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Quantum chemistry calculations of large, strongly correlated systems are typically limited by the computa-
tion cost that scales exponentially with the size of the system. Quantum algorithms, designed specifically for
quantum computers, can alleviate this, but the resources required are still too large for today’s quantum devices.
Here we present a quantum algorithm that combines a localization of multireference wave functions of chem-
ical systems with quantum phase estimation (QPE) and variational unitary coupled cluster singles and doubles
(UCCSD) to compute their ground state energy. Our algorithm, termed “local active space unitary coupled
cluster” (LAS-UCC), scales linearly with system size for certain geometries, providing a polynomial reduction
in the total number of gates compared with QPE, while providing accuracy above that of the variational quan-
tum eigensolver using the UCCSD ansatz and also above that of the classical local active space self-consistent
field. The accuracy of LAS-UCC is demonstrated by dissociating (H2)2 into two H2 molecules and by breaking
the two double bonds in trans-butadiene and resources estimates are provided for linear chains of up to 20 H2

molecules.

I. INTRODUCTION

Chemical systems with many close-lying electronic states
or, more generally, strongly correlated electrons pose a sig-
nificant challenge for modern electronic structure theories in
computational quantum chemistry1–5. When transition metals
or heavier elements are involved, degenerate and nearly de-
generate electronic states are common, and single-reference
electronic structure methods such as Kohn–Sham density
functional theory often fail6–8. In these situations one has to
use multireference methods to generate multiconfigurational
wave functions and accurately describe these near degenera-
cies9–11.

Scientists also want to compute properties of large chemi-
cal systems or solids with accurate quantum chemistry meth-
ods, in spite of steep computational requirements. One way to
achieve such computations is to use fragmentation methods.
Many variations of fragmentation methods exist12–15, but the
common feature is that a large molecular system is divided
into fragments and quantum-mechanical calculations are per-
formed on the fragments. An especially important case is the
application of fragmentation methods to multireference wave
functions because of the exponential explosion of the com-
putational cost with respect to the size of the active space of
electronic configurations.

In the complete active space self-consistent field (CASSCF)
method16, all the electronic configurations that can be formed
for a given number of active electrons distributed in a given
number of active orbitals are included in the wave function.
Thus, the wave function scales exponentially with the number
of active electrons and orbitals, and the method has only lim-
ited application to chemically relevant systems. If one wants
to study systems containing, for example, several transition

metals17–21, the active site of a protein22, or extended organic
chains in their ground and excited states22,23, more affordable
multireference methods have to be developed. This is one of
the major challenges of modern electronic structure theory.

Reducing the computational cost of CASSCF or other mul-
ticonfiguration self-consistent field calculations is pursued
both in the development of new well-motivated theoretical
approximations and in the application of new developments
in computational hardware24,25. On the theoretical side, one
strategy is to identify subspaces of the CAS that can be treated
on different footings26,27 or interact with one another only
weakly28–32. The localized active-space self-consistent field
method (LASSCF) is an example of such a strategy33–36.
LASSCF is designed for applications in which electrons are
strongly correlated in different weakly interacting physical re-
gions of a molecule and approximates the strongly correlated
part of the wave function as a single antisymmetrized prod-
uct of subspace wave functions. The computational cost of
LASSCF is a linear function of the number of such unentan-
gled subspaces.

Some of the authors have recently shown that LASSCF ac-
curately reproduces the CASSCF spin-state energy gaps of
bimetallic compounds and the simultaneous dissociation of
two double bonds in bisdiazene at a significantly reduced
cost34,35. However, LASSCF fails to recover any electron cor-
relation between fragments, for example in the cis-trans iso-
merization of stilbene and similar systems36. Moreover, be-
cause the wave function of each fragment is a general many-
body wave function, it is not straightforward10,37 to apply tra-
ditional perturbative or truncated coupled-cluster (CC) correc-
tions based on second quantization38,39 on top of a LASSCF
reference to recover the missing correlation, at least on classi-
cal computational hardware.
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Recently, the development of quantum computers has led
to an increased interest in novel quantum algorithms, espe-
cially for computational quantum chemistry, which is widely
seen as a potential “killer app” of quantum computers40–42.
Some quantum algorithms for quantum chemistry, such as the
quantum phase estimation (QPE)43 and unitary coupled clus-
ter (UCC)44,45, offer exponential speedups when large fault-
tolerant quantum computers are available46,47. For the noisy,
intermediate-scale quantum (NISQ)48 devices that we have to-
day, these algorithms are not tenable, since they require co-
herence times far beyond what is available. Variational algo-
rithms, such as the variational quantum eigensolver (VQE)45,
have been used to perform calculations of the ground state
energy of small molecules, with limited accuracy, on NISQ
devices49–51. Quantum algorithms that have less stringent re-
quirements compared with full QPE, and at the same time
accuracy beyond that demonstrated by variational algorithms
such as VQE, will be required to productively use the pro-
gressively larger and higher-quality quantum devices as they
become available in the next few years.

