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Abstract

We develop an automatic and efficient scheme for the accurate construction of the

bases for excitonic models, which can enable “black-box” excited state structure calcu-

lations for large molecular systems. These new and optimized bases, which are named

as block interaction product state (BIPS), can be expressed as the direct products of

the local states for each chromophore. Each chromophore’s local states are selected

by diagonalization of its reduced density matrix (RDM), which is obtained by quan-

tum chemical calculation of the small subsystem composed of the chromophore and its

nearest neighbors. We implemented BIPS framework with fragment-based calculations

considering 2-body and 3-body interactions. Test calculations for 8 different molecu-

lar aggregates demonstrate that this framework provides accurate description of not

only the excitation energies, but also the first-order wavefunction properties (dipole

moment and transition dipole moment) of the low-lying excited states at a low-scaling

computational cost.

The accurate description of the electronic structure for the electronic excited states is the key

foundation for a reliable theoretical interpretation of experimental spectroscopy and dynam-
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ics as well as other properties in photochemistry and photophysics.1–3 However, when deal-

ing with large photoactive systems, such as molecular aggregates in organic semiconductor

materials or biological light harvesting systems, conventional excited-state quantum chem-

ical methods like full configuration interaction (FCI), complete active space self-consistent

field (CASSCF), configuration interaction singles (CIS), or time-dependent density func-

tional theory (TDDFT), can hardly fulfil the appeal of excited state calculation due to the

high-scaling growth of the computational cost with the increasing systems size.4 Nowadays,

it is usually considered that the upper limit for the applicability of conventional excited

state quantum chemical methods is merely about 150-200 atoms, if no further approxima-

tions are introduced.5 Encouragingly, inspired by the great success of developed low-scaling

quantum chemistry methods for ground state in the last few decades,6–10 many low-scaling

excited state electronic structure methods have been proposed recently. Developed low-

scaling excited state methods can be generally classified into three categories. The first cat-

egory combines the local excitation approximation (LEA), in which the electronic excitation

is restricted to only one specific region, with the different types of low-scaling fragment-

based approach, such as fragment molecular orbital (FMO),11,12 generalized energy-based

fragment (GEBF),13 electrostatically embedded generalized molecular fractionation method

(EE-GMF)14 and other general embedding strategies.15,16 It has been shown that these

methods can successfully give reasonable descriptions for large systems having only single

local excitations, such as interpreting enhanced molecular fluorescence in crystal environ-

ments.17 As for describing more general delocalized or multiple excitation behaviors in large

molecules, one can resort to the second category of low-scaling excited state methods based

on local correlation approximation (LCA). In this kind of approach, based on the local fea-

ture of the density matrix or molecular orbitals, it is assumed that the excitation could be

approximately described by considering only neighboring electronic couplings. The LCA

scheme has been successfully implemented in various ab initio levels of TDDFT18–24 and

wavefunction theory (WFT)22,25–35 and helped describe non-local excitations such as simu-
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lating the photo-absorption spectrum in metal clusters.36 Another efficient LCA strategy to

inexpensively treat excited states is approximating those as poles of dynamical polarizability

evaluated by divide-and-conquer (DC) approaches, proposed and implemented recently by

Nakai and coworkers.37–39 The third category of low-scaling excited state methods adopts

excitonic model Hamiltonians, which are widely used in material science and computational

biology.40–45 By applying the exciton concept to approximate local excited states of chro-

mophores, one can easily characterize the collective excitations of molecule aggregates esti-

mating the inter-chromophore coupling terms in various approximation ways.46–49 Despite of

the great success of its wide applications in excited state problems, empirical excitonic model

still suffers from a few drawbacks. First, the definition of model basis and the construction

of the model is not automatic. The choice of its parameter values sometimes relies heavily

on experimental fitting or experience setting, which greatly restricts its further extension to

new systems. Secondly, the accurate derivation of parameter values from quantum chemical

calculations is challenging, owing to the co-existence of short-range exchange interactions

and long-range Coulomb interactions.50–52

To construct the basis for the excitonic model, a widely used and straightforward strategy

hinted by the numerical renormalization group (NRG),53 is to take the direct product of

energetically low-lying local states for each subsystem as the effective bases. This approach is

adopted in contractor renormalization group (CORE),54 active space decomposition method

(ASD)55,56 and renormalization group method (REM),57–61 where the low-lying states of a

system can be expressed as the linear superposition of the effective base configurations, which

are the direct products of several energetically low-lying local subsystem wavefunctions.

