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Hybrid or “extended” symmetry-adapted perturbation theory (XSAPT) replaces traditional SAPT’s
treatment of dispersion with better-performing alternatives, while at the same time extending
two-body (dimer) SAPT to a many-body treatment of polarization, via a self-consistent charge-
embedding procedure. The present work presents a systematic study of how total interaction en-
ergies and also energy components converge with respect to the choice of Gaussian basis set in
XSAPT. Pople-style basis sets, while very efficient, consistently afford errors > 1 kcal/mol with
respect to benchmark interaction energies for standard data sets of noncovalent complexes, whereas
Dunning’s correlation-consistent basis sets and Karlsruhe basis sets perform much better. Hybrid
treatments of dispersion afford must faster basis-set convergence as compared to traditional SAPT,
and benchmark-quality results can be obtained using basis sets of triple-ζ quality, although the use
of diffuse functions proves to be essential. The use of dimer Hartree-Fock calculations as a correction
for higher-order induction can be performed in even smaller basis sets with negligible error, leading
to a composite approach that offers speedups of 100× even for small systems.

1 Introduction

Noncovalent interactions are ubiquitous in na-
ture and hold many important functions in crystal
packing,1–5 protein folding,6–10 host–guest binding in
pharmaceuticals,11–14 as well as various materials sci-
ence applications.15–17 Despite their prevalence, nonco-
valent forces are often misunderstood by chemists.18–20

The framework of symmetry-adapted perturbation the-
ory (SAPT)20–26 offers an accurate and systematic ab ini-
tio approach to noncovalent interaction energies includ-
ing an energy decomposition into physically-meaningful
components: electrostatics, Pauli repulsion, induction,
and dispersion.27–29 This decomposition is useful for ob-
taining physical insight that is backed by reliable ab ini-
tio calculations.11,19,20,30–36 The SAPT energy decompo-
sition, which is inherently better separable than meth-
ods based on supramolecular density functional theory
(DFT),37–39 can also be used to develop physically mean-
ingful force fields.1,14,40,41

The most widely used variant of SAPT is known as
SAPT0,25,42 which combines Hartree-Fock (HF) wave
functions for the isolated monomers (as zeroth-order
states) with second-order perturbation theory for the
intermolecular Coulomb potentials.22,25 When used in
conjunction with Kohn-Sham (KS) density function-
als with correct asymptotic behavior, intramolecular
electron correlation can be incorporated by substi-
tuting the KS determinant for the HF one, in a
method that we have called SAPT0(KS).20,42 (The use
of asymptotically-correct functionals is crucial and the
SAPT0 formalism should not be used with arbitrary
density functionals.42–44) Both traditional SAPT0 and
SAPT0(KS) afford semiquantitative results at O(N5)
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cost.25,42 The accuracy of both methods is limited by
the accuracy of the dispersion interactions, which are
not quantitative within the “uncoupled” second-order
approximation45–47 that characterizes SAPT0, and which
is similar to second-order Møller-Plesset perturbation
theory (MP2).48,49

To obtain quantitative accuracy, second-order disper-
sion must be replaced by better-performing alterna-
tives. This has led to development of MP2 variants in-
cluding MP2C46 and MP2D,47 and (within the SAPT
formalism), DFT-SAPT.23,24 These methods are much
more accurate than SAPT0 but retain that method’s
O(N5) cost. (For MP2C and DFT-SAPT, a density
fitting approximation is required in order to obtain
fifth-order scaling.50,51) The “extended” (X)SAPT ap-
proach follows a similar strategy,20 replacing second-
order dispersion with either ab initio dispersion poten-
tials (XSAPT + aiD)48,52–54 or else with a many-body
dispersion model (XSAPT + MBD).55,56 The latter ap-
proach is currently the best-performing variant of the the
theory,20,55 and is the one used herein. Unlike the afore-
mentioned methods, XSAPT incurs only O(N3) cost,
and it can be can be extended to clusters of molecules
using a self-consistent charge embedding to capture non-
additive polarization effects.54,56–59 For large systems,
the monomer-based nature of XSAPT calculations makes
this approach more affordable even than supramolecular
DFT.52,54,55

Some limited basis-set testing of XSAPT methods has
been reported in previous work,42,54,55,60 but only for
total interaction energies whereas as herein we examine
convergence of individual energy components, which al-
lows us to consider whether earlier tests may have bene-
fited from error cancellation amongst energy components
that may exhibit different convergence behavior. The
basis-set dependence of traditional SAPT has also been
carefully evaluated,25 however the especially slow con-
vergence of the dispersion energy in the traditional ap-
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proach means that those tests are not directly applicable
to XSAPT. Moreover, because XSAPT was designed for
large systems, we want to extend the basis-set testing be-
yond Dunning’s correlation consistent set and provided
comprehensive tests for Karlsruhe and for Pople basis
sets as well. These tests allow us to consider whether
hybrid basis-set combinations (in which different energy
components are evaluated in different basis sets) might
further improve the efficacy of XSAPT calculations. Such
hybrid approaches take advantage of the inherent sepa-
rability of the SAPT or XSAPT interaction energy

2 Theory

The XSAPT formalism48,57,58 and the XSAPT + MBD
method55,56 have been described in previous work, in-
cluding a recent review.20 These methods are briefly sum-
marized below.

