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Abstract Despite recent breakthroughs in deep learning for materials informatics, there
exists a disparity between their popularity in academic research and their limited adop-
tion in the industry. A significant contributor to this “interpretability-adoption gap” is
the prevalence of black-box models and the lack of built-in methods for model interpre-
tation. While established methods for evaluating model performance exist, an intuitive
understanding of the modeling and decision-making processes in models is nonetheless
desired in many cases.

In this work, we demonstrate several ways of incorporating model interpretability to
the structure-agnostic Compositionally Restricted Attention-Based network, CrabNet.
We show that CrabNet learns meaningful, material property-specific element representa-
tions based solely on the data with no additional supervision. These element representa-
tions can then be used to explore element identity, similarity, behavior, and interactions
within different chemical environments. Chemical compounds can also be uniquely rep-
resented and examined to reveal clear structures and trends within the chemical space.
Additionally, visualizations of the attention mechanism can be used in conjunction to
further understand the modeling process, identify potential modeling or dataset errors,
and hint at further chemical insights leading to a better understanding of the phenom-
ena governing material properties. We feel confident that the interpretability methods
introduced in this work for CrabNet will be of keen interest to materials informatics
researchers as well as industrial practitioners alike.
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Introduction

Machine learning (ML) in materials informatics (MI) has received significant attention
in the academic research world and is gaining widespread adoption [1–5]. More specif-
ically, it has recently been extensively studied for its use in the research and design of
novel inorganic materials [6–10]. This is enabled by three major developments: (1) the
increasing number of material property datasets as well as the improvement in dataset
quality and variety, (2) the rapid pace and development of new ML models tailored to
addressing different challenges in materials science (e.g., regression, classification), sup-
plemented by (3) the increase in available computing power and accessibility to ML and
deep learning tools. The combination of these developments led to improved capabilities
in the exploration and modeling of material properties in the academic world.

Classical ML methods (e.g., linear regression, random forest, support vector ma-
chines) have successfully been used for the regression and classification of many material
properties [11–17]. These methods usually rely on the featurization of the input chem-
ical formulae into numerical features that are usable by the models. Typically, this is
achieved through the use of a composition-based feature vector (CBFV), which uses de-
scriptive statistics of the properties of constituent atoms in each compound to uniquely
represent it [18]. Some common CBFV feature sets are Oliynyk, Magpie, Jarvis and
mat2vec [11,12,19,20]. Here a distinction is made between physically-derived CBFVs
(with features based on measurable element properties) like Oliynyk and Magpie and
computationally-derived CBFVs (with features obtained from computational or deep
learning models) like Jarvis and mat2vec. For some properties, additional features such
as structural information, processing or measurement conditions are included to further
improve model performance [2,21,22,16].

In more recent years, deep learning (DL) models have gained widespread popularity
in MI due to numerous advantages compared to classical ML methods. Some examples
are ElemNet, CGCNN, MEGNet, DimeNet++, and ALIGNN [23–27]. More recently,
graph neural network (GNN) models incorporating attention-based mechanisms such as
CrabNet, Roost and H-CLMP have gained increasing popularity [28–30]. GNNs have
shown improved performance compared to other DL models, particularly in the absence
of structural information as model inputs. Another advantage of GNNs is that the in-
ductive biases built into the model and the input data structure are more suited to the
learning of material properties, since the interactions between the atoms in the com-
pound can be modeled as weighted interactions between nodes in a graph. In CrabNet,
for example, the atom representations are either based on a CBFV feature (mat2vec
element vectors) or a non-CBFV feature (onehot element vectors) [28]. For the sake of
clarity, the remaining text will use the acronym DL to refer to both deep learning (DL)
and graph neural network (GNN) models and methods.

Unfortunately, while DL methods show superb performance in modeling material
properties, the element features used by these models typically do not represent any
measurable physical property of the elements themselves. Instead, the element represen-
tations are learned from the data during the model training process. Therefore, they do
not directly provide useful information or insights that can be interpreted by humans.
This is different from the CBFV representation typically used in classical ML, where
the features represent properties of the elements which are known a priori, such as the
atomic mass, first ionization energy, or number of valence electrons.

Despite the high performance of the DL models, there is a disparity between their
extensive study in academic research and their limited adoption in the industry for
the exploration of materials. We term this disparity the “interpretability-adoption gap”.
One significant hurdle to the widespread adoption of the often “black-box” models is the
lack of built-in methods for model interpretation. While there are established methods of
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evaluating model performance in academia [14,31–33], those who are less familiar with
DL typically require more intuition into how the models function before they can fully
trust the results. Particularly in industry, where there is usually a lower risk tolerance
compared to academia, findings based on black-box models and vague model evaluation
criteria are not enough to justify making high-stakes decisions such as investing in new
research [34–38,5]. Tangible methods of investigating and understanding model decision-
making processes are therefore required to facilitate their adoption in an industrial
setting [39].

This led to the development of explainable AI (XAI), which aims to introduce meth-
ods for deciphering the internal workings of black-box models and thus enabling users
to understand the modeling processes and results [39,40]. Examples of XAI in research
fields outside of MI include: visualizing word embeddings in Natural Language Pro-
cessing [41–43], inspecting decision-making processes in reinforcement learning [44–46],
visualizing pixel importances [47,48], or segmenting in computer vision [49,50]. To date,
however, XAI techniques have—with the exception of a few works employing classical
ML—largely been underexplored for DL in the MI field [51,52,10].

Two common post-hoc model-agnostic methods for obtaining explainable models in
classical ML are SHAP and LIME [53,54,39,55]. Both of these methods are built on
top of existing black-box models and use local feature perturbation to estimate the con-
tributions from input features towards the predictions. Other models such as random
forest, gradient boosting, and lasso regression inherently provide model interpretability
via the use of internal feature importance metrics and (in some models) through boot-
strap sampling and feature sampling [56,51,39]. Nonetheless, these techniques require
that the individual features of the input data are meaningful and represent a measurable
feature or physical property. This works in the domain of classical ML and when using
a physically-derived CBFV to featurize compounds; however, this is not the case for
DL methods where the features typically do not reflect a measurable value. Thus, these
traditional ways of model interpretability fall short in use for the DL models.

Therefore, it is the goal of this work to explore how to increase model interpretabil-
ity in DL models specifically for applications in MI. Here, we demonstrate how parts
of the typically black-box modeling process can be communicated visually and in an
interpretable way, using our attention-based model, CrabNet [28]. We have extended
CrabNet’s architecture to enable intrinsic interpretability using several methods to
be discussed below. In this regard, we lay the first bricks in the bridge spanning the
interpretability-adoption gap between academia and industry. This will not only aid
researchers in further developing complex models with interpretability in focus, but also
promote the adoption of these modeling methods in the materials science industry.

Results & Discussion

The results of this study are described in five subsections. We first compare the element
embeddings learned by CrabNet against other CBFV feature sets from the literature,
and show how chemical behavior and patterns in element properties can be learned
entirely from the training data for each material property. We also show that the learned
element representations are comparable to physically-derived CBFVs. Secondly, as part
of this analysis, we characterize the element prevalence imbalance in the datasets using
the Shannon equitability index and relate that to the quality of the learned element
embeddings. Third, we further examine how the element representations are successively
updated using information about their chemical environment in the compounds, and
how they may be used to gain additional insights about element behaviors in different
environments. Fourth, we inspect how entire chemical compounds can also be adequately
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captured using the EDMs and subsequently visualized. We identify interesting trends
in the compound representations relating the bond character and number of elements
in the compounds to the material property and prediction error, and discuss how such
visualizations can lead to additional understanding about the modeling process and the
underlying materials chemistry. Lastly, we explore how the self-attention mechanism
in CrabNet can be visualized in the form of videos and used to further examine the
modeling process, leading to potential new insights about the chemical interactions
within a compound. While we use the OQMD_Bandgap dataset to demonstrate the
analyses, we note that similar analyses can be also carried out with any of the 28
materials datasets presented in this work.