By only taking a small number of effective bases, low-scaling computational efficiency can

be easily achieved, which makes these methods promising for calculating excited states of

large molecular systems. However, the selection of these effective bases still depends on

personal experience, and one may hardly generate the proper bases automatically when

more than one excited state or charge-transfer (CT) state may be involved. Additionally, in
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these methods, local wavefunctions at each chromophore are usually computed in isolation

and no interactions with surrounding subsystems (i.e., the environment) is considered, thus

limiting the accuracy of the total excitation energy and wavefunction. Recently, Nishio and

Kurashige62 proposed an improved strategy to account for the inter-chromophore effect in

their rank-one excitonic basis. In given approach, local states are iteratively optimized under

the potential produced by other subsystems. Nevertheless, the automatic selection of the

numbers and types of rank-one basis for complicated excitation systems is still unavailable.

According to quantum information theory, the most efficient and optimal way to con-

struct a truncated Hilbert space for a subsystem is to select the states which maximize the

subsystem’s entanglement with its environment.63 This can be achieved by preserving the

eigenstates of the subsystem’s reduced density matrix (RDM) with leading large eigenvalues,

which contributes to the great success of density matrix renormalization group (DMRG)64

for strongly correlated systems. However, how to utilize the system-environment entangle-

ment to construct the basis for excitonic model is unexplored yet, due to the large size of

the targeted system.

In this work, we introduced a robust automatic scheme for the accurate construction of

the bases for excitonic models, thus enabling “black-box” low-scaling excited state structure

calculations in large systems. The new bases are named as block interaction product state

(BIPS), where chromophore’s local states are obtained from the diagonalization of its RDM,

which is calculated from a solution of the small-sized chromophore cluster containing only the

monomer of interest and its neighbors. Results from the proof-of-principle test calculations

for 8 different kinds of one dimensional (1D) molecular aggregates suggest that our new

scheme can accurately describe not only the excitation energies with the chemical accuracy

(∼ 1 kcal mol−1), but also wavefunction properties (dipole moment and transition dipole

moment) of the low-lying delocalized electronic states in large systems. This provides an

automatic and accurate low-scaling electronic structure approach for excited state studies in

various large chemical systems, which will benefit future theoretical studies of photophysics
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and photochemistry in chemistry, biology and material science.
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Figure 1: Schematic diagram for the low-scaling excited state calculation using BIPS (taking
a tetramer of IJKL as an example).

In order to calculate low-scaling excited states with BIPS, the whole excited state system

is divided into N block monomers (i.e., chromophores), as illustrated in Figure 1. For

computational simplicity, an orbital localization procedure is implemented after a global

Hartree-Fock calculation to obtain a set of orthogonal localized molecular orbitals (OLMOs),

which are then assigned to each block for constructing the local states. Taking block J in

the 1D tetramer aggregate in Figure 1 as an example, it gets together with its neighboring

environment, blocks I and K, forming a trimer block cluster. Hereby, the interested state |ψ∗⟩

(T1 or S1) of this block cluster (trimer IJK ) can be obtained through a standard quantum

chemical calculation, i.e.