A. SAPT0(KS). The starting point for XSAPT is
second-order SAPT0(KS) for a dimer, for which the de-
composition of the total interaction energy (Eint) is ex-
pressed as48,54

ESAPT0
int = E

(1)
elst + E

(1)
exch + E

(2)
ind + E

(2)
exch-ind

+ E
(2)
disp + E

(2)
exch-disp + δEHF

(1)

Superscripts indicate orders in intermolecular perturba-
tion theory but we drop these henceforth, setting Eelst ≡
E

(1)
elst (electrostatics) and Eexch ≡ E

(1)
exch (exchange or

Pauli repulsion). Second-order contributions are summed
to obtain the total induction energy

Eind = E
(2)
ind + E

(2)
ind-disp (2)

and the total dispersion energy

Edisp = E
(2)
disp + E

(2)
exch-disp . (3)

The final term in eq. 1 is a so-called “δHF” correction
for higher-order induction effects,20,22

δEHF = ∆EHF
int −

(
E

(1)
elst + E

(1)
exch + E

(2)
ind,resp

+ E
(2)
exch-ind,resp

)
.

(4)

Here, ∆EHF
int is the counterpoise-corrected HF interac-

tion energy and the second-order quantities E
(2)
ind,resp and

E
(2)
exch-ind,resp are “response” analogues of the second-

order terms in eq. 2,which require the solution of coupled-
perturbed HF equations.61 For SAPT0(KS) calculations,
the first- and second-order SAPT terms in eq. 4 should be
computed at the HF level even if the corresponding terms
in eq. 1 are computed based on KS orbitals.42 Notably,
δEHF is the only term in eq. 1 that requires iterations in

a dimer basis set, and therefore becomes a bottleneck for
large monomers.

The accuracy of SAPT0(KS) interaction energies de-
pends critically on the use of asymptotically-correct
exchange-correlation functionals.20,42 Long-range cor-
rected (LRC) functionals offer a simple means to en-
force this constraint, but the range separation parameter
ω must be tuned separately for each monomer in order
to obtain correct asymptotics.42–44 To this end, we use
the LRC-ωPBE functional62 combined with the “global
density-dependent” (GDD) tuning procedure.42,63 Re-
sults in Ref. 42 show that GDD-tuned SAPT0(KS) and
XSAPT + MBD results are essentially identical to those
obtained using tuning based on the ionization energy
criterion.43

B. XSAPT. The XSAPT + MBD approach replaces
the second-order dispersion energy in eq. 3 with a vari-
ant of the range-separated and self-consistently screened
MBD model developed by Tkatchenko and co-workers.64

(The original model of Ref. 64 must be modified at short
range for use with SAPT, as described in Ref. 55.) In
addition, self-consistent field (SCF) wave functions for
the monomers are computed in the presence of wave
function-derived embedding charges computed using the
CM5 charge model,65 as described in Ref. 56. (CM5
charges are based on the Hirshfeld atomic charge model
procedure but introduce parameters in an effort to ob-
tain better-quality dipole moments.) For a dimer system,
this completes the specification of the XSAPT + MBD
method.

For a system composed of more than two monomers,
the XSAPT interaction energy is20

EXSAPT
int =

∑
A,B>A

(
EAB

elst + EAB
exch + EAB

disp + EAB
ind

+ δEAB
HF

)
+ EPW

pol + EMB
pol

(5)

where the summand in parentheses is the SAPT0(KS) in-
teraction energy for dimer AB, meaning eq. 1 (with MBD
replacing second-order dispersion) but without charge
embedding. The terms outside of the pairwise sum in
eq. 5 are the pairwise and many-body polarization ener-
gies. The former is defined as

EPW
pol =

∑
A,B>A

[
EXSAPT

AB (AB)− ESAPT
AB

]
, (6)

where the term in square brackets is the difference be-
tween the charge-embedded energy for dimer AB and
the SAPT energy computed without charge embedding.
Finally, there is a many-body polarization energy

EMB
pol =

∑
A,B>A

[
EXSAPT

AB (AB · · ·N)− EXSAPT
AB (AB)

]
,

(7)
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where EXSAPT
AB (AB · · ·N) is the energy of dimer AB

embedded in an environment of atomic charges corre-
sponding to the entire supersystem AB · · ·N whereas
EXSAPT

AB (AB) is the same dimer’s energy when embed-
ding charges are included only on monomers A and B.

3 Computational Details

A. Density Functionals. For SAPT0(KS) calcula-
tions, and therefore for XSAPT, the range separation
parameter in the LRC functional must be tuned individ-
ually for each monomer.42–44 We do this once and for all
at the LRC-ωPBE/def2-TZVP level and then use these
values in all subsequent calculations regardless of basis
set. Previous work has shown that tuned values of ω are
sensitive to the fraction of short-range exact exchange in
the LRC functional but for a fixed functional (such as
LRC-ωPBE in the present work), these values are rather
insensitive to the choice of basis set.66 Most calculations
are reported here at the XSAPT + MBD level of theory55

but some tests will be reported using XSAPT + aiD3,54

where “aiD3” denotes the third-generation ab initio dis-
persion potential.