In this paper we describe a framework for such quantum
algorithms, inspired by classical LASSCF. The wave function
within a fragment is solved by using one method (e.g., QPE),
and correlation between fragments is encoded variationally by
using an ansatz that entangles the fragments. This approach
goes beyond what can be achieved with classical fragment
methods, such as LASSCF, by providing additional correla-
tion between fragments, while significantly reducing the total
computational time (estimated via the number of gates) com-
pared with full QPE.

II. THEORY

A. Multireference Methods with Exponential Scaling

We seek to find the ground state of the second-quantized
molecular Hamiltonian for a given number of M electrons,

Ĥ = hp
q â†pâq +

1
4

hpr
qs â†pâ†r âsâq, (1)

where â†p (âp) creates (annihilates) an electron in spin orbital
p; hp

q and hpr
qs are the one- and antisymmetrized two-electron

Hamiltonian matrix elements, respectively; and repeated in-
ternal indices are summed. Generally, for N spin orbitals,
Ĥ has a sparse-matrix representation in a space of size O

(
N
M

)
and has O(N4) elements. Full-configuration interaction (FCI)
determines the exact energy within a given one-electron ba-
sis set (the FCI energy) at exponential cost. Methods such
as CASSCF (and its restricted52,53 and generalized54,55 ac-
tive space approximations) or selected configuration interac-
tion56,57, can go beyond FCI in system size, maintaining com-
parable accuracy, but still scale exponentially. The density
matrix renormalization group58–61 and coupled cluster meth-
ods39 can scale polynomially but introduce (sometimes un-
controllable) approximation errors. Here we briefly describe
the LASSCF algorithm33,35, which will serve as the basis for
our fragment-based quantum algorithms.

B. LASSCF

In LASSCF, the wave function of a molecule is approxi-
mated as

|LAS〉 =
∧

K

|ΨK〉 ∧ |Φ〉 , (2)

where |ΨK〉 is a general many-body wave function describing
MK electrons occupying NK active orbitals of the Kth “frag-
ment” or “active subspace,” |Φ〉 is a single determinant span-
ning the complement of the complete active space, and the
wedge operator (“∧”) implies an antisymmetrized product.

In the variational35 implementation of LASSCF, this wave
function is obtained by minimizing the LAS energy,

ELAS = 〈LAS|Ĥ|LAS〉 , (3)

with respect to all orbital rotations and configuration interac-
tion (CI) vectors defining |LAS〉. This is accomplished by in-
troducing a unitary operator (see the Supporting Information
of Ref. 35) that is parameterized in terms of all nonredundant
transformations of the orbitals and CI vectors,

|LAS〉 → Ûorb

∏
K

ÛCI,K |LAS〉 , (4)

where

Ûorb = xk
l

(
â†k âl − â†l âk

)
, (5)

ÛCI,K = x~k
(
|~k〉 〈ΨK | − |ΨK〉 〈~k|

)
, (6)

where k, l index individual spin orbitals in two different sub-
spaces (including the inactive and virtual subspaces outside
of the CAS) and where |~k〉 is a determinant or configuration
state function. First and second derivatives of Eq. (3) with re-
spect to the generator amplitudes (xk

l and x~k) are obtained by
using the Baker–Campbell–Hausdorff (BCH) expansion, and
the energy is minimized by repeated applications of the pre-
conditioned conjugate gradient (PCG) method62,63.