Learning meaningful and per-property elements representations

Element representations were obtained as featurized CBFVs, which are fixed-length vec-
tors where each element is uniquely described by the same set of features [18,12]. For the
Oliynyk, Magpie and mat2vec element property feature sets, we use the published vectors
to represent the elements [18,20]. For the CrabNet element representations, we extract
the element vectors from the element-derived matrices (EDMs) at the output of the
embedding layer (please refer to the CrabNet publication for architecture details [28]).
We can examine the similarity between two element vectors x and y by computing the
Pearson correlation coefficient r using Equation 1:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2(yi − ȳ)2

(1)

where n is the number of features, xi and yi are the values of the ith feature, and x̄ and
ȳ are the mean values of x and y, respectively.

The correlation r ranges from −1 to 1; the higher or lower the value of r is, the more
correlated or anticorrelated are the features that describe the elements, respectively.
A value of zero means that there are no correlations between the features of the ele-
ments. We compute the pairwise correlation coefficients between the element vectors for
all elements and for all element property representations, and show these as heatmaps
in Figure 1. Note that the plots are cropped to the range of elements of the Oliynyk
heatmap to aid comparison; please refer to supplementary Figure S-1 in the supplemen-
tary information (SI) for the full heatmaps. In addition, interactive versions of the plots
are provided in the SI.

Here we can observe that element vectors based on the Oliynyk and Magpie CBFVs
contain large regions of similar color in the heatmap. The regions of similar color indi-
cate that the element representations are either highly correlated or highly anticorrelated
with each other. Furthermore, these regions are very similar between the two CBFVs.
This is expected, since the CBFV features are based on physical properties of the el-
ements. Thus, elements with similar physical properties will be more correlated while
dissimilar elements will be more anticorrelated. Accordingly, the large colored regions
typically correspond to similarities and dissimilarities between elements from families
in the periodic table, such as alkali metals, alkaline earth metals, transition metals,
metalloids and reactive nonmetals.

On the other hand, the element vectors from a DL model such as mat2vec do not
exhibit such prominent behavior. Overall, the elements show less correlation with each
other, and—with the exception of a few areas (to be discussed in later sections)—do not
show large continuous regions of similar color. This is due to the fact that the starting
element representations in DL models are randomly initialized and are not based on
physical properties of the elements. These vector representation of the elements are only
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Fig. 1 Heatmaps of Pearson correlation matrices between element vectors featurized using (a) Oliynyk,
(b) Magpie, and (c) mat2vec element property feature sets. The x and y axis are labeled with the
atomic numbers. Each cell at coordinate (x, y) represents the correlation between the corresponding
elements with atomic numbers x and y. Blue represents a high correlation and red represents a high
anticorrelation. For the interest of comparison, the heatmaps are truncated to the dimensions of the
Oliynyk heatmap. Empty rows indicate that no element vector is available.

updated by the model throughout the training process using the training data. Thus,
the correlation patterns that can be observed in this figure represent distinct patterns
that the DL model has learned solely from the provided data.

We also note that a different number of element vectors are recorded in the fea-
ture sets. For the Oliynyk and Magpie CBFVs, only the elements up to uranium and
berkelium are reported, respectively, while vectors up to the element oganesson are pro-
vided by mat2vec (please refer to Figure S-1 in the SI for the uncropped heatmaps).
Particularly for the Oliynyk CBFV, some element vectors are missing, as visible by the
empty rows in the heatmap. This disparity in the availability of element vectors between
different CBFVs can be caused by reasons such as the instability or rarity of elements,
lack of adequate information about the elements, or the inability to measure properties
about the elements. The lack of element vectors in some material property feature sets
can limit their applicability for certain tasks (such as when studying rare elements) and
will be discussed in more detail in later sections.

In addition to learning element representations for a general purpose in materials
science, such in the case of mat2vec, DL methods can also learn to relate element char-
acteristics on a material property-specific basis. For example, element embeddings were
extracted from the CrabNet and HotCrab models which were reproduced using the sup-
plied model weights and the source code [57,58]. The CrabNet and HotCrab models use
mat2vec and onehot-encoded element features as the starting element representations,
respectively. These features are then fine-tuned by the models for each of the 28 reported
datasets. We extract one set of element embeddings from each layer of the models. Then,
the Pearson correlation between the element vectors are plotted and shown in Figure 2.

In this work, we use the OQMD_Bandgap dataset to demonstrate our findings. Ad-
ditional example plots for other properties can be found in the SI. The OQMD datasets
are widely used by researchers to evaluate model performance. For detailed information
about the OQMD_Bandgap dataset as well as information and discussion about the
calculated values, please see the literature [59–61].

Here we can observe that both CrabNet and HotCrab are able to learn embeddings
for each element of the periodic table, and that the correlations between the elements
have a similar pattern, irrespective of the starting element representation (mat2vec or
onehot). The observed correlation patterns are also similar to the mat2vec patterns as
seen in Figure 1c. The ability of both CrabNet and HotCrab models to learn similar
element embeddings despite having drastically different starting representations is en-
couraging, and further suggests that domain knowledge is not necessarily required for
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Fig. 2 Heatmaps of Pearson correlation matrices between element vectors extracted from CrabNet
and HotCrab. These element representations are learned entirely from data. The x and y axis are
labeled with the atomic numbers. Each cell at coordinate (x, y) represents the correlation between the
corresponding elements with atomic numbers x and y. The top row (a and b) shows the correlations
between embeddings from CrabNet and the bottom row (c and d) from HotCrab. The left and right
columns represent the embeddings extracted from the first and last layer of the models, respectively.
Blue represents a high correlation and red represents a high anticorrelation. In (d), some regions of
interest are annotated.

element featurization if a sufficient quantity and quality of training data is available [18].
This finding is corroborated by the similarly good performance of both models across a
wide range of material properties [28]. Interestingly, for deeper layers of the models (Fig-
ures 2b and d), more intense correlation patterns between the elements emerge. This is
likely attributed to the self-attention based learning mechanism of the underlying Crab-
Net models. At each successive layer within the model, information about additional
element-element interactions within the compound (i.e., the chemical environment) are
successively taken into account when updating the identity of an element within that
compound. As a result, the deeper the layer within the model, the more complex the
element interactions—and the element representations—become.

It is also interesting to note the diagonal and horizontal patterns which can be
observed in all of the correlation matrices. For example, in Figure 2d there is a 45-
degree diagonal, blue line that can be seen in the correlation matrix starting at the
coordinates (13, 31) (corresponding to the element pair (Al, Ga)) and continuing until
(40, 58) (corresponding to (Zr, Ce)). This line highlights the well-known periodic law
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which states that elements with similar chemical properties fall into recurring periodic
groups. Please refer to Figure S-2 for the enlarged version of the annotated heatmap and
for correlation plots for other material properties. Another observation is the triangular
region of high correlation between (57, 57) and (71, 71), which indicates that the first-
row elements of the f -block are highly similar to each other. A similar triangular region
can be observed between (23, 23) and (29, 29), indicating similarities between some first-
row elements of the d-block. Lastly, the vertical blue line starting at the coordinates
(39, 57) and continuing to (39, 71) indicate the chemical similarities between yttrium
and the first-row elements of the f -block. These and other patterns can also be observed
in the Oliynyk and Magpie CBFVs in Figure 1 as well. The ability of the CrabNet and
HotCrab models to learn such chemical relationships which are comparable to hand-
curated CBFVs based solely on the chemical formulae is exciting, and further reaffirms
the finding that hand-engineering of features is not needed when training on big data [18].