ĤIJK |ψ∗⟩ = ϵ|ψ∗⟩ (1)
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Accordingly, the density operator for state |ψ∗⟩ can be expressed as

ρ̂ = |ψ∗⟩⟨ψ∗| (2)

Since OLMOs are used, which can be assigned to each monomer respectively, the |ψ∗⟩ can

be re-expressed as the superposition of the product states of wavefunctions for the subsystem

and its environment (block I and K ),

|ψ∗⟩ =
∑
i,j

cij|ψS
i ψ

E
j ⟩ (3)

Here ψS
i and ψE

j represent the possible local configurations for the system and its environment

respectively. cij is the configuration coefficient in the standard quantum chemical calculation

of the cluster. Thereby, Equation (2) becomes

ρ̂ =
∑
i,j

∑
i′,j′

cijci′j′ |ψS
i ψ

E
j ⟩⟨ψS

i′ψ
E
j′ | (4)

After summing all items belonging to the environment (block I and K ), the reduced density

operator ρ̂S is obtained for the system (block J ) by

ρ̂S = TrE(ρ̂) =
∑
j

⟨ψE
j |ψ∗⟩⟨ψ∗|ψE

j ⟩ =
∑
i,i′

c′ii′ |ψS
i ⟩⟨ψS

i′ | (5)

where

c′ii′ =
∑
j

cijci′j (6)

The coefficients {c′ii′} constitute the RDM DJ for block J. By diagonalizing DJ , one can

gain a series of RDM eigenvectors with eigenvalues λi, which satisfy the following normal-

ization condition, ∑
i

λi = 1 (7)
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To build an efficient Hilbert space with limited size, not all RDM eigenvectors are necessarily

preserved, thus only these with eigenvalues larger than certain truncation threshold tc will

be included. Contrary to traditional empirical treatments, such reserved states not only

are automatically determined but also consider environmental effects. According to the net

charge in the block states, these reserved states in block J can be classified into three groups:

the neutral states (neu), the positively charged states (pos) and the negatively charged states

(neg):

neu : |ψJ
0 ⟩, |ψJ

1 ⟩, |ψJ
2 ⟩, · · ·

pos : |ψJ+

0 ⟩, |ψJ+

1 ⟩, |ψJ+

2 ⟩, · · ·

neg : |ψJ−

0 ⟩, |ψJ−

1 ⟩, |ψJ−

2 ⟩, · · ·

After performing the above procedures for other blocks, the reserved states can be ob-

tained for each block. Consequently, one can easily construct the BIPSs for the whole system

by taking the direct products of these optimally-selected local states for each block. All the

generated BIPSs can be classified into two groups: c-BIPS which stands for the excitation

between blocks, and n-BIPS (only neu) which indicates the excitation inside the block. In

the scheme here proposed, the multi-excitations in many blocks are omitted.

The final step comprises the construction of the CI Hamiltonian matrix in the space

spanned by the selected BIPSs, thereon a diagonalization is performed. Based on the princi-

ple of diabatization approach, it is simple to obtain the Hamiltonian by considering n-body

interactions (n = 2, 3 . . . ). A detailed algorithm for this purpose is provided in the Support-

ing Information. In this work, BIPS(2) stands for BIPS framework considering up to 2-body

interactions, whereas BIPS(3) represents BIPS framework with considerations of up to 3-

body interactions. Results from proof-of-principle test calculations using 8 different kinds

of 1D molecular aggregates at the simplest excited state calculation level of CIS/STO-6G

are given below. Standard CIS/STO-6G results are utilized as reference for comparison.
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For each aggregate, the geometry of molecular monomer (except for hydrogen molecule with

the bond length set to be 0.7414 Å) is optimized by density functional theory (DFT) at

M06-2X/6-31G(d)65 level using the Gaussian 16 package.66 All related CIS calculations,

together with BIPS(2) and BIPS(3) calculations at CIS level are implemented using our

in-house code. Related orbital integrals and OLMO generation are obtained using Open-

Molcas package.67,68
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Figure 2: Distribution of RDM’s eigenvalues for hydrogen molecules located on edge (a,c)
and middle (b,d) of the tetramer with R = 1.5/3.0 Re in calculating T1 state under BIPS
framework.