B. Basis Sets. A standard complement of Pople-style
basis sets is tested, ranging from 6-31G to 6-311++G(3df
2dp).67 These are often regarded as low-quality basis sets
in modern electronic structure theory but are still widely
used, in part because some codes have been optimized
to take advantage of their “sp” basis functions, mean-
ing s and p functions with a common orbital exponent.
All calculations in this work were performed using Q-
Chem v. 5,68 for which the use of Pople basis sets is sig-
nificantly more efficient as compared to other basis sets
with a comparable number of functions. Karlsruhe (or
Ahlrichs) “def2” basis sets up to quadruple-ζ quality are
also tested,69,70 as are Dunning’s correlation-consistent
basis sets cc-pVXZ71 and aug-cc-pVXZ,72 for X = D, T,
and Q.67

In addition to these three standard families of ba-
sis sets, we also tested “calendar” versions of the cor-
relation consistent basis sets, in which diffuse func-
tions are systematically removed starting from aug-cc-
pVXZ.73 The jul-cc-pVXZ basis sets consist of cc-pVXZ
for hydrogen and aug-cc-pVXZ for other atoms (mean-
ing that all diffuse functions are removed from hydro-
gen), and jun-cc-pVXZ additionally removes the set of
diffuse functions with highest angular moment from each
non-hydrogen atom. (These basis sets were added to
Q-Chem as part of the present work.) We note that
jun-cc-pVDZ is suggested as a compromise basis set in
SAPT0 calculations,25,42 exploiting the slow basis-set
convergence of the dispersion energy to limit the intrinsic
overestimation of dispersion (at the level of second-order
perturbation theory) through the use of a limited ba-

sis set. This is a compromise because electrostatics is
not generally converged at the double-ζ level,42,54 but
overall errors in SAPT0 interaction energies are worse in
aug-cc-pVDZ and larger basis sets, as compared to jun-
cc-pVDZ.25

We also modified the Karlsruhe basis sets to delete
diffuse functions in an analogous manner, although these
basis sets contain fewer diffuse functions as compared to
the Dunning-style basis sets, e.g., def2-SVPD for second-
row atoms contains a diffuse s function and a set of dif-
fuse d functions, but no diffuse p function, and for hy-
drogen there is a set of diffuse p functions but no diffuse
s function.70 As a first truncation, and in analogy to to
jul-cc-pVXZ, we delete the diffuse functions on hydro-
gen. This results in what has historically been termed a
“heavy-augmented” basis set, and we denote these, e.g.,
as “ha-def2-SVPD” for the basis set that starts from def2-
SVPD. As a second step, and in analogy to jun-cc-pVXZ,
we delete the highest angular momentum set of diffuse
functions on each non-hydrogen atom. For the second
row, this leaves only minimal augmentation with a diffuse
s function and thus we refer to these basis sets as “ma-
def2”. This is similar in spirit to the partially-augmented
Karlsruhe basis sets that were constructed in Ref. 74, al-
though the diffuse exponents differ because Ref. 74 did
not start from the standardized Karlsruhe diffuse expo-
nents that were introduced in Ref. 70, and which do serve
as the starting point for our truncated ha-def2 and ma-
def2 basis sets.

C. Data Sets. For high-throughput evaluation of a
wide variety of basis sets, we will use the S66 data set
of noncovalent dimers.75 This database was developed
to sample various types of noncovalent interactions and
benchmark interaction energies were reported in Ref. 75
at the level of coupled-cluster theory with single, double,
and perturbative triple excitations [CCSD(T)], extrap-
olated to the complete basis set (CBS) limit. Per the
analysis in Ref. 75, The 66 dimers in this test set are di-
vided into three subsets: hydrogen-bonded dimers, which
are characterized by the condition |Eelst| ≥ 2|Edisp|;
dispersion-dominated dimers for which |Edisp| ≥ 2|Eelst|;
and dimers of mixed-influence interactions where neither
of these conditions are met. The hydrogen-bonded sub-
set, which consists of 23 different dimers involving water,
methanol, acetic acid, and other polar monomers places
stringent demands on the basis set as compared to the
other S66 systems, so it is useful to group the complexes
in this way. The dispersion-bound subset contains 23
dimers involving monomers such as benzene, pyridine,
and ethene.

We will also consider three data sets containing ionic
monomers:76 AHB21, which consists of 21 anion–neutral
hydrogen-bonded complexes with ions including F−, Cl−,
N−

3 , and SH−; CHB6, consisting of three alkali–benzene
and three alkali–water cation–neutral complexes; and fi-
nally IL16, which is a set of 16 ion pairs representing
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Table 1: Error Statistics for the SAPT0 Method Applied to
the S66 Data Set.

Basis Set Error (kcal/mol)

MAE Max

jun-cc-pVDZ 0.51 1.55

jul-cc-pVDZ 0.64 2.34

aug-cc-pVDZ 0.67 2.49

jun-cc-pVTZ 0.81 3.34

jul-cc-pVTZ 0.93 3.56

aug-cc-pVTZ 1.01 3.70

jun-cc-pVQZ 1.05 3.91

jul-cc-pVQZ 1.09 3.98

constituent molecules or constituent moieties of ionic liq-
uids. Benchmark interaction energies at the CCSD(T)/
CBS level are taken from Ref. 76 for all three of these
data sets.