Moreover, in Figure 2c we observe a distinct “border” at the element plutonium
(with atomic number 94), where the correlation coefficients between the elements sud-
denly decrease and the patterns become less pronounced. Additional analysis of the
OQMD_Bandgap dataset showed that it does not contain any compounds with ele-
ments past plutonium. Due to the fact that the element representations are learned
purely by the model from the dataset, their quality depends heavily on the quality of
the dataset. Since the model performance depends on the quality of the element repre-
sentations, by extension, it also then depends on the dataset quality [32].

We define element prevalence as the number of times a certain element has appeared
as part of the compounds in a given dataset. When examining the OQMD_Bandgap
dataset, we note that there is an imbalance in element prevalence, with oxygen and
copper appearing almost 1.5 times to twice as often, and fluorine, chlorine, bromine and
iodine appearing only less than 0.1 times as often as the majority of the other elements
in the dataset, respectively. This imbalance in element prevalence is even stronger for
other datasets such as the aflow__Egap, castelli, CritExam, mp_e_form and phonons
datasets (see Figure S-3 in the SI for some example element prevalence plots).

Quantifying dataset imbalance

The degree to which a dataset is imbalanced (otherwise referred to as its “evenness”) can
be measured using the Shannon equitability index, which is a function of the Shannon
entropy of the dataset [62–64]. Shannon entropy is widely used in information theory and
can be used to characterize the degree of imbalance in a dataset [65,66]. The Shannon
entropy H is defined in Equation 2 as:

H(X) = −
k∑

i=1

P(xi) log P(xi) (2)

where X is the set of discrete variables xi ∈ {x1, . . . , xn}, i is the class, P(xi) is the
proportional abundance of xi and k is the total number of classes in the dataset.

For a dataset D of n data occurrences and k distinct chemical elements (classes),
each with counts ci, P(xi) =

ci
n and the Shannon entropy can thus also be written as

Equation 3:

H(D) = −
k∑

i=1

ci
n
log

(ci
n

)
(3)

For continuity, we note that when ci = 0, it means that no data sample is related to
class i in the dataset, and therefore the multiplicand within the summation is defined
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to be 0. Mathematically, limp→0+ p log(p) = 0. The maximum value of H(D) is log(k).
This value occurs when all element classes in the dataset are observed at the same
frequency (i.e., the dataset is completely balanced). Therefore, the Shannon entropy
H(D) is scaled by log(k) to finally obtain the Shannon equitability index E(D), which
is defined in Equation 4 as:

E(D) =
H(D)

log(k)
(4)

E(D) ranges between 0 for a maximally imbalanced dataset and 1 for a maximally
balanced dataset. The Shannon equitability indices are calculated for the 28 datasets
examined in this work and are presented in Table 1. A plot showing the same information
can be found in the SI (Figure S-4). For more information about the datasets, please
refer to the CrabNet publication [28].

Table 1 Shannon equitability indices calculated from the training data splits of the 28 reported
datasets. Datasets were taken from [28].

material property dataset equitability material property dataset equitability

castelli 0.823 aflow__ael_bulk_modulus_vrh 0.948
dielectric 0.864 aflow__ael_debye_temperature 0.948
elasticity_log10(G_VRH) 0.953 aflow__ael_shear_modulus_vrh 0.948
elasticity_log10(K_VRH) 0.953 aflow__agl_thermal_conductivity_300K 0.940
expt_gap 0.931 aflow__agl_thermal_expansion_300K 0.944
expt_is_metal 0.930 aflow__Egap 0.920
glass 0.771 aflow__energy_atom 0.917
jdft2d 0.872 CritExam__Ed 0.914
mp_e_form 0.913 CritExam__Ef 0.914
mp_gap 0.916 mp_bulk_modulus 0.923
mp_is_metal 0.916 mp_elastic_anisotropy 0.921
phonons 0.909 mp_e_hull 0.897
steels_yield 0.959 mp_mu_b 0.897

mp_shear_modulus 0.921
OQMD_Bandgap 0.976
OQMD_Energy_per_atom 0.976
OQMD_Formation_Enthalpy 0.976
OQMD_Volume_per_atom 0.976

As can be seen in the table, the datasets studied in this work are not equally bal-
anced in terms of element diversity. The more imbalanced a dataset is in terms of the
element prevalence in the chemical compounds, the less likely the models will be able
to adequately learn about the elements and their environments. The element embed-
dings learned for the infrequent elements will therefore be weaker and will not be able
to capture as much information about these elements as compared to more frequently
occurring elements. This leads to the observed weak correlation patterns between the
less frequently seen elements beyond a certain cutoff atomic number in the datasets, as
discussed earlier for Figure 2.

If the weakly learned elements are then encountered during inference time, the model
will not be able to make an adequate prediction using the elements’ representations.
Additionally, if certain elements or element combinations appear more frequently (ma-
jority classes) in the datasets as compared to other elements or combinations (minority
classes), the model may be biased to better capture the behavior of majority classes at
the expense of sacrificing performance on the minority classes. Such a dataset bias may
appear in computational or experimental datasets due to the fact that some elements
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are more commonly studied for certain material applications. On the other hand, certain
elements (e.g., rare or unstable elements) naturally occur less frequently and therefore
are also contained in fewer compounds and datasets. Certain elements such as noble
gases also rarely form compounds with other elements and are therefore rarely reported
in materials datasets.

It is therefore important to implement data processing and modeling techniques
to address biases as a result of dataset imbalance. Some example techniques include
dataset re-sampling, generating synthetic data for imbalanced classes, implementing
weighted loss functions that penalize errors for minority classes more, or using alternative
loss functions and metrics to evaluate model performance [67,64,68]. Additionally, the
model architecture can also be tailored to address dataset bias, and certain types of
models (such as those based on self-attention or guided attention architectures) have an
increased robustness against dataset bias [69,70].

Lastly, it is worthy to note that while most DL models learn element representations
from structured materials datasets, methods such as word2vec and mat2vec use text
mining and other natural language processing (NLP) techniques to learn the element
embeddings from academic publications [71,20,72]. The data present in publications
covers a much longer time period and contains a higher diversity in terms of types of
compounds, material properties and applications studied. These data are in unstructured
form and therefore cannot be used as training data for DL methods such as CrabNet;
however, they can easily be used for word2vec and mat2vec. Therefore, text mining
methods such as word2vec and mat2vec are able to learn from a much larger corpus of
materials data and are not restricted by the availability of structured datasets. Accord-
ingly, DL models such as CrabNet can benefit from the pre-trained element embeddings
of mat2vec by fine-tuning the mat2vec embeddings to new tasks, thereby minimizing
the impact of missing elements in the training dataset.

Capturing the influence of chemical environments on element representations

In addition to learning the representations of each element, CrabNet and HotCrab can
also capture the behavior of the elements when they are present in different chemical
environments. Figure 3 shows the two-dimensional projections of the element vectors
corresponding to the silicon atom from 2374 different silicon-containing compounds
within the OQMD_Bandgap test dataset. The silicon vectors are extracted from the
transformed EDM tensors from HotCrab (a onehot-featurized version of CrabNet) and
show the transformation of the silicon representations after they are passed through the
three successive self-attention layers. For visualization, the vectors are projected down
to two dimensions using the uniform manifold approximation and projection (UMAP)
method [73]. The resulting points are plotted and colored by three parameters: (1) the
fractional abundance of the element silicon in the compound, (2) the predicted property
value of the compound (in this case, band gap), and (3) the oxidation state of silicon as
predicted by Pymatgen [74]. For more information, please see the Methods.