The orbital unitary operator, Ûorb, corresponds to the UCC
correlator truncated after the first (“singles”) term:

ÛUCC ≡ exp
{
T̂UCC

}
, (7)

T̂UCC ≡ xk
l

(
â†k âl − h.c.

)
+

1
4

xkm
ln

(
â†k â†mânâl − h.c.

)
+ . . . .(8)

In principle, the augmentation of the orbital rotation unitary
operator, Eq. (5), by the second term of the more general clus-
ter operator, Eq. (8), could encode electron correlation and en-
tanglement between active subspaces into the LAS wave func-
tion. This would require the reference wave function, |LAS〉,
to be updated by explicit exponentiation of the general cluster
operator, Eq. (8), after each execution of the PCG algorithm.
On classical computer hardware, however, this is not an effi-
cient way to extend LASSCF.

C. LAS Methods on Quantum Computers

Here we describe an algorithm for molecular calculations
that goes beyond the limited accuracy of standard VQE50,51,
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while having dramatically reduced computational complex-
ity compared with QPE [see Methods section]. The algo-
rithm exploits the structure of the molecule by separating
it into coupled fragments, as is done in the classical algo-
rithm, LASSCF. The quantum algorithm, however, goes be-
yond classical LASSCF by providing some degree of entan-
glement between the fragments.

The algorithm begins by segmenting the orbital active space
of a given molecule into distinct fragments defined by non-
overlapping orbital subspaces, as in classical LASSCF. For
instance, orthogonalized atomic orbitals generated by using
the meta-Löwdin method64 can be sorted into localized frag-
ments and then projected onto a guess for the CAS of a given
molecule to produce localized active orbitals. We construct
an effective Hamiltonian that omits non-mean-field interfrag-
ment interactions, resulting in a sum of local fragment Hamil-
tonians,

Ĥeff =

n f∑
K

(
h̃k1

k2
â†k1

âk2 +
1
4

hk1k3
k2k4

â†k1
â†k3

âk4 âk2

)
, (9)

where k1, k2, . . . index distinct active orbitals of the Kth frag-
ment and where

h̃k1
k2

= hk1
k2

+ hk1i
k2i +

∑
L,K

hk1l1
k2l2
γl1

l2
, (10)

where i and ln index respectively inactive orbitals [i.e., those
defining |Φ〉 in Eq. (2)] and active orbitals of the Lth fragment
and where γl1

l2
is a density matrix element for spin orbitals l1

and l2.
Given a set of localized active orbitals that minimize the

LASSCF energy, if the density matrices in Eq. (10) are ob-
tained from a classical LASSCF calculation on the same sys-
tem, then the QPE algorithm applied to Ĥeff generates the
active-space part of the LASSCF wave function, |QLAS〉 =∧

K |ΨK〉, on the quantum computer. The same result is
achieved if density matrices are obtained self-consistently
from the QPE evaluation. If the density matrices are obtained
in some other way, for instance from |HF〉, then an approxi-
mation to the LASSCF wave function is obtained.

A sequence of UCC with singles and doubles (UCCSD) cir-
cuits, with variable parameters, is then applied across m frag-
ments each (which we term m-local), leading to the LAS-UCC
wave function,

|QLAS〉 →
∏

L

ÛUCCSD,L |QLAS〉 , (11)

where ÛUCCSD,L is the UCCSD ansatz including only cre-
ation/annihilation operators within the m fragments that it
spans. The parameters of the UCCSD circuit are varied to
minimize the total energy of the full system, as in VQE [see
Methods section]. A schematic representation of the de-
scribed circuit is shown in Fig. 1. This provides electron
correlation between the fragments, in a way that scales ex-
ponentially on classical computers, but only polynomially on
quantum computers. Moreover, this procedure provides a bet-
ter estimate of the ground state energy than the product wave

FIG. 1. Diagram of example circuit using LAS-UCC. The system of
interest is first separated into distinct fragments. QPE is used on each
fragment to solve for the approximate unentangled ground state. Cor-
relation between fragments is then added in, variationally, through a
unitary coupled cluster ansatz.

function or the UCCSD would provide alone. Note that, un-
like LASSCF, this method is not strictly variational (despite
the use of VQE) because the initial product-state wave func-
tion,

∧
K |ΨK〉, is not variationally reoptimized in the presence

of the UCCSD correlators. The QPE circuits could also be re-
placed with a local variational ansatz, leading to a fully vari-
ational algorithm, which we term LAS-VQE and describe in
the Supplementary Information.