4 Results and Discussion

A. Tests of Traditional SAPT0 Using S66. The
convergence of traditional SAPT methods (including
SAPT0) has been reported previously25 but we include
our own SAPT0 convergence tests here because they es-
tablish a baseline to which we can later compare the
XSAPT methods, whose alternative descriptions of dis-
persion lead to accelerated basis-set convergence. Ta-
ble 1 provides the mean absolute errors (MAEs) for the
S66 database at SAPT0/cal-cc-pVXZ levels of theory,
where X = D, T, or Q and cal = jun, jul, or aug. As
previously reported,25 the jun-cc-pVDZ basis set gives
the best results with a MAE of 0.5 kcal/mol. Errors in-
crease both with increasing cardinality of the basis set
(i.e., double-, triple-, or quadruple-ζ) and with increas-
ing augmentation. The uncoupled or MP2-like second-
order approximation for dispersion that is used in SAPT0
tends to overestimate dispersion significantly, yet con-
verges very slowly to the CBS limit. More complete ba-
sis sets therefore afford increasingly poor dispersion en-
ergies and the use of jun-cc-pVDZ is a compromise that
balances slow convergence against overestimation of the
result. It is a remarkably robust compromise in small
molecules (as in the S66 data set),25,42 although it may
fare worse in larger systems. For example, in the L7
set of large dispersion-bound complexes,77 the MAE for
SAPT0/jun-cc-pVDZ interaction energies is 4.8 kcal/mol
(versus 0.5 kcal/mol for S66), and the maximum error is
10.3 kcal/mol.48

SAPT0 dispersion energies for all of the S66 dimers are
plotted in Fig. 1 in a variety of basis sets. These data
clearly demonstrate that there are nontrivial changes be-
tween triple- and quadruple-ζ basis sets. With the excep-
tion of dispersion, however, the other energy components

Fig. 1: Dispersion energies for the S66 dimers computed
using SAPT0 with a variety of correlation-consistent basis
sets and “calendar” variants thereof.

are essentially constant across these basis sets.

B. Broad Survey of Basis Sets for XSAPT+MBD
Using S66. We next consider the performance of the
hybrid XSAPT + MBD method as applied to the S66
dimers. These systems are small (with the largest being
pentane dimer) and thereby facilitate high-throughput
testing. XSAPT + MBD errors for each of the S66
dimers, across a wide range of Pople, Karlsruhe, and
Dunning basis sets are plotted in Fig. 2 and will be an-
alyzed below. A statistical survey of the results is pre-
sented in Table 3, broken down into the three subsets
that were described in Section 3 C. As with the SAPT0
assessment in Section 4 A, error is measured relative to
CCSD(T)/CBS benchmarks.75

1. Karlsruhe Basis Sets

Errors for XSAPT + MBD using Karlsruhe “def2” ba-
sis sets are plotted in Fig. 2a, where the double-, triple-,
and quadruple-ζ basis sets have been grouped together
by color. Clearly, the double-ζ errors are much larger,
exceeding 1 kcal/mol in many cases and typically 1–
3 kcal/mol larger than what is obtained in more complete
basis sets.

Figure 2a also demonstrates the importance of includ-
ing diffuse functions when calculating interaction ener-
gies. This can be seen most clearly from the double-ζ
data but is true as well in triple- and quadruple-ζ basis
sets, although the effect is smaller in those larger ba-
sis sets. Errors increase in a consistent way as the dif-
fuse orbitals are trimmed, going from def2-SVPD (with
a full complement of diffuse functions) to the “heavy-
augmented” ha-def2-SVPD basis set, and finally to the
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Fig. 2: Absolute errors in XSAPT + MBD total interaction energies for the S66 dimers, using (a) Karlsruhe basis sets, (b)
Dunning correlation-consistent basis sets, (c) Pople basis sets, and (d) the best-performing basis sets from amongst these three
categories. Indices along the horizontal axis refer to the way that the dimers were ordered in the original work of Ref. 75 and
the three color-coded regions delineate the hydrogen-bonded subset (dimers 1–23), the dispersion-bound subset (24–46), and
the subset of mixed-influence dimers (47–66). Errors are defined with respect to the CCSD(T)/CBS benchmarks in Ref. 75.

“minimally-augmented” ma-def2-SVPD basis. The im-
portance of diffuse basis functions is most significant in
systems that are dominated by hydrogen bonding, where
induction effects are important, and removal of the dif-
fuse functions has a smaller effect in systems that are
dominated by dispersion.

Most interesting is that the absolute errors converge
at the triple-ζ level. Difference between triple- and
quadruple-ζ interaction energies are uniformly smaller
than 1 kcal/mol and on average these differences are less
than 0.1 kcal/mol. The largest differences (approaching
1 kcal/mol) are for systems with very strong hydrogen
bonds, such as acetic acid dimer, and in these cases the
quadruple-ζ errors are actually larger than the triple-ζ
errors. Another important feature is that removal of
the diffuse functions has a much smaller effect at the
triple- and quadruple-ζ level than it does at the double-ζ
level where these functions are absolutely essential for ob-
taining quantitative or semi-quantitative results. In the
double-ζ basis sets, it seems that the diffuse functions are
partially compensating for the overall incompleteness of

the basis set, which becomes unnecessary at the triple-ζ
level.