As can be seen in the plots from the first layer (first row), there is a large number
of distinct point clusters, with one major cluster near the center, two medium clusters
above and below the center cluster, and many smaller clusters consisting of a few points.
The larger clusters are formed because the initial representations of the silicon atoms are
very similar to another (due to the learned element embedding of silicon). The similar
silicon vectors are thus projected through UMAP into coordinates that lie close together,
even though the silicon atoms are present in different chemical environments. We can
observe as well that the clustering in layer one is mostly attributable to the fractional
amount, since each cluster consists primarily of silicon points with the same fractional
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Fig. 3 Vector representations of the silicon element in 2374 different chemical environments and at
different layers of the HotCrab model. Each point shows the model-internal representation of the silicon
atom, after the information regarding the other atoms in the chemical environment have been introduced
via HotCrab through the three attention layers (top row to bottom row). The points are colored by: (left
column) the fractional abundance of silicon, (center column) the predicted value of the compound, and
(right column) the predicted oxidation state of silicon, where gray points indicate that the oxidation
state was unable to be predicted. Four clusters are outlined in the bottom-left plot.

amount. After the second layer, we observe that the points start to become separated
into different and recognizable clusters. The clusters are no longer identifiable entirely
based on the fractional amount of silicon, and clusters based on the predicted band gap
value of the compound and oxidation state of silicon start to emerge. By the end of
the third and last layer, we can observe four clusters that are distinguishable by the
fractional amount of silicon, the predicted band gap, and the oxidation state of silicon
(the clusters are outlined in Figure 3, bottom left).

More specifically, we observe that the cluster at the bottom-right side of the plot
consists mainly of silicon with a fractional amount of around 0.15 to 0.3 (with a few
points reaching 0.5), whereas the cluster near the bottom-left contains almost exclusively
of silicon with fractional amounts of 0.5 plus a few points above 0.5. The cluster near the
top contains regions of silicon with fractional amounts between 0.3 to 0.4 near the left
and right, and around 0.2 to 0.3 in the middle. Near the top of this cluster, a smaller
cluster is highlighted which consists mainly of silicon instances with low abundance,
between 0.2 and 0. Please note that interactive versions of these plots can be found in
the SI together with another example visualization plotted for the element chromium
(Figure S-5).

In the predicted value plot of the last layer, we observe that only the small cluster
near the top contains the silicon element in compounds with a non-zero band gap.
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Similarly, when examining the oxidation state plot, we note that while most clusters
contain a mixture of silicon atoms in several oxidation states, the same cluster near the
top consists almost exclusively of silicon atoms in the +4 oxidation state and very few
atoms in other oxidation states. Interestingly, while some compounds with silicon in
the +4 state are visible in other clusters, these compounds have a zero band gap. This
suggests that additional interactions between the elements were captured by HotCrab
which lead to these compounds being correctly clustered together with other compounds
with zero band gap.

These element behavior plots suggest that for silicon-containing compounds in the
OQMD_Bandgap dataset, the fractional amount and the oxidation state of the silicon
atoms are important factors that together determine the band gap of the compounds. By
cross-referencing the three plots, we can identify trends between the fractional amount
and oxidation state of silicon and relate this information to the predicted band gap of
the compounds. On the other hand, the clustering also suggests that there are other
interactions between the elements in a compound which are currently not highlighted
by the selected properties in Figure 3. It is our expectation that by examining these
interactions, additional insight about the modeling process and element representations
can be gained. Moreover, the findings from examining internal representations of ele-
ments in this way may suggest additional studies to further improve the understanding
about the underlying phenomena governing materials behaviors. Note that while these
visualizations were generated using HotCrab), similar results can be obtained using the
CrabNet model.

Capturing globally unique representations of chemical compounds

In addition to examining the behavior of individual elements in different chemical en-
vironments, we can also visualize all of the compounds in a given dataset to uncover
additional insights. We extract the internal vector representation of all of the 51,242
compounds in the OQMD_Bandgap test dataset from the last self-attention layer of
HotCrab, perform dimensionality reduction using UMAP and finally visualize the com-
pounds as shown in Figure 4. In addition to coloring the plots by the predicted value,
prediction error, and number of distinct elements for the compounds, we also highlight
the chemical trend between ionic to covalent bonding character within the compounds.
This trend is revealed by calculating and visualizing the standard deviation of the Paul-
ing electronegativities of the constituent atoms σχ in a given compound [75] according
to Equation 5:

σχ =

√∑n
i=1(χi − χ̄)2

n− 1
(5)

where χi is the Pauling electronegativity of each element i in the compound (totaling
n elements), and χ̄ is the average electronegativity of all elements in the compound. A
higher σχ signifies a more ionic bonding character, and a lower value signifies a more
covalent bonding character.

Many clusters with varying sizes are visible in the figure. Some clusters are placed
further apart, while some clusters are closer to, or are overlapping other clusters. In
particular, the outlined cluster near the right of the figure is of particular interest. This
is the only cluster where the compounds with a non-zero band gap are located, as is
visible from Figure 4a. Additionally, it is also within this cluster that HotCrab makes
the largest errors when predicting the band gap value, as seen in Figure 4b. For the other
compounds, the prediction errors of HotCrab are close to zero. Even through a small
proportion of model predictions have larger errors, the overall model performance is very
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Fig. 4 Global representations of the 51,242 compounds in the OQMD_Bandgap test dataset, extracted
from layer three of HotCrab, embedded down to two dimensions using UMAP and colored by the
parameters: (a) the predicted value of the compound (band gap); (b) the prediction error (ŷ − y);
(c) the bond character of the compounds ranging from more covalent (blue) to more ionic (red) as
measured by the standard deviations in the Pauling electronegativities of the constituent elements; and
(d) the number of distinct elements in the compound. A cluster of interest is outlined in the plot at the
top-right.

good and is comparable with, or better than, other state-of-the-art models [28]. This
superior performance of CrabNet and HotCrab models when predicting properties with
a defined cutoff (such as the cutoff of 0 eV in this case for band gap) is likely attributed
to the prediction of element-logits in the modeling process. These element-logits are used
to weight the final model predictions in CrabNet and HotCrab to improve the model
accuracy [28].

Notably, we also observe from Figures 4a, c and d that the band gap only partially
depends on the bond nature of the compound and on the number of unique elements
in the compound. While most of the compounds in the cluster of interest exhibit more
ionic bond characters, there are also other clusters with similar bond character that do
not have a non-zero band gap. Similarly, it appears that the compounds with a non-zero
band gap mainly contain four or five unique elements; however, there are also other
compounds with these numbers of unique elements which have a zero band gap.

Here we do note that while UMAP can reveal structures and patterns within high-
dimensional data, it generally emphasizes local structure at the expense of global struc-
ture. Therefore, for the UMAP visualizations shown in this work, it is more appropriate
to interpret the local structure (e.g., the elements or compounds present within indi-
vidual clusters in Figures 3 and 4) than the global structure. While the number of local
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neighbors considered can be specified as a hyperparameter in UMAP, a trade-off is made
between preserving local versus global structure. Therefore, the distances between el-
ements and compounds within a single cluster are more meaningful than inter-cluster
distances in the UMAP visualizations. Lastly, we note that while these visualizations
were generated based on the test dataset using HotCrab, similar results can be obtained
using CrabNet or the training dataset.

Visualizing the training progress

Beyond visualizing the element and compound representations from CrabNet after train-
ing, it is also possible to access the self-attention matrices of the CrabNet encoding
layers to observe the model learning process during training. The attention matrices
(commonly referred to as the attention maps) contain information regarding how each
element (rows) is influenced by all other elements in the compound as well as itself
(columns). The values in the attention maps are the attention scores and are used in the
encoder to update the element representations. An attention score of zero means that
the element in the column is completely ignored when updating the element’s represen-
tation in that row. Conversely, a score of one means that the entire update is based
solely on that column’s element.

In the CrabNet publication [28], example attention maps were shown for compounds
after the model has finished training. Here, we extend this approach by visualizing the
CrabNet attention maps during the model training process in the form of attention video
clips (see SI files for examples). This is achieved by saving the attention matrices from the
model encoder layers after every mini-step in the training process and generating a video
to show the learning progress. Figure 5 shows a snapshot of two example attention videos
obtained at the end of model training. The attention maps from the first encoding layer
of CrabNet are plotted as heatmaps in the left column, while the right column shows
the predicted values from the model versus the target value at every mini-step. This
process is performed at every mini-step in the training process, and the resulting plots
are merged into a video clip which shows the learning progress of the model throughout
training.