To understand the large improvement in computational
complexity of our approach, we focus on a system of n f frag-
ments, with the number of orbitals per fragment, NK , constant
as the number of fragments grows. The total system size is
defined by N = NKn f orbitals. We also assume that each
fragment interacts with only the m geometrically nearest frag-
ments and that m does not grow with n f . These are reason-
able assumptions for many interesting molecules and mirror
the assumptions made in classical LASSCF. Under these as-
sumptions, the QPE solver for the unentangled fragments does
not grow with N, since NK is assumed to be fixed while n f
grows. The number of small QPE sections grows linearly with
the number of fragments, of course. Typically, the Jordan–
Wigner transformation would introduce an O(N) term to en-
force the anticommutation relations among the orbital cre-
ation and annhilation operators. However, in the case of linear
chains, as we study here, ordering the orbitals such that all up
and down occupied and virtual orbitals in a given fragment are
close, the high-weight Z part of the Jordan–Wigner transfor-
mation effectively cancels out, causing no scaling with total
number of orbitals. See Supplementary Information for more
details. Together, this leads to an overall O(n f N4

K) ≈ O(N)
(linear) number of gates to solve for the n f unentangled prod-
uct wave functions. The UCCSD correlator, which is then ap-
plied, has O

(
m4N4

K) terms in the cluster operator for each cor-
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FIG. 2. Two model systems used for testing. (a) The asymmet-
ric hydrogen dimer, (H2)2. Each H2 molecule is a fragment de-
scribed by a 2-electron, 2-spatial orbital or (2,2) active subspace
in the dimer’s LAS wave function. The potential energy surface is
scanned along the distance between the two H2 bond midpoints, in-
dicated by the black double line. (b) The trans-butadiene molecule at
its CASSCF(8,8)/6-31G ground-state equilibrium geometry. Dashed
boxes depict the two notional fragments containing the two (4,4) ac-
tive subspaces in the LAS wave function. Black double lines indi-
cate the internal coordinate along which the potential energy surface
is scanned; the two terminal methylene units are simultaneously re-
moved from the central acetylene unit.

relator, because the UCCSD circuit spans only m fragments.
Neither m nor NK grows with the total size (number of spin
orbitals) of the system, N. The number of m-local correlators
grows as O(n f ). Again, by careful ordering of the orbitals, the
Jordan–Wigner transformation does not introduce any scaling
overhead. The complexity of the m-local UCCSD correlator is
then O(n f m4N4

K) ≈ O(N) (linear). This creates an overall lin-
ear scaling in the number of gates for linear chain geometries,
with respect to only the total size of the system, N, and is poly-
nomially (O(N4)) better than performing QPE alone, while
providing accuracy above VQE using the UCCSD ansatz and
classical LASSCF. Many of the gates can be done in paral-
lel, such as the local QPE circuits and the different m-local
UCCSD correlators, leading to an expected overall sub-linear
depth. If the fragments are coupled in a geometry more com-
plicated than a linear chain, the UCCSD correlator will po-
tentially incur the O(N) Jordan-Wigner overhead, leading to
an overall O(N2) scaling for arbitrary geometries with an ex-
pected O(N) depth.

D. Illustrative Molecular Systems

In the calculations discussed below, we consider two sys-
tems, depicted in Fig. 2. The first, shown in Fig. 2(a), is a
simplistic model of weakly interacting fragments, consisting
of two H2 molecules at various distances between their two
midpoints using a minimal STO-3G atomic orbital (AO) basis
set, and the two active subspaces in the LAS wave function
correspond to the active spaces of the two H2 molecules. We

use this small basis set because of the size limitations of to-
day’s quantum computers and simulations. The bond lengths
and internal angles of this system are set arbitrarily to remove
point group symmetry so that differences between various
methods are not obscured by the simplicity of a symmetrized
electronic wave function. The interaction between the two
fragments in this model system are weak, and the LAS wave
function is therefore expected to provide an excellent model
of the FCI wave function except when the distance between
the two molecules is very small. We additionally extend this
system up to 20 H2 in a linear chain, where we estimate only
the total number of quantum resources necessary.