Figure 2 shows the distribution of RDM’s eigenvalues λi for each block (hydrogen molecule),

by taking the hydrogen molecule tetramer as the example (owing to its symmetry only two

blocks are plotted). Six RDM eigenvectors including two neu, two pos and two neg are re-
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served with tc = 0.001 for each block. Their eigenvalues vary with intermolecular distance R

changes. λi of ionic eigenvectors (i.e., the pos and neg) in the case of setting R to 1.5 times

of the equilibrium bond length of hydrogen molecule (Re, 0.7414 Å) are about one order

of magnitude larger than the case of R = 3.5 Re, implying that charge transfer states are

non-negligible in short separation distance. It can be noticed that the eigenvalue distribution

behaves differently with distinct locations of the monomer in the aggregates. This is mainly

attributed to the different chemical environment chosen in calculating the RDM.

Table 1: Calculated (H2)n deviations with the intermolecular distance R = 3.0 Re by BIPS(2)
and BIPS(3) at different tolerance values tc and BIPSs’ number NBIPS. Calculations are com-
pared with ∆ECIS (∆ET1(4) = 15.6352 eV, ∆ET1(8) = 15.5969 eV, ∆ES1(4) = 23.7140 eV
, ∆ES1(8) = 23.3740 eV).

BIPS(2) BIPS(3)
tc NBIPS δ(2) / meV NBIPS δ(3) / meV

S0 − T1

0.010 4 413.7 4 413.7
(H2)4 0.005 12 55.0 16 51.4

0.001 16 5.6 24 0.1

0.010 8 451.9 8 451.9
(H2)8 0.005 16 328.7 24 326.3

0.001 36 9.4 60 0.2

S0 − S1

0.100 4 1480.0 4 1416.1
(H2)4 0.030 12 319.2 16 191.0

0.001 16 175.7 24 9.0

0.100 8 1718.9 8 1611.5
(H2)8 0.030 32 328.3 52 72.1

0.001 36 308.5 60 45.9

The automatic identification of important monomer configurations provides an efficient

and “block-box” way to produce the localized basis for ab initio exciton models. As an

illustration, a series of BIPS(2) calculations are performed by setting different tc values on

the hydrogen molecule tetramer and octamer with R = 3.0 Re. As shown in Table 1, a

steady and monotonic improvement is observed for both excited states (T1 and S1) when tc
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value decreases, as well as the growth of NBIPS. An alternative way to improve accuracy is

to take into account 3-body interactions. Thence, BIPS(3) calculations are performed for

current systems by considering a larger BIPSs’ space. Results indicate a vast improvement

compared with BIPS(2), for this reason calculated deviations δ(3) become smaller than

chemical accuracy (i.e., about 43 meV). In order to further test BIPS performance, given

system is extended by setting a series of R, to which three low-lying states are calculated

using BIPS(2) and BIPS(3) (tc = 0.001). As can be seen in Figure 3a, BIPS(3) gives proper

results in wide range of varying R, whereas BIPS(2) only provides reasonable descriptions

in relative long distance. In order to test BIPS ability to describe the aggregation effect,

BIPS(3) calculations (tc = 0.001) from the hydrogen molecule tetramer to decamer are

performed. From Figure 3b it is evident that the BIPS(3) performs exceptionally well as

plot lines almost perfectly align with the reference lines. The maximum deviation occurs in

the calculation of T1 for decamer and is only 5.6 meV, which is relatively small since the

excitation energy of T1 shifts about 102.3 meV. It should be pointed out that higher accuracy

can be achieved, if necessary, by taking higher many-body interactions into consideration

under the BIPS framework.
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Figure 3: (a): Excitation energies calculated by BIPS(2) and BIPS(3) with hydrogen
molecule tetramer with R from 1.5 Re to 3.5 Re, compared with reference. (b): Excita-
tion energies calculated by BIPS(3) compared with reference from the tetramer to decamer
with the fixed R value 2.5 Re.
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Table 2: Excitation energies deviation for benzene tetramer and octamer calculated by BIPS
(counting 2-body effect δ(2), 3-body effect δ(3)), compared with the reference.a,b

System Reference / eV δ(2) / meV δ(3) / meV

T1 2.6800 (0.5095) 4.6 0.3
(C6H6)4 T2 2.8672 (3.0605) −1.0 0.6

T3 3.0608 (2.8668) −2.6 −2.2

T1 2.6196 (0.5699) 7.0 −0.3
(C6H6)8 T2 2.6749 (3.2527) 4.8 −1.0

T3 2.7573 (3.1704) 1.9 −2.1
a NBIPS(4) = 52, NBIPS(8) = 120.
b Values in parentheses are the excitation energies’ shift compared with C6H6 monomer
(calculated at CIS level).