From the attention maps, we can observe that some elements are considered less
relevant in the determination of the material property, whereas some elements are con-
sidered very relevant. Also we can note that individual attention heads pay attention to
different element-element interactions in the compound, as is visible by the significantly
different attention patterns in the plots. Throughout the training process, the attention
pattern for each head remains relatively fixed after a few mini-steps, indicating that
the model discovers a pattern for recognizing inter-element interactions early on in the
training process, which it then continues to refine as more training steps are taken.

For the top compound, we can observe that while the model initially over- and un-
derestimates the property value early on in the training, it learns to correct the error
and finally achieves a low prediction error towards the end of training. Conversely, for
the bottom compound, we observe that while the model initially correctly estimates
the property value of the compound, the predicted value decreases and the estimation
error increases throughout training, with the error finally plateauing towards the end of
the training. By examining the attention heatmaps for this compound, we notice that
attention head 1 shows a significantly different behavior as compared to the other atten-
tion heads. It dedicates almost all of its attention to the element iron, while the other
attention heads capture many more inter-element interactions. It may be interesting to
investigate further to find out if CrabNet is misrepresenting the interactions from the
iron element with the other elements and thus making the prediction error, or if another
phenomenon is contributing to the prediction error on this compound.
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Fig. 5 Snapshots of attention videos for observing the training progress of CrabNet using two ex-
ample compounds (a) Gd1Mn1Si1 and (b) C5Ca1Fe1H8N6O5 from the validation data split of the
aflow__Egap dataset. The left plots show the attention maps of the four attention heads at the first
attention layer, where the x axis of each heatmap is labeled with the fractional amount of the elements
and the other axes are labeled with the element symbol. The right plots show the model predictions
(blue) for the compounds, evaluated after each training mini-step throughout the whole training process.
The true property value (target) is represented with the red “X” and the dotted line.

By observing the element groups and inter-elemental interactions that CrabNet pays
attention to for each material property throughout the training process, we may be able
to gain additional insight about which relevant elements and interactions contribute
significantly to the material property. Similarly, in the case where the model does not
make a good property prediction or fails to learn a specific material property, these
attention videos can be informative in showing when, where, and how the model fails.
Additionally, since the element representations in a compound are updated according
to the attention scores, it would be interesting to train CrabNet on material proper-
ties where the property has a high sensitivity to changes in elemental prevalence. An
example of this is in the case of dopants, where a small change in the dopant amount
can significantly influence a material’s electrical [15,76,77], mechanical [78–80,17], and
thermal properties [81–84]. Finally, it may be interesting to expand the studied materi-
als to include co-doped materials and use the attention videos to visualize the complex
inter-elemental interactions between the co-dopants and the host elements.
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Conclusion

In this work, we examined the CrabNet model through the use of several built-in model
interpretability methods in order to visualize the data featurization and modeling pro-
cess. We demonstrated that CrabNet can adequately capture the chemical behavior of
compounds in a dataset by using the vector representations of their constituent ele-
ments. The element representations can be learned entirely from the training data on
a per-property basis, and contain rich information about the elements and their chem-
ical trends. Additionally, we examined dataset imbalance, its relation to the quality of
learned representations, and the limitations that imbalanced datasets may ultimately
impose on the modeling processes.

The element and compound vectors can be projected using UMAP into distinguish-
able clusters which can then be visualized and characterized by the element stoichiom-
etry, local chemical environment and oxidation state of the elements, or by the bond
behavior of the compounds. Lastly, the examination of the self-attention matrices during
model training through the use of attention videos can be used to further understand the
modeling process, debug potential model or dataset errors, or gain additional insights
about chemical interactions within a given compound.

The model interpretability techniques presented in this work will enable materials
science practitioners to not only visualize a specific element’s behavior within different
chemical environments, but also to obtain a global view of the chemical compounds,
behaviors and trends within a larger dataset. The ability of CrabNet to adequately
model and express the complex chemical behaviors and interactions of elements and
compounds based solely on learning from data is encouraging. With the addition of
model interpretability methods to CrabNet, the findings and intuitions presented in this
work may lead to further insightful and interesting research. Specifically, we believe that
follow-up works may fall into one of these three general directions:

1. Learning and representing elements and compounds. Our work has shown
that it is possible to visualize CrabNet’s internal representations of elements and
compounds via techniques such as UMAP. However, it would be interesting to fur-
ther investigate why CrabNet’s representations of some of these elements or com-
pounds lead to them being placed into the same cluster or not, despite the fact that
these elements and compounds are similar to each other in terms of identity and/or
chemical environment. This may also be combined with a more detailed examination
of the attention videos and how the attention mechanism in CrabNet leads to the
updating of the element representations for each compound.

2. Examination of individual attention head behaviors. This work used the
EDM (element-derived matrix) data from CrabNet to examine the element and com-
pound representations within CrabNet. CrabNet utilizes four self-attention heads to
model element-element interactions, the results of which are then concatenated and
transformed back to an updated EDM matrix. As such, the EDM is a pooled repre-
sentation of the compounds. It would be interesting to further examine the per-head
modeling of the compounds, as it has been shown that each head can capture differ-
ent types of inter-element interactions and thus may give additional insight to the
modeling process within CrabNet.

3. Discovery of additional inter-element interactions. From the analyses pre-
sented in this study, it is clear that while some changes in the material property
(e.g., band gap) can be explained by certain properties of the compounds (such as
element stoichiometry, number of unique elements, and/or bond character), there are
additional behaviors that govern the material property. These additional interactions
are also adequately modeled by CrabNet, since it can predict a wide range of mate-
rial properties with low errors. Examining the modeling process of these behaviors
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within CrabNet may lead to an improved understanding of the complex phenomena
underlying material properties.

Further research to answer these and subsequent questions may allow us to gain
additional insights about the behaviors and properties of elements and materials, im-
prove our understanding of models such as CrabNet, increase our confidence in the use
of data-driven methods, and ultimately, accelerate the adoption of deep learning and
machine learning in materials science.

Methods

Adaptation of CrabNet model

The CrabNet model and material property datasets as originally reported were used
as the basis for this study [28]. Fully trained model weights for both CrabNet and
HotCrab were obtained from [57]. In order to obtain the EDMs containing the elements
and compounds data used in this study, custom function hooks were implemented in
PyTorch. These hooks were attached to the CrabNet model architecture to allow access
to the model-internal data during training and inference.

The source code as well as the data that were used and generated in this study
can be found on the updated CrabNet GitHub repository [58] (the GitHub will be
updated within a few days of manuscript acceptance). In addition, we provide detailed
instructions for the use and reproduction of our reported results. Please note that due to
the prohibitively large size of the stored attention matrices used in the attention videos,
it is not possible to provide these for download. However, instructions and scripts are
provided for generating these matrices and videos.

All experiments, unless otherwise noted, were performed on a workstation equipped
with an Intel i7-8700K CPU, 32 GB of DDR4 RAM, and one Nvidia RTX 2080 GPU.

Element Embeddings

Element embeddings for pure elements were generated on a per-property basis. To do
this, an EDM consisting of all of the elements from hydrogen to oganesson was gener-
ated (with each row representing one element). Then, for each material property, the
corresponding CrabNet or HotCrab model was loaded and the model hooks attached.
The EDM was then passed through the network and the modified EDM at the output
of the element embedding layer was obtained and detached from the model graph. This
resulting EDM contains the property-specific element embeddings of all of the elements.
Thus, each element was represented by a vector with the shape (1, dmodel), where dmodel

is the size of the embedding. Element embeddings for Oliynyk, Magpie, and mat2vec
were obtained from the original publications [18].