The second system, depicted in Fig. 2(b), is the trans-
butadiene molecule. The potential energy surface of this
molecule is scanned along the internal coordinate correspond-
ing to the simultaneous stretching of both the C=C double
bonds, leading to the removal of two methylene units from
a central C2H2 (distorted acetylene-like) unit. In the LAS
wave function, the molecule is divided into two fragments
split across the central C–C bond, and each fragment is de-
scribed by a (4,4) active subspace. Several molecular orbitals
are therefore left inactive, described by an unfragmented sin-
gle determinant. We employed the 6-31G AO basis set in this
case.

The trans-butadiene system is a chemical model of the case
of two strongly interacting units in a system, where the value
of the stretching internal coordinate is a proxy for the strength
of electron correlation. Near the equilibrium geometry, di-
viding the active space into two fragments is chemically rea-
sonable: each fragment encloses one π-bond, and inasmuch
as electron correlation affects the system at all, it is a reason-
able approximation to consider it only locally. However, as
the C=C double bonds are elongated, electrons from the two
broken π bonds recouple across the central C2H2 unit, which
spans the fissure between the two LAS fragments. The LAS
wave function cannot model a π bond in this position, and the
LASSCF method breaks down.

III. RESULTS AND DISCUSSION

A. LAS-UCC

We demonstrate the efficacy of our framework by simulat-
ing the two benchmark molecules, (H2)2 and trans-butadiene,
described above. We compare three methods: LASSCF, CAS
configuration interaction in the basis of LASSCF orbitals
(CASCI), and our new algorithm, LAS-UCC. LASSCF repre-
sents the best unentangled set of wave functions and is equiv-
alent to the solution after the QPE circuits but before the use
of the UCCSD ansatz. Note that CASCI is slightly different
from CASSCF since the orbitals are not variationally reopti-
mized. CASCI solves for the FCI wave function within the
active space; in this case, it is equivalent to using QPE across
the whole molecule and represents the reference result in these
studies.

Figure 3 shows the results of applying the methods to the
hydrogen dimer as the two H2 molecules are pulled apart. We
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FIG. 3. Energies for (H2)2 calculated by CASCI, LASSCF, and
LAS-UCC. The inset shows the error, with respect to CASCI, of
LASSCF and LAS-UCC. The black dashed line represents chemi-
cal accuracy. LAS-UCC is able to obtain chemical accuracy, with
respect to CASCI, at all distances. LASSCF cannot obtain chemical
accuracy at sufficiently short distances.

FIG. 4. Energies for C4H6 calculated by CASCI, LASSCF, and LAS-
UCC. The inset shows the error, with respect to CASCI, of LASSCF
and LAS-UCC. The black dashed line represents chemical accuracy.
LAS-UCC obtains chemical accuracy across the potential energy sur-
face, whereas LASSCF, which cannot accurately represent the cor-
relation between the fragments, fails to obtain chemical accuracy for
most points.

see that LASSCF, CASCI, and LAS-UCC agree except for
very small distances where LASSCF no longer provides ac-
curate energies.

Figure 4 shows the results for trans-butadiene, a model of
strongly correlated fragments. Here, as the terminal methy-
lene units are removed, the interfragment correlation grows
as a double bond is formed between the fragments. The
UCCSD ansatz can accurately represent this level of entangle-
ment, allowing LAS-UCC to achieve nearly CASCI accuracy,
whereas LASSCF fails to account for this entanglement.

B. Resource Estimates

To demonstrate the scaling advantage of our method, we
perform resource estimation for the number of logical quan-
tum gates necessary for several different quantum algorithms:
the QPE algorithm over the full unfragmented molecule; the
UCCSD ansatz over the full unfragmented molecule; and the
two steps of our proposed LAS-UCC method, the fragmented
QPE and the 2-local UCCSD (which corresponds to the cir-
cuit depicted in Fig. 1). We estimate the number of resources
needed for the QPE algorithm if only a single Trotter time step
were needed; O(1000) time steps will be needed for typical
systems to get to chemical accuracy65,66. Note that these es-
timates represent only the number of two-qubit CNOT gates,
which we use as a primary gauge of the number of total re-
sources. Single-qubit gates are also necessary; the estimates
for these resources can be found in the Supplementary Infor-
mation and scale similarly to the number of CNOT gates.