2. Dunning Basis Sets

Errors for correlation-consistent basis sets and “cal-
endar” variants thereof are provided in Fig. 2b. In the
absence of any diffuse functions, even the cc-pVTZ ba-
sis set affords unacceptably large errors, specifically for
the hydrogen-bonded complexes. These are substantially
reduced, even at the double-ζ level, by minimal aug-
mentation, e.g., jun-cc-pVDZ or jun-cc-pVTZ, although
some of the errors for hydrogen-bonded complexes re-
main larger than 1 kcal/mol even at the aug-cc-pVTZ
level, where the average error is < 0.5 kcal/mol. The
takeaway from this analysis is that the accuracy obtained
from these very large basis sets is comparable to what is
possible using the somewhat more modest Karlsruhe ba-
sis sets.
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Table 2: Error Statistics for XSAPT + MBD Applied to the S66 Data Set and Subsets Thereof.

Method

Error (kcal/mol)

H-Bonded Dispersion Mixed Total

MAE Max MAE Max MAE Max MAE Max

def2-SVP 3.71 8.65 2.32 5.33 1.89 2.60 2.67 8.65

def2-SVPD 1.17 3.78 1.65 3.54 1.33 2.30 1.39 3.78

ha-def2-SVPD 1.35 5.17 1.75 3.74 1.22 2.06 1.45 5.17

ma-def2-SVPD 2.13 4.54 1.98 4.47 1.45 2.56 1.87 4.54

def2-TZVP 0.75 1.67 0.55 1.99 0.82 1.42 0.70 1.99

def2-TZVPD 0.17 0.48 0.43 1.57 0.54 0.99 0.37 1.57

ha-def2-TZVPD 0.21 0.57 0.50 1.56 0.55 0.99 0.41 1.57

ma-def2-TZVPD 0.19 0.36 0.51 1.78 0.60 1.17 0.43 1.78

def2-QZVP 0.53 2.19 0.36 1.32 0.55 1.17 0.48 2.19

def2-QZVPD 0.40 1.36 0.33 1.07 0.49 1.10 0.40 1.36

ha-def2-QZVPD 0.41 1.10 0.34 1.09 0.49 1.07 0.41 1.10

ma-def2-QZVPD 0.50 1.75 0.33 1.33 0.48 1.06 0.44 1.75

cc-pVDZ 3.34 8.10 2.42 5.31 1.90 2.68 2.58 8.10

cc-pVTZ 2.18 5.69 1.08 3.15 1.21 1.83 1.50 5.69

aug-cc-pVDZ 0.75 2.86 0.77 2.06 0.74 1.52 0.75 2.86

aug-cc-pVTZ 0.60 2.65 0.42 1.60 0.48 1.04 0.50 2.65

jul-cc-pVDZ 0.58 2.64 0.73 2.09 0.62 1.37 0.64 2.64

jul-cc-pVTZ 0.56 2.58 0.52 1.70 0.54 1.03 0.54 2.58

jun-cc-pVDZ 0.98 3.10 0.69 2.09 0.65 1.32 0.78 3.10

jun-cc-pVTZ 0.54 2.51 0.54 1.83 0.53 1.02 0.53 2.51

6-31G 6.61 11.97 3.56 7.06 3.02 3.98 4.46 11.97

6-31G(d) 4.74 10.08 3.41 6.74 2.73 3.88 3.67 10.08

6-31+G 4.46 7.11 1.20 3.41 1.25 1.98 2.35 7.11

6-31+G(d) 2.71 5.71 1.00 2.88 0.99 1.65 1.59 5.71

6-311G 5.84 10.00 2.26 5.44 2.28 3.36 3.52 10.00

6-311G(d) 4.23 7.92 2.13 5.12 2.19 2.90 2.88 7.92

6-311+G 3.95 6.16 1.16 3.62 1.42 2.30 2.21 6.16

6-311G(d,p) 3.54 7.51 2.11 4.91 2.02 2.71 2.58 7.51

6-311+G(d) 2.20 3.51 1.15 3.25 1.31 1.91 1.56 3.51

6-311++G 3.91 6.09 1.08 3.55 1.32 2.29 2.14 6.09

6-311++G(d,p) 1.53 3.14 1.02 2.85 1.09 1.55 1.22 3.14

6-311++G(3df 2dp) 0.99 4.43 0.79 2.40 0.77 1.15 0.85 4.43

3. Pople Basis Sets

XSAPT + MBD absolute errors using Pople basis sets
are shown in Fig. 2c and are color-coded (across the vis-
ible spectrum) based on the size of the basis set, with
warmer colors (towards red) representing larger basis
sets. Errors are generally larger than when the Karls-
ruhe or Dunning basis sets are used, although the 6-
311++G(3df,2dp) basis set (which was originally devel-
oped for MP2 calculations78) performs reasonably well
and best amongst the Pople-style basis sets that are
tested here. That said, outside of the hydrogen-bonded
subset of S66, where large induction effects necessitate
the use of a considerable number of polarization func-
tions, the performance of 6-311++G(3df,2dp) is nearly
identical to that of 6-311++G(d,p), 6-311+G(d), 6-

311++G, 6-31+G(d), and even 6-31+G. A set of dif-
fuse functions is necessary even for the dispersion-bound
complexes but otherwise the double-ζ basis sets per-
form just as well as the triple-ζ ones when hydrogen
bonds are absent. Polarization functions matter little
(< 0.1 kcal/mol) for dispersion-bound systems.