Compound Embeddings

Compound embeddings were obtained in a similar fashion to element embeddings. In-
stead of generating an EDM from pure elements, the EDMs were generated from the
actual chemical formulae from the datasets and collated in batches using the model
data loader. Model hooks were then attached to the CrabNet and HotCrab models and
enabled during model inference. The transformed EDMs after each of the three self-
attention layers of the CrabNet models were then collected.
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The obtained compound EDMs have the shape of (ncompounds, nelements, dmodel),
where ncompounds is the total number of compounds in the dataset, nelements is the
maximum number of elements per compound, and dmodel is the size of the embedding.
Thus, each compound in the EDM is represented by one tensor slice with the dimensions
(1, nelements, dmodel). Due to the fact that different compounds within the same dataset
may contain a different number of elements, the extra rows of the EDMs were zero-filled
to indicate no elements present. In order to ensure that the compound embeddings are
comparable with each other using UMAP, the three-dimensional compound EDMs were
collapsed to two dimensions (ncompounds, 1, dmodel) by calculating summary statistics
(such as sum, range, variance) of the EDM columns across the elements dimension.

Dimensionality Reduction

CrabNet uses vectors with a dmodel dimension of 512 to represent chemical elements and
compounds in the input data. It would be infeasible to try to visualize all 512 dimen-
sions. Therefore, dimensionality reduction was applied to the vector representations to
transform the vectors into two-dimensional space for visualization.

Three common methods for dimensionality reduction were tested: principal compo-
nent analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), and uni-
form manifold approximation and projection (UMAP) [85,86,73]. Compared to t-SNE
and PCA, UMAP revealed more visually distinct clusters for the data presented in this
work. Therefore, UMAP was chosen as the dimensionality reduction method. The ran-
dom seed was fixed so that each initialization of the UMAP method produces the same
results. For element embeddings, the rows of the EDMs with dimensions (1, dmodel) are
transformed using UMAP. For the compound embeddings, the matrices corresponding
to each compound were first collapsed as described above, and the resulting representa-
tions with dimensions (1, dmodel) for each compound were transformed using UMAP.

Oxidation State Estimation

Oxidation states for elements in the compounds were estimated using the Pymatgen
package (version 2022.0.8) using the chemical formulae of the compounds. The built-in
functions for assigning oxidation states were used, which are based on charge-balancing
heuristics and use the most probable oxidation states as determined based on the com-
pounds in the Inorganic Crystal Structure Database [74].

Attention Video Generation

Custom function hooks were programmed and attached to a newly-initialized CrabNet
model. During training of CrabNet, the attention matrices of every CrabNet encoder
layer was extracted from the model and saved into a compressed Zarr array on disk. The
model predictions for the properties were also generated and saved. This procedure is
performed after every mini-step during the training process (corresponding to each mini-
batch of data). The plots were then generated for each mini-step and merged together
using the software FFMPEG to create the attention videos. Due to the large amount
of storage and computing power required to store and process the attention matrices,
these tasks were performed on a high-performance computing cluster.



18 Anthony Yu-Tung Wang et al.

Acknowledgments

The authors thank the Berlin International Graduate School in Model and Simulation
based Research as well as the German Academic Exchange Service RISE program for
their financial support. Special thanks is given to Dr. Steven K. Kauwe, Pay Gießelmann
and Joris Weigert for the insightful discussions.

Computing resources were graciously provided by the HPC-Cluster at the Institut für
Mathematik, Technische Universität Berlin, by the HPC Resource in the Core Facility
for Advanced Research Computing at the Case Western Reserve University as well as
by the Google TPU Research Cloud (TRC) program.

In addition, the authors express their gratitude to the open-source software commu-
nity for developing the excellent tools used in this research, including but not limited to
Python, Pandas, NumPy, matplotlib, scikit-learn, PyTorch, Zarr, and FFMPEG.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of
interest.

References

1. R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, and C. Kim, “Machine learning
in materials informatics: Recent applications and prospects,” npj Computational Materials, vol. 3,
no. 1, p. 60, 2017.

2. J. Schmidt, M. R. G. Marques, S. Botti, and M. A. L. Marques, “Recent advances and applications
of machine learning in solid-state materials science,” npj Computational Materials, vol. 5, no. 1,
p. 83, 2019.

3. C. P. Gomes, B. Selman, and J. M. Gregoire, “Artificial intelligence for materials discovery,” MRS
Bulletin, vol. 44, no. 7, pp. 538–544, 2019.

4. O. Isayev, A. Tropsha, and S. Curtarolo, eds., Materials Informatics: Methods, Tools, and Appli-
cations. Wiley, 2019.

5. B. DeCost, J. R. Hattrick-Simpers, Z. Trautt, A. G. Kusne, E. Campo, and M. L. Green, “Scientific
AI in materials science: a path to a sustainable and scalable paradigm,” Machine Learning: Science
and Technology, 2020.

6. H. S. Stein and J. M. Gregoire, “Progress and prospects for accelerating materials science with
automated and autonomous workflows,” Chemical Science, vol. 10, no. 42, pp. 9640–9649, 2019.

7. D. Morgan and R. Jacobs, “Opportunities and Challenges for Machine Learning in Materials Sci-
ence,” Annual Review of Materials Research, vol. 50, no. 1, pp. 71–103, 2020.

8. C. L. Zitnick, L. Chanussot, A. Das, S. Goyal, J. Heras-Domingo, C. Ho, W. Hu, T. Lavril, A. Pal-
izhati, M. Riviere, M. Shuaibi, A. Sriram, K. Tran, B. Wood, J. Yoon, D. Parikh, and Z. Ulissi,
“An Introduction to Electrocatalyst Design using Machine Learning for Renewable Energy Stor-
age,” 2020-10-14.

9. T. D. Sparks, S. K. Kauwe, M. E. Parry, A. Mansouri Tehrani, and J. Brgoch, “Machine Learning
for Structural Materials,” Annual Review of Materials Research, vol. 50, no. 1, 2020.

10. G. Pilania, “Machine learning in materials science: From explainable predictions to autonomous
design,” Computational Materials Science, vol. 193, p. 110360, 2021.

11. A. O. Oliynyk, E. Antono, T. D. Sparks, L. Ghadbeigi, M. W. Gaultois, B. Meredig, and A. Mar,
“High-Throughput Machine-Learning-Driven Synthesis of Full-Heusler Compounds,” Chemistry of
Materials, vol. 28, no. 20, pp. 7324–7331, 2016.

12. L. Ward, A. Agrawal, A. Choudhary, and C. Wolverton, “A general-purpose machine learning
framework for predicting properties of inorganic materials,” npj Computational Materials, vol. 2,
no. 1, p. 16028, 2016.

13. G. Pilania, A. Mannodi-Kanakkithodi, B. P. Uberuaga, R. Ramprasad, J. E. Gubernatis, and
T. Lookman, “Machine learning bandgaps of double perovskites,” Scientific Reports, vol. 6, p. 19375,
2016.

14. A. Dunn, Q. Wang, A. Ganose, D. Dopp, and A. Jain, “Benchmarking materials property predic-
tion methods: the Matbench test set and Automatminer reference algorithm,” npj Computational
Materials, vol. 6, no. 1, p. 138, 2020.



Title Suppressed Due to Excessive Length 19

15. S. K. Kauwe, J. Graser, R. J. Murdock, and T. D. Sparks, “Can machine learning find extraordinary
materials?,” Computational Materials Science, vol. 174, p. 109498, 2020.

16. J. Graser, S. K. Kauwe, and T. D. Sparks, “Machine Learning and Energy Minimization Approaches
for Crystal Structure Predictions: A Review and New Horizons,” Chemistry of Materials, vol. 30,
no. 11, pp. 3601–3612, 2018.