We use a model system of an increasing number of H2
molecules and look at how the number of CNOT gates in-
creases as the number of molecules increases, as shown in
Fig. 5. As the number of H2 molecules increases, the num-
ber of gates needed for all methods also increases. As pre-
dicted in the complexity analysis of QPE [see Methods sec-
tion], the total number of gates for a single Trotter step in
the QPE algorithm grows as O(N5). Similarly, the number
of gates needed for a global UCCSD ansatz also grows as
O(N5), as expected50. This result is compared with the much
smaller number of gates necessary to implement the two steps
of our LAS-UCC algorithm. As expected, both the QPE and
UCCSD parts of LAS-UCC provide dramatic scaling advan-
tages, with the 2-local UCCSD ansatz and the QPE of the re-
duced Hamiltonian both scaling as only O(N). We note that, in
addition to evaluating the quantum circuits here, an additional
optimization loop is needed when using the UCCSD ansatz,
whether it is global or 2-local. Using a 2-local UCCSD ansatz
also greatly reduces the number of parameters that need to be
optimized compared with a global UCCSD ansatz.

C. Discussion

Here we compare LAS-UCC with the two quantum algo-
rithms that it is composed of: QPE and variational UCCSD.
Compared with global QPE, LAS-UCC reduces the total
quantum resource cost by approximating the system with non-
interacting fragments and adding in some interaction between
fragments (those described by a UCCSD ansatz spanning the
fragments). This in general reduces the accuracy; but as
shown in the preceding sections, LAS-UCC provides accu-
racy comparable to CASCI (and therefore global QPE) for
the systems considered here. The trans-butadiene molecule
is a model for larger, more complicated systems of strongly
interacting units. Many single molecular magnets have such
pockets of strong correlation localized on the metal centers,
which moderately interact with each other67,68. With LAS-
UCC we not only can obtain the wave function efficiently but
also can selectively couple the fragments with the UCC corre-
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FIG. 5. Estimated two-qubit gate counts using various algorithms.
The QPE estimates assume only a single Trotter step. Polynomials
of various orders have been plotted to demonstrate the scaling. Our
algorithm, LAS-UCC, requires both the LAS-QPE and 2-UCC cir-
cuits and thus has an overall O(N) scaling, compared with the O(N5)
scaling of UCC and QPE.

lator, offering further insight into the nature of these interac-
tions. Affordable and accurate modeling of phenomena such
as singlet fission69,70 in molecular crystals of conjugated or-
ganic compounds can be performed with LAS-UCC, as fault-
tolerant quantum computers become available. This approach
will also be used to study chemical processes involving inter-
fragment bond formation and breaking while still treating all
points on a potential energy surface at comparable footing.

Compared with standard UCCSD, LAS-UCC can be seen
as augmenting UCCSD with a multireference initial state. In-
stead of using single-determinant Hartree–Fock, as is stan-
dard in VQE demonstrations of UCCSD51,71–74, LAS-UCC
uses the unentangled product state of the ground state wave
functions of each fragment (which is also the LASSCF wave-
function). This provides additional accuracy, above stan-
dard single-reference UCCSD, at a negligible increase in cost.
When using a global UCCSD ansatz, the increase in the num-
ber of gates is negligible, even when taking into account the
O(1000) time steps that would be needed to implement the
QPE step. Using the m-local ansatz provides further reduc-
tion.

Moreover, recent advances in VQE algorithms have devel-
oped various ways to reduce the cost associated with the UCC
correlator40,42,75–78. As presented in the Theory section, LAS-
UCC can also be seen as a post-LASSCF method that recou-
ples select fragments at a level of theory beyond the mean
field. The addition of the doubles or higher terms in the cluster
operator provides a way to systematically improve the accu-
racy beyond the LASSCF reference. Such an implementation
of UCC on classical computers cannot be done efficiently be-
yond first order.