BIPS performance is further assessed with larger systems—a series of aggregates consist-

ing of different amounts of benzene molecules stacked face-to-face—to verify its computa-

tional efficiency. The separation distance between the benzene molecules is fixed at 3.0 Å

and detailed geometry structures are given in Table S1 and Table S2. Table 2 contains the

results of three low-lying exited states for benzene tetramer and octamer from BIPS(2) and

BIPS(3) calculations. As can be seen, both BIPS(2) and BIPS(3) provide accurate results,

in which deviations are less than 1 kcal mol−1 (about 43 meV) by an order of magnitude.

Consequently, a series of BIPS(2) calculations are performed in benzene aggregates from the

tetramer to decamer, results are plotted in Figure 4. For the smallest system, tetramer, the

computational time is mainly spent in the construction of BIPSs and the Hamiltonian. With

the increasing of system’s size, BIPS(2) exhibits almost linear growth in time consumption

and almost three times faster than standard CIS calculation in decamer system (shown in

Figure 4b). Moreover, calculation accuracy still remains within the maximum deviation of

7 meV.

Well-behaved wavefunctions of the excited states are also expected in the calculation un-

der the BIPS framework. Therefore, aggregates consisting of 6 different molecular monomers

(i.e., water, ammonia, methanol, methanal, pyridine and ethylene) are studied. Each one

of the selected molecules exhibits different type of intermolecular interactions, such as elec-
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12



trostatic (hydrogen bonding) and dispersion (van der Waals). Geometry structures for the

selected systems under study are given in Figure 5. Dipole moment µ of S1, transition

dipole moment µT (S0 − S1) and excitation energies are calculated by BIPS(2). Computed

properties are listed in the Table 3. Results indicate that BIPS(2) gives a relative accurate

description of µ and µT with the excitation energies’ deviations less than chemical accuracy.

Supplementary Table S3 and Table S4 also suggest that the direction of these two properties

also fit well with the standard CIS results for most aggregates.

Table 3: Excitation energies, dipole moments µ of S1 and transition dipole moments µT for
S0 − S1 calculated by BIPS(2) for a series of aggregates (compared with reference).

∆E / eV µ / a.u. µT / a.u.
Reference BIPS(2) Reference BIPS(2) Reference BIPS(2)

(H2O)4 12.8927 12.9038 2.281 2.281 0.093 0.099
(NH3)4 14.9824 14.9801 1.930 1.930 0.055 0.049

(CH3OH)4 12.5495 12.5349 1.674 1.667 0.141 0.130
(CH2O)4 4.2671 4.2749 2.242 2.233 0.010 0.009
(C5H5N)4 6.2767 6.2681 3.281 3.282 0.266 0.271
(C2H4)4 10.7242 10.7430 0.000 0.000 3.426 3.336

In summary, we propose a new robust type of bases, block interaction product state

(BIPS), to describe the energy and wavefunction of low-lying excited states. BIPS assessment

calculations demonstrated that this method is capable of providing accurate descriptions of

not only excitation energies, but also first-order properties related to the wavefunctions

of excited states. Moreover, BIPS-based method also exhibited low-scaling computational

cost. Most compelling evidence has proved its stability for different type of intermolecular

interactions. These advantages make BIPS promising for the study of excited states in large

practical system, which is part of ongoing research work. BIPS capacity will be further

extended by introducing more conventional quantum chemical methods (e.g., CASSCF and

TDDFT) and exploring gradient and response properties.
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