17. A. Mansouri Tehrani, A. O. Oliynyk, M. Parry, Z. Rizvi, S. Couper, F. Lin, L. Miyagi, T. D. Sparks,
and J. Brgoch, “Machine Learning Directed Search for Ultraincompressible, Superhard Materials,”
Journal of the American Chemical Society, vol. 140, no. 31, pp. 9844–9853, 2018.

18. R. J. Murdock, S. K. Kauwe, A. Y.-T. Wang, and T. D. Sparks, “Is Domain Knowledge Necessary
for Machine Learning Materials Properties?,” Integrating Materials and Manufacturing Innovation,
vol. 9, no. 3, pp. 221–227, 2020.

19. K. Choudhary, B. DeCost, and F. Tavazza, “Machine learning with force-field-inspired descriptors
for materials: Fast screening and mapping energy landscape,” Physical Review Materials, vol. 2,
no. 8, p. 083801, 2018.

20. V. Tshitoyan, J. Dagdelen, L. Weston, A. Dunn, Z. Rong, O. Kononova, K. A. Persson, G. Ceder,
and A. Jain, “Unsupervised word embeddings capture latent knowledge from materials science
literature,” Nature, vol. 571, no. 7763, pp. 95–98, 2019.

21. S. K. Kauwe, J. Graser, A. Vazquez, and T. D. Sparks, “Machine Learning Prediction of Heat
Capacity for Solid Inorganics,” Integrating Materials and Manufacturing Innovation, vol. 7, no. 2,
pp. 43–51, 2018.

22. S. K. Kauwe, T. Welker, and T. D. Sparks, “Extracting Knowledge from DFT: Experimental
Band Gap Predictions Through Ensemble Learning,” Integrating Materials and Manufacturing
Innovation, vol. 9, no. 3, pp. 213–220, 2020.

23. D. Jha, L. Ward, A. Paul, W.-K. Liao, A. Choudhary, C. Wolverton, and A. Agrawal, “ElemNet:
Deep Learning the Chemistry of Materials From Only Elemental Composition,” Scientific Reports,
vol. 8, no. 1, p. 17593, 2018.

24. T. Xie and J. C. Grossman, “Crystal Graph Convolutional Neural Networks for an Accurate and
Interpretable Prediction of Material Properties,” Physical Review Letters, vol. 120, no. 14, p. 145301,
2018.

25. C. Chen, W. Ye, Y. Zuo, C. Zheng, and S. P. Ong, “Graph Networks as a Universal Machine
Learning Framework for Molecules and Crystals,” Chemistry of Materials, vol. 31, no. 9, pp. 3564–
3572, 2019.

26. J. Klicpera, S. Giri, J. T. Margraf, and S. Günnemann, “Fast and Uncertainty-Aware Directional
Message Passing for Non-Equilibrium Molecules,” 2020-11-28.

27. B. DeCost and K. Choudhary, “Atomistic Line Graph Neural Network for Improved Materials
Property Predictions,” 2021-06-03.

28. A. Y.-T. Wang, S. K. Kauwe, R. J. Murdock, and T. D. Sparks, “Compositionally restricted
attention-based network for materials property predictions,” npj Computational Materials, vol. 7,
no. 1, p. 77, 2021.

29. R. E. A. Goodall and A. A. Lee, “Predicting materials properties without crystal structure: deep
representation learning from stoichiometry,” Nature Communications, vol. 11, no. 1, p. 6280, 2020.

30. S. Kong, D. Guevarra, C. P. Gomes, and J. M. Gregoire, “Materials representation and transfer
learning for multi-property prediction,” Applied Physics Reviews, vol. 8, no. 2, p. 021409, 2021.

31. C. L. Clement, S. K. Kauwe, and T. D. Sparks, “Benchmark AFLOW Data Sets for Machine
Learning,” Integrating Materials and Manufacturing Innovation, vol. 9, no. 2, pp. 153–156, 2020.

32. A. Y.-T. Wang, R. J. Murdock, S. K. Kauwe, A. O. Oliynyk, A. Gurlo, J. Brgoch, K. A. Persson,
and T. D. Sparks, “Machine Learning for Materials Scientists: An Introductory Guide toward Best
Practices,” Chemistry of Materials, vol. 32, no. 12, pp. 4954–4965, 2020.

33. A. N. Henderson, S. K. Kauwe, and T. D. Sparks, “Benchmark datasets incorporating diverse tasks,
sample sizes, material systems, and data heterogeneity for materials informatics,” Data in Brief,
vol. 37, p. 107262, 2021.

34. B. Meredig, “Industrial materials informatics: Analyzing large-scale data to solve applied problems
in R&D, manufacturing, and supply chain,” Current Opinion in Solid State & Materials Science,
vol. 21, no. 3, pp. 159–166, 2017.

35. Z. C. Lipton, “The Mythos of Model Interpretability,” Queue, vol. 16, no. 3, pp. 31–57, 2018.
36. L. Himanen, A. Geurts, A. S. Foster, and P. Rinke, “Data-Driven Materials Science: Status, Chal-

lenges, and Perspectives,” Advanced Science, vol. 6, no. 21, p. 1900808, 2019.
37. C. Rudin, “Stop explaining black box machine learning models for high stakes decisions and use

interpretable models instead,” Nature Machine Intelligence, vol. 1, no. 5, pp. 206–215, 2019.
38. I. Kolyshkina and S. Simoff, “Interpretability of Machine Learning Solutions in Industrial Decision

Engineering,” in Data Mining (T. D. Le, K.-L. Ong, Y. Zhao, W. H. Jin, S. Wong, L. Liu, and
G. Williams, eds.), vol. 1127 of Communications in Computer and Information Science, pp. 156–
170, Singapore: Springer Singapore, 2019.

39. P. Linardatos, V. Papastefanopoulos, and S. Kotsiantis, “Explainable AI: A Review of Machine
Learning Interpretability Methods,” Entropy (Basel, Switzerland), vol. 23, no. 1, p. 18, 2021.



20 Anthony Yu-Tung Wang et al.

40. L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal, “Explaining Explanations:
An Overview of Interpretability of Machine Learning,” in 2018 IEEE 5th International Conference
on Data Science and Advanced Analytics (DSAA), pp. 80–89, IEEE, 2018.

41. D. Smilkov, N. Thorat, C. Nicholson, E. Reif, F. B. Viégas, and M. Wattenberg, “Embedding
Projector: Interactive Visualization and Interpretation of Embeddings,” 2016-11-16.

42. S. Liu, P.-T. Bremer, J. J. Thiagarajan, V. Srikumar, B. Wang, Y. Livnat, and V. Pascucci, “Vi-
sual Exploration of Semantic Relationships in Neural Word Embeddings,” IEEE Transactions on
Visualization and Computer Graphics, vol. 24, no. 1, pp. 553–562, 2018.

43. B. van Aken, B. Winter, A. Löser, and F. A. Gers, “VisBERT: Hidden-State Visualizations for
Transformers,” in Companion Proceedings of the Web Conference 2020 (A. E. F. Seghrouchni,
G. Sukthankar, T.-Y. Liu, and M. van Steen, eds.), (New York, NY, USA), pp. 207–211, ACM,
2020.

44. O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi, R. Pow-
ell, T. Ewalds, P. Georgiev, J. Oh, D. Horgan, M. Kroiss, I. Danihelka, A. Huang, L. Sifre, T. Cai,
J. P. Agapiou, M. Jaderberg, A. S. Vezhnevets, R. Leblond, T. Pohlen, V. Dalibard, D. Budden,
Y. Sulsky, J. Molloy, T. L. Paine, C. Gulcehre, Z. Wang, T. Pfaff, Y. Wu, R. Ring, D. Yogatama,
D. Wünsch, K. McKinney, O. Smith, T. Schaul, T. Lillicrap, K. Kavukcuoglu, D. Hassabis, C. Apps,
and D. Silver, “Grandmaster level in StarCraft II using multi-agent reinforcement learning,” Nature,
vol. 575, no. 7782, pp. 350–354, 2019.