Not every system will be accurately described by LAS-
UCC, of course, but one can systematically increase the accu-
racy in several ways, while increasing the total resource cost.

Increasing the size of each fragment (which in turn decreases
the number of fragments) gradually increases the accuracy,
until the limit of a single fragment, where the UCCSD ansatz
becomes redundant and the algorithm becomes simply global
QPE. On the UCC side, the order of the ansatz can be in-
creased. Triples, quadruples, and so on can be included at
increasing cost. If using an m-local ansatz, the scaling is un-
affected, but the total number of gates increases. The locality
of the ansatz, m, can also be increased, providing explicit cor-
relation between more geometrically distant fragments.

IV. CONCLUSIONS

We introduced for the first time LAS-UCC, a quantum al-
gorithm that combines a fragmentation of the wave function
of a chemical system with QPE and variational UCCSD to
compute the ground state energy of such a system. LAS-
UCC can describe compounds containing strongly interact-
ing fragments, and it provides a polynomial scaling advantage
in the number of quantum gates compared with other quan-
tum algorithms such as QPE and UCCSD. Since the frag-
ments’ reduced Hamiltonians have fewer terms and by ensur-
ing the locality of the Jordan-Wigner transform, the overall
gate count will be O(N) with respect to the total size of the
system N for for linear geometries and O(N2) more gener-
ally, compared with O(N5) requirements for QPE. We also
demonstrated the accuracy of LAS-UCC on (H2)2 and trans-
butadiene molecules and performed resource estimations of
larger systems to demonstrate the scaling advantage.

As larger fault-tolerant quantum computers are developed,
we expect that our algorithm will be able to provide accu-
rate calculations of large and useful chemical systems, such
as molecular magnets and qubits, photovoltaic materials, and
large biomolecules that are out of reach of classical computing
algorithms but for which QPE would be too expensive.

V. METHODS

A. Quantum Algorithms

Here we describe two quantum algorithms that serve as the
primary components for our fragment-based quantum algo-
rithm.

1. Quantum Phase Estimation

The quantum phase estimation algorithm solves for the
eigenvalue, λk, for an eigenvector |vk〉 of some unitary ma-
trix, U. In addition to its use in quantum chemistry, it forms
the basis for many important quantum algorithms, such as
Shor’s prime number factoring algorithm79 and the Hassidim–
Harrow–Lloyd algorithm for inverting matrices80. For quan-
tum chemistry problems, the unitary matrix U is generated by
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the Hamiltonian, H (eq. (1)), over time steps τ:

U |vk〉 = e−iĤτ|vk〉 = ei2πφ|vk〉, (12)

and the desired energy is mapped to the phase acquired, E =

−2πφ/τ, where units have been chosen such that ~ = 1. By
combining real-time evolution of the Hamiltonian, Ĥ, with
application of the quantum Fourier transform (QFT)81,82, the
value of the energy can be obtained in polynomial time using
a quantum computer.

The computational complexity of the QPE is directly re-
lated to the complexity of implementing the unitary propa-
gator U = e−iĤτ. Many strategies for implementing U ex-
ist, including Trotterization83,84, Taylorization85, and qubiti-
zation86. The Hamiltonian, Eq. (1), has O(N4) terms, where
N is the number of spin orbitals. Each term in the Hamilto-
nian can be transformed into a Pauli string (that is, a product of
Pauli operators X, Y , Z, or I) via one of the many fermion-to-
spin transformations, such as the Jordan–Wigner87, parity88,
and Bravyi–Kitaev89 transformations. In this work we focus
on QPE using Trotterization with the Jordan–Wigner trans-
formation since they serve as standard reference points for the
other variations. The complexity of QPE for the Hamiltonian,
Eq. (1), using Trotterization with the Jordan–Wigner trans-
formation is O(N5): N4 arising from the number of terms in
the Hamiltonian and an additional N from the Jordan–Wigner
transform. Although QPE can obtain estimates of the ground
state energy with only a polynomial number of quantum gates,
the overheads are still too large for near-term quantum com-
puters. The success of the QPE algorithm directly depends on
the overlap of the initial state (which is often taken to be the
Hartree-Fock state) and the true ground state. Realistic esti-
mates, taking into account overheads such as quantum error
correction, put the needed number of qubits to perform QPE
on interesting molecules in the millions90–92.

