00% 0.11% 0.00% 32.99%

Valid DeepSMILES/SELFIES/InChI 100.00% 99.89% 100.00% 67.01%

Invalid SMILES 0.81% 0.64% 0.08% 0.00%

Valid SMILES 99.19% 99.25% 99.92% 67.01%

Identical Predictions (String match) 78.16% 77.07% 66.59% 59.10%

Tanimoto 1.0 Percentage (Not
Identical) 85.02% 83.89% 72.07% 63.49%

Average Tanimoto 0.97 0.97 0.94 0.66

Based on the results given in Table 4, it was apparent that incorporating information on
stereochemistry leads to a lowered accuracy. For DeepSMILES and InChIs, the number of
invalid predictions increased. Additionally, the fraction of invalid SMILES increased for all
representations except InChIs. After parsing all InChIs, there were only valid SMILES.
SMILES with stereochemistry reduced the overall predictability and accuracy due to the new
artefacts added to the images. In addition, one should consider that the overall token count in
these datasets increased due to stereochemistry so that additional tokens were introduced.
SMILES were overall best to get the most accurate predictions. Since InChIs showed a
significantly inferior performance, it was decided to restrict further investigations to SMILES,
DeepSMILES and SELFIES.

Results for the PubChem dataset
In order to determine how well the model can improve by increasing the number of data points,
the size of the training and test data was doubled by utilizing data from PubChem. As pointed
out above, InChIs were omitted in the subsequent testing.
The number of molecules available in PubChem is currently 110 million. For this work, 3 million
molecules for training and 250,000 molecules for testing were obtained. In the obtained dataset,



the tokens were compared to those in the ChEMBL dataset to check we do have similar tokens
present in the PubChem dataset. Using these datasets with and without stereochemistry
(Datasets 3 and 4), the same training and testing procedure were repeated and the same
evaluation procedure was used as before. For the dataset, without stereochemistry (Dataset 3)
the results are summarized in Table 5.

Table 5: Test results on Dataset 3 (without stereochemistry)
SMILES DeepSMILES SELFIES

Test dataset size 250000 250000 250000

Invalid DeepSMILES/SELFIES/InChI 0.00% 0.08% 0.00%

Valid DeepSMILES/SELFIES/InChI 100.00% 99.92% 100.00%

Invalid SMILES 0.22% 0.08% 0.00%

Valid SMILES 99.78% 99.84% 100.00%

Identical Predictions (String match) 88.62% 87.52% 82.96%

Tanimoto 1.0 Percentage (Not Identical) 92.19% 91.08% 86.42%

Average Tanimoto 0.98 0.98 0.97

By comparison of Table 5 with Table 3, it can be concluded that the data increase improved the
model's performance in general. Again, SMILES show the best accuracy on test results and
SELFIES still retain 100% valid structures.
DeepSMILES falls somewhere between these two. Although DeepSMILES has more valid
structures than SMILES, when considering overall accuracy, the DeepSMILES format falls
behind: comparing DeepSMILES to SELFIES, DeepSMILES has a better accuracy because of
its SMILES like representation, but its overall number of valid structures lags behind SELFIES
(see figure 2).



Figure 2: Comparison of identical predictions, Tanimoto 1.0 count and average Tanimoto of
ChEMBL vs PubChem datasets (without stereochemistry).

A summary of the results for Dataset 4 with stereochemistry information can be found in table 6.



Table 6: Test results on Dataset 4 (with stereochemistry)

SMILES DeepSMILES SELFIES

Test dataset size 250000 250000 250000

Invalid DeepSMILES/SELFIES/InChI 0.00% 0.06% 0.00%

Valid DeepSMILES/SELFIES/InChI 100.00% 99.94% 100.00%

Invalid SMILES 0.34% 0.05% 0.00%

Valid SMILES 99.66% 99.88% 100.00%

Identical Predictions (String match) 85.80% 83.80% 79.73%

Tanimoto 1.0 Percentage (Not Identical) 91.69% 90.60% 86.00%

Average Tanimoto 0.98 0.98 0.97

Compared to table 4, the results in table 6 show that increasing the dataset size does increase
the overall accuracy where datasets with stereochemistry do not perform as well as datasets
without stereochemistry. However, the overall accuracy does increase compared to the dataset
from ChEMBL. In addition, all of the SELFIES predictions which were decoded back into
SMILES are valid, providing 100% valid structures in comparison with table 4. SMILES perform
best in terms of predictability and accuracy, see Figure 3.



Figure 3: Comparison of identical predictions, Tanimoto 1.0 count and average Tanimoto of
ChEMBL vs. PubChem datasets (with stereochemistry).

Conclusion

The performance of different textual chemical structure representations for the chemical image
to structure translation using transformers was investigated. The most accurate models were
obtained by using the SMILES representation. Using SELFIES, however, we were able to
produce models that led to predictions with fewer invalid structures. DeepSMILES models
always fell between SMILES and SELFIES. To ensure that the models perform similarly with
more data, the datasets were scaled up. However, the results showed the same comparative
performance. For most accurate predictions, models should be trained using SMILES, for
maximizing valid structures SELFIES should be used.



The valid structures generated after decoding from SELFIES and DeepSMILES showed that the
SELFIES decoding was superior to DeepSMILES decoding. SMILES and DeepSMILES should
always be used with a set of rules on how to split them into meaningful tokens. SELFIES does
not require this. There were fewer tokens in DeepSMILES than in SELFIES because the
representation was similar to that in SMILES.

Since SELFIES encoding is a promising endeavour under active development, improved
SELFIES variants could reach or even surpass the SMILES predictivity with the additional
advantage of a 100% structural validity.
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