Overall, even the better-quality Pople basis sets af-
ford larger errors than what is possible to achieve readily
with either Karlsruhe or Dunning basis sets, but they
can be competitive when sufficient diffuse and polariza-
tion functions are added. In particular, these tests once
again highlight the importance of diffuse functions espe-
cially in the context of hydrogen bonding. The use of
composite sp shells makes Pople basis sets significantly
faster (per unit basis function) as compared to other
types of basis sets, assuming that one is using a quan-
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tum chemistry program that is written to exploit this.
This means that basis sets such as 6-311++G(d,p) and
6-311++G(3df,2dp) may have a place in the pantheon of
SAPT methods for large systems.

4. Comparison Between Subsets of Basis Sets

Several of the best-performing basis sets from each of
the categories discussed above are compared in Fig. 2d.
It is clear that 6-311++G(d,p) is outperformed by both
Dunning and Karlsruhe basis sets, with absolute errors
that are larger by up to 2 kcal/mol. All of these worst-
case discrepancies are found amongst the hydrogen-
bonded subset of S66, hence the problem is likely the
inadequate description of dispersion energies. (The basis-
set behavior of individual energy components is consid-
ered in Section 4 C.)

In contrast, the best of the Dunning and Karlsruhe
basis sets are nearly identical in their performance, with
MAEs < 0.5 kcal/mol. The Karlsruhe basis sets achieve
this level of accuracy with fewer basis functions and for
that reason we will focus on the Karlsruhe basis sets in
much of the rest of this paper.

C. Energy Component Analysis for S66. Fig-
ure 3 shows the comparison of the four energy com-
ponents (electrostatics, exchange, induction, and dis-
persion) across the S66 data set, computed at the
XSAPT + MBD level in various basis sets, although lim-
ited to the ones that perform reasonably well for total in-
teraction energies, based on the analysis presented above.
These data suggest that the basis sets that we singled
out as the best-performing ones achieve this status not
through any kind of error cancellation but rather because
they offer a quantitative (or nearly quantitative) descrip-
tion of each of the energy components.

Dispersion energies, computed according to the MBD
model,55 are plotted in Fig. 3a and are essentially iden-
tical across all basis sets tested, including triple-ζ Pople
basis sets such as 6-311++G(d,p). This behavior is not
entirely surprising given that the dispersion model is
based upon the SCF monomer electron densities, which
are mapped onto a harmonic oscillator Hamiltonian by
means of a Hirshfeld partition of the density into atomic
contributions.64 Convergence of SCF charge densities is
usually achieved at the triple-ζ level and the Hirshfeld
weighting scheme is also density-based. The behavior of
MBD stands in marked contrast to the slow convergence
of perturbative dispersion within the SAPT formalism,
which is slower than that of other energy components;
this was a major part of the original motivation for the
development of hybrid XSAPT methods that treat dis-
persion differently.52

For the electrostatic energy (Fig. 3b), the 6-
311++G(d,p) basis set is not quite sufficient to ob-
tain converged results for strong hydrogen bonds, where

it tends to exaggerate the electrostatic energy. (This
was seen previously in tests for anion–water clusters.60)
However, other good-performing basis sets, including 6-
311++(3df,2pd), appear to be converged in the sense
that the electrostatic energies are indistinguishable from
results obtained in the def2-QZVPD basis set.

Exchange energies (Fig. 3c) also exhibit fairly small
discrepancies amongst the best-performing basis sets,
with 6-311++G(d,p) tending to underestimate the repul-
siveness of Eexch, by up to about 4 kcal/mol. This leads
to some error cancellation in total interaction energies,
given that the same basis set also exaggerates the attrac-
tiveness of Eelst. (Again, this is consistent with previous
experience for hydrated anions.60) The exchange energy,
equivalent to Pauli repulsion between filled orbitals, gen-
erally increases in magnitude with the completeness of
the basis, as the tails of the density become better de-
scribed. The Karlsruhe and Dunning basis sets generally
afford comparable values of Eexch except that the former
exhibits slightly larger exchange energies for the strongest
hydrogen bonds.

Finally, the induction energies (Fig. 3d) are only sen-
sitive to basis set in the case of strong hydrogen bonds.
In those cases, def2-QZVPD and jul-cc-pVTZ afford sim-
ilar results and 6-311++G(3df,2pd) is also similar, but
6-311++G(d,p) lacks sufficient polarization functions to
describe the polarization of the monomer densities and
thus underestimates Eind.

Consistent with the analysis of Section 4 B, we con-
clude that 6-311++G(d,p) is not fully converged but that
6-311++G(3df,2dp) offers performance that is compara-
ble to the best Karlsruhe and Dunning basis sets. More-
over, it does so in a manner that does not rely on error
cancellation.