QPE is analogous to a Fourier analysis of a correlation
function; and, for a given energy accuracy, ε, it requires prop-
agation efforts (maximum times) on the order of O(1/ε)65,66.
Since the circuit depth for evaluating the propagator for in-
dividual fragments will naturally be lower than for the full
system, the QPEs involved in our LAS approach will be sig-
nificantly cheaper than full QPE.

2. Variational Quantum Eigensolver

The variational quantum eigensolver is a hybrid quantum-
classical algorithm that relies on the variational principle
to find an estimate of the ground state energy of a given
molecule. A circuit with variable parameters, θ, serves as an
ansatz, whose energy is evaluated on a quantum computer and
whose parameters are iteratively optimized by a classical com-
puter. For a circuit ansatz |ψ(θ)〉, VQE estimates the energy as

E = min
θ
〈ψ(θ)|Ĥ|ψ(θ)〉 . (13)

The Hamiltonian, Ĥ, is transformed into a sum of Pauli
strings via a fermion-to-spin transformation, and the expec-
tation value of each term is measured from the quantum com-
puter separately and summed on the classical computer. VQE

has much less stringent quantum resource requirements than
QPE has, since it offloads much of the work (such as optimiza-
tion) to the classical computer. Hence, VQE has been used in
proof-of-principle calculations for small molecules71,73,74.

The accuracy of VQE is determined by the quality of the
ansatz, |ψ(θ)〉. The UCCSD ansatz is an interesting choice as
wave function for VQE since there is no known way to effi-
ciently implement UCCSD on classical computers93–95, but it
can be implemented with O(N5) gates on quantum comput-
ers50,96,97. The UCCSD ansatz is

|ψUCCSD〉 = ÛUCCSD |HF〉 = exp
{
T̂UCCSD

}
|HF〉 , (14)

where T̂UCCSD is defined by truncating the more general
cluster operator of Eq. (8) at the second term. While the
UCCSD ansatz can be implemented on NISQ devices for
small molecules51,72, it is limited in its accuracy because of
only including up to doubles excitations.

B. Computational Methods

To calculate the accuracy of the proposed method for small
molecules, we use the following strategy. We first use a clas-
sical LASSCF solver, as implemented in the mrh package98,
to find the best product wave function. This effectively pro-
vides an equivalent solution to that of the QPE step of our
proposed algorithm. We then represent this product wave
function as a CI vector in the complete active Fock space
and apply a UCCSD correlator, as well as its derivatives with
respect to all amplitudes, to this reference CI vector. We
employ the factorization reported by Chen et al.99 to avoid
the BCH expansion and its inevitable approximate truncation.
The resulting |QLAS〉 CI vector and its derivatives (|δQLAS〉)
with respect to the unitary coupled cluster amplitudes are
used to compute the energy, 〈QLAS|Ĥ|QLAS〉, and its deriva-
tives, 〈δQLAS|Ĥ|QLAS〉. We then minimize the former us-
ing the latter and the Broyden—Fletcher-–Goldfarb-–Shanno
algorithm. We find that this approach is more efficient than
directly simulating the quantum circuits. We note that this
method scales exponentially on classical computers.

To provide gate count estimates, we use the Q# package100,
generally following the framework of Ref. 101. The full and
reduced Hamiltonians are produced by using the mrh pack-
age98, and both Hamiltonians are then passed to the Q# pack-
age to estimate the number of CNOT gates using the QPE
algorithm with a single Trotter time step for each. Addition-
ally, we estimate the number of CNOT gates necessary to cal-
culate various UCCSD ansatzes, including a global UCCSD
ansatz over the whole unfragmented molecule and multiple 2-
local ansatzes that span only two fragments. We count only
the number of logical quantum gates needed. Real quantum
computers will require additional overheads, owing to limited
connectivity and the need to use expensive quantum error cor-
rection protocols to deal with inevitable errors91,92. Further-
more, we provide gate counts only; no attempt was made to
count gate depth, which is typically smaller, because many
gates can be implemented in parallel.
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