D. Performance for Data Sets Containing Ions.
Ionic dimers have much larger interaction energies than
neutral systems and may place different demands on ba-
sis sets. We next examine the performance for the IL16,
AHB21, and CHB6 data sets,76 with error statistics re-
ported in Table 4. Because our testing for S66 revealed
that MBD values of Edisp converge rapidly with the den-
sity, these tests are carried out using the XSAPT + aiD3
method,54 where the dispersion energy (computed via
atom–atom C6 and C8 potentials) does not depend on
the density. In order to eliminate spurious charge trans-
fer the monomer basis was used in the XSAPT + aiD3
calculations, although the dimer basis is still used for the
δHF calculations as ∆EHF

int in eq. 4 must be counterpoise-
corrected. Table 3 lists the error statistics, with respect
to CCSD(T)/CBS benchmarks, for XSAPT + aiD3 in
various basis sets. Because the IL16 and AHB21 data
sets contain anions, only basis sets that are at least min-
imally augmented with diffuse functions are considered
for these benchmarks.

The first column of Table 3 gives the error statis-
tics for the IL16 database of cation–anion pairs. The
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Fig. 3: XSAPT + MBD energy components evaluated using various basis sets. The energy components are (a) dispersion
energy computed from the MBD model, which depends on the SCF monomer charge densities; (b) electrostatic energy, equal
to the Coulomb interaction between isolated-monomer SCF charge densities; (c) exchange energy (i.e., Pauli repulsion); and
(d) induction energy.

best-performing basis set is jun-cc-pVTZ with a MAE
of 0.8 kcal/mol although the ha-def2-SVPD and def2-
TZVPPD basis sets afford comparable errors. Unlike the
case for the S66 data set, where all of the monomers
are charge-neutral, we see no systematic improvement of
these errors as larger basis sets are employed. For these
challenging systems, the benchmark study in Ref. 76 con-
cluded that not just a δHF but actually a δMP2 calcu-
lation may be required to obtain CCSD(T)-quality accu-
racy, so the XSAPT + aiD3 error statistics for larger ba-
sis sets such as def2-QZVPD may simply reflect the prac-
tical limitations of the accuracy of this approach. Some
error cancelation is then responsible for the somewhat
better performance of the smaller basis sets mentioned
above.

Figure 4 shows the energy components (excluding dis-
persion) for the IL16 data set, using XSAPT + aiD3 cal-
culations in various basis sets. The electrostatics term
(Fig. 4b) is especially flat, with variations of no more than
1 kcal/mol across a wide range of Karlsruhe and Dunning
basis sets. Exchange energies (Fig. 4c) also vary by only
∼ 1 kcal/mol if double-ζ basis sets are excluded from the

comparison. Induction energies span a wider range, up to
4 kcal/mol if double-ζ basis sets are again excluded. This
points to induction as the energy component wherein the
overall errors in the interaction energies reside, which is
consistent with the need for a δMP2 correction.

In contrast to IL16, errors in the interaction energies
for the AHB21 and CHB6 data sets follow more dis-
cernible and systematic trends; see Table 3. The small-
est MAEs are obtained using the aug-cc-pVQZ and def2-
QZVPD basis sets, the latter of which is essentially iden-
tical in its performance to def2-QZVPPD. Cationic sys-
tems in CHB6 afford slightly lower MAEs when compared
to the anionic systems in AHB21 but the basis-set trends
are similar. In these systems where only a single partner
species is charged, the trend is that the more diffuse ba-
sis sets afford the smallest errors and pruning the diffuse
functions has a generally detrimental effect.

E. Hybrid Calculation of the Interaction Energy
Finally we consider whether a hybrid method can be used
in which different energy components are computed at
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Table 3: Error Statistics (in kcal/mol) for XSAPT + aiD3 Applied to Ion-Containing Data Sets.a

IL16 AHB21 CHB6

Method MAEb MPEc Maxd MAEb MPEc Maxd MAEb MPEc Maxd

aug-cc-pVDZ 1.29 1.20 3.54 1.86 8.05 7.36 2.01 6.19 6.50

jul-cc-pVDZ 1.09 1.03 3.18 2.26 11.00 7.69 2.05 6.31 6.19

jun-cc-pVDZ 2.53 2.31 5.75 3.12 12.88 13.12 1.46 5.04 3.11

aug-cc-pVTZ 1.71 1.57 3.83 1.27 5.76 5.70 2.09 6.32 7.06

jul-cc-pVTZ 1.28 1.18 3.46 1.48 7.03 5.69 2.32 7.11 7.57

jun-cc-pVTZ 0.80 0.75 3.07 1.76 8.45 6.44 2.09 6.39 7.21

aug-cc-pVQZ 1.72 1.57 3.69 1.23 5.52 8.18 1.31 3.83 4.74

jul-cc-pVQZ 1.44 1.31 3.38 1.28 6.17 7.80 1.69 5.14 5.53

jun-cc-pVQZ 1.17 1.08 2.79 1.43 6.91 6.18 1.53 4.78 4.40

def2-SVPD 1.23 1.14 2.60 2.49 11.31 8.14 1.52 5.31 2.89

ha-def2-SVPD 0.88 0.83 3.38 2.45 11.64 9.05 1.38 4.92 2.59

ma-def2-SVPD 3.87 3.54 7.90 3.35 16.45 10.31 1.63 6.57 3.65

def2-TZVPD 1.08 0.99 2.29 2.54 11.09 8.36 1.26 4.01 3.65

def2-TZVPPD 0.85 0.80 2.16 1.89 8.87 6.09 1.63 5.00 5.78

ha-def2-TZVPD 1.37 1.26 2.31 2.82 12.38 8.43 1.33 4.25 3.90

ma-def2-TZVPD 2.24 2.05 4.37 2.41 10.61 7.69 1.93 6.74 3.99

def2-QZVPD 1.24 1.14 2.63 1.46 7.28 3.06 1.20 3.75 3.96

def2-QZVPPD 1.24 1.14 2.63 1.46 7.28 3.06 1.21 3.78 3.96

ha-def2-QZVPD 1.23 1.14 2.56 1.55 7.99 3.33 1.43 4.44 4.87

ma-def2-QZVPD 1.43 1.31 3.37 1.29 6.53 3.61 1.89 5.75 6.13

aBoldface values indicate the best-performing Dunning and Karlsruhe basis sets
bMean absolute error
cMean percent error
dMaximum error

different levels of theory, exploiting the separability of the
SAPT decomposition. A simple-to-implement version of
such a procedure is to focus on the δHF correction, which
is the only part of XSAPT + MBD or XSAPT + aiD that
requires an iterative SCF procedure to be performed on a
dimer. This is usually the computational bottleneck step
when high-quality basis sets are used. Furthermore, the
energy difference that defines δEHF in eq. 4 suggests that
this term might converge to the CBS limit more rapidly
than other energy components in eq. 1.

To test this, we repeated the XSAPT + MBD/def2-
QZVPD calculations on the S66 dimers but evaluated
δEHF using a smaller basis set for both the supramolecu-
lar HF calculation and the coupled-perturbed HF equa-
tions that are needed to evaluate the induction terms in
eq 4. (The larger basis set is used for all of the terms in
eq. 1 except δEHF.) Figure 5 shows the absolute errors in
S66 interaction energies for this hybrid calculation, using
various choices for the smaller basis set. The use of basis
sets as small as ma-def2-SVPD affects the accuracy by
. 1 kcal/mol.

As shown by the timing data in Fig. 6, these hy-
brid approaches have a dramatic effect on the calcula-
tion time required. Timings in Fig. 6 represent aver-
age values across the S66 set of dimers, where all terms
in the XSAPT + MBD interaction except for δEHF are
evaluated using the def2-QZVPD basis set. If the δHF

correction is evaluated instead using ma-def2-SVPD, the
resulting composite calculation is 81× faster (wall time
on a single compute node) compared to a conventional
calculation that uses the quadruple-ζ basis set for the
δHF correction as well. The reduction in total compute
time (across all cores) is ≈ 150× for this combination of
basis sets, which according to Fig. 5 incurs < 1 kcal/mol
error.

5 Conclusions

It has been shown that the different energy components
converge at different rates when it comes to system size.
A general trend across all of the different components is
that diffuse orbitals are important, and if they are ne-
glected, the accuracy in the calculation is drastically de-
creased. The electrostatic energy is sensitive to diffuse
functions used in the basis set, and if they are used, it
is shown to converge very early and gives high accuracy
even at the def2-SVPD level. The exchange energy is
one of the most sensitive energy component and does not
converge until the triple-ζ level. The induction, like the
exchange energy is also very sensitive to basis set used.
It is shown to not converge until the triple-ζ level as well.
Finally, the dispersion, at least in the XSAPT+MBD for-
malism, converges quickly and reaches near convergence
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(a) (b)

(c) (d)

Fig. 4: Energy components (excluding dispersion) for the IL16 data set, evaluated using XSAPT + aiD3 in various basis sets.

Fig. 5: Absolute errors across the S66 data set for
XSAPT + MBD/def2-QZVPD calculations in which the δHF
term is computed using a smaller basis set.

at the double-ζ level.
It has also been shown that the energy decomposition

analysis properties of SAPT allows for the different en-
ergy components to be calculated at different levels of
theory. In the case of this paper, the δHF calculation
was shown that it can be done in much smaller basis sets
than the other portions of the SAPT calculation without
causing any significant changes in the accuracy of the
calculation. The computational speed ups from this type
of calculation are on the level of 80 times (wall time) to
150 times (CPU time). This aids in reducing the com-
putational times of the calculations and allows for larger
systems to be studied while also keeping high accuracy
in the method.
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lay, P.; Hobza, P. Accuracy of quantum chemical methods
for large noncovalent complexes. J. Chem. Theory Comput.
2013, 9, 3364–3374.

78 Frisch, M. J.; Pople, J. A.; Binkley, J. S. Self-consistent
molecular orbital methods 25. Supplementary functions for
Gaussian basis sets. J. Chem. Phys. 1984, 80, 3265–3269.

79 Ohio Supercomputer Center,
http://osc.edu/ark:/19495/f5s1ph73.


	Introduction
	Theory
	SAPT0(KS).
	XSAPT.

	Computational Details
	Density Functionals.
	Basis Sets.
	Data Sets.

	Results and Discussion
	Tests of Traditional SAPT0 Using S66.
	Broad Survey of Basis Sets for XSAPT+MBD Using S66.
	Karlsruhe Basis Sets
	Dunning Basis Sets
	Pople Basis Sets
	Comparison Between Subsets of Basis Sets

	Energy Component Analysis for S66.
	Performance for Data Sets Containing Ions.
	Hybrid Calculation of the Interaction Energy

	Conclusions
	References