45. E. Puiutta and E. M. S. P. Veith, “Explainable Reinforcement Learning: A Survey,” in Machine
Learning and Knowledge Extraction (A. Holzinger, P. Kieseberg, A. M. Tjoa, and E. Weippl,
eds.), vol. 12279 of Lecture Notes in Computer Science, pp. 77–95, Cham: Springer International
Publishing, 2020.

46. A. Heuillet, F. Couthouis, and N. Díaz-Rodríguez, “Explainability in deep reinforcement learning,”
Knowledge-Based Systems, vol. 214, p. 106685, 2021.

47. S. Lapuschkin, Opening the machine learning black box with Layer-wise Relevance Propagation.
PhD thesis, Technische Universität Berlin, Berlin, Germany, 2018.

48. H. Chefer, S. Gur, and L. Wolf, “Transformer Interpretability Beyond Attention Visualization,”
2020-12-17.

49. J. Chen, Y. Lu, Q. Yu, X. Luo, E. Adeli, Y. Wang, Le Lu, A. L. Yuille, and Y. Zhou, “TransUNet:
Transformers Make Strong Encoders for Medical Image Segmentation,” 2021-02-08.

50. S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah, “Transformers in Vision:
A Survey,” 2021-01-04.

51. B. Kailkhura, B. Gallagher, S. Kim, A. Hiszpanski, and T. Y.-J. Han, “Reliable and explainable
machine-learning methods for accelerated material discovery,” npj Computational Materials, vol. 5,
no. 1, p. 221, 2019.

52. R. Roscher, B. Bohn, M. F. Duarte, and J. Garcke, “Explainable Machine Learning for Scientific
Insights and Discoveries,” IEEE Access, vol. 8, pp. 42200–42216, 2020.

53. M. T. Ribeiro, S. Singh, and C. Guestrin, “"Why Should I Trust You?": Explaining the Predictions of
Any Classifier,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining – KDD ’16 (B. Krishnapuram, M. Shah, A. Smola, C. Aggarwal,
D. Shen, and R. Rastogi, eds.), (New York, NY, USA), pp. 1135–1144, ACM Press, 2016.

54. S. Lundberg and S.-I. Lee, “A Unified Approach to Interpreting Model Predictions,” 2017.
55. L. S. Shapley, “A Value for n-Person Games,” in Contributions to the Theory of Games (AM-28),

Volume II (H. W. Kuhn and A. W. Tucker, eds.), Annals of Mathematics Studies, pp. 307–318,
Princeton, NJ: Princeton University Press, 1953.

56. T. Hastie, R. Tibshirani, and J. H. Friedman, The elements of statistical learning: Data mining,
inference, and prediction. Springer Series in Statistics, New York, NY: Springer, 2nd ed. ed., 2009.

57. A. Y.-T. Wang, S. K. Kauwe, R. J. Murdock, and T. D. Sparks, “Trained network weights for
the paper "Compositionally restricted attention-based network for materials property predictions
(CrabNet)",” 2021.

58. A. Y.-T. Wang and S. K. Kauwe, “Online GitHub repository for the paper "Compositionally-
Restricted Attention-Based Network for Materials Property Prediction",” 2020.

59. J. E. Saal, S. Kirklin, M. Aykol, B. Meredig, and C. Wolverton, “Materials Design and Discov-
ery with High-Throughput Density Functional Theory: The Open Quantum Materials Database
(OQMD),” JOM, vol. 65, no. 11, pp. 1501–1509, 2013.

60. S. Kirklin, J. E. Saal, B. Meredig, A. Thompson, J. W. Doak, M. Aykol, S. Rühl, and C. Wolver-
ton, “The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation
energies,” npj Computational Materials, vol. 1, no. 1, p. 15010, 2015.

61. V. I. Hegde, C. K. H. Borg, Z. d. Rosario, Y. Kim, M. Hutchinson, E. Antono, J. Ling, P. Saxe, J. E.
Saal, and B. Meredig, “Reproducibility in high-throughput density functional theory: a comparison
of AFLOW, Materials Project, and OQMD,” 2020-07-04.

62. J. A. Bonachela, H. Hinrichsen, and M. A. Muñoz, “Entropy estimates of small data sets,” Journal
of Physics A: Mathematical and Theoretical, vol. 41, no. 20, p. 202001, 2008.

63. C. Hong, R. Ghosh, and S. Srinivasan, “Dealing with Class Imbalance using Thresholding,” 2016-
07-10.



Title Suppressed Due to Excessive Length 21

64. M. A. U. H. Tahir, S. Asghar, A. Manzoor, and M. A. Noor, “A Classification Model For Class
Imbalance Dataset Using Genetic Programming,” IEEE Access, vol. 7, pp. 71013–71037, 2019.

65. C. E. Shannon, “A Mathematical Theory of Communication,” Bell System Technical Journal,
vol. 27, no. 3, pp. 379–423, 1948.

66. C. E. Shannon, “A Mathematical Theory of Communication,” Bell System Technical Journal,
vol. 27, no. 4, pp. 623–656, 1948.

67. Y. Li and N. Vasconcelos, “REPAIR: Removing Representation Bias by Dataset Resampling,”
in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (CVPR
Editors, ed.), pp. 9564–9573, IEEE, 2019.

68. C. Esposito, G. A. Landrum, N. Schneider, N. Stiefl, and S. Riniker, “GHOST: Adjusting the Deci-
sion Threshold to Handle Imbalanced Data in Machine Learning,” Journal of Chemical Information
and Modeling, vol. 61, no. 6, pp. 2623–2640, 2021.

69. K. Li, Z. Wu, K.-C. Peng, J. Ernst, and Y. Fu, “Tell Me Where to Look: Guided Attention Inference
Network,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9215–
9223, IEEE, 2018.

70. A. C. Rodriguez, S. D’Aronco, K. Schindler, and J. D. Wegner, “Privileged Pooling: Better Sample
Efficiency Through Supervised Attention,” 2020-03-20.

71. E. Kim, K. Huang, A. Tomala, S. Matthews, E. Strubell, A. Saunders, A. McCallum, and E. Olivetti,
“Machine-learned and codified synthesis parameters of oxide materials,” Scientific Data, vol. 4,
p. 170127, 2017.

72. L. Weston, V. Tshitoyan, J. Dagdelen, O. Kononova, A. Trewartha, K. A. Persson, G. Ceder,
and A. Jain, “Named Entity Recognition and Normalization Applied to Large-Scale Information
Extraction from the Materials Science Literature,” Journal of Chemical Information and Modeling,
2019.

73. L. McInnes, J. Healy, N. Saul, and L. Großberger, “UMAP: Uniform Manifold Approximation and
Projection,” Journal of Open Source Software, vol. 3, no. 29, p. 861, 2018.

74. S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier,
K. A. Persson, and G. Ceder, “Python Materials Genomics (pymatgen): A robust, open-source
python library for materials analysis,” Computational Materials Science, vol. 68, pp. 314–319,
2013.

75. C. J. Hargreaves, M. S. Dyer, M. W. Gaultois, V. A. Kurlin, and M. J. Rosseinsky, “The Earth
Mover’s Distance as a Metric for the Space of Inorganic Compositions,” Chemistry of Materials,
vol. 32, no. 24, pp. 10610–10620, 2020.

76. A. M. Glaudell, J. E. Cochran, S. N. Patel, and M. L. Chabinyc, “Impact of the Doping Method on
Conductivity and Thermopower in Semiconducting Polythiophenes,” Advanced Energy Materials,
vol. 5, no. 4, p. 1401072, 2015.

77. S. B. Zhang, “The microscopic origin of the doping limits in semiconductors and wide-gap materials
and recent developments in overcoming these limits: a review,” Journal of Physics: Condensed
Matter, vol. 14, no. 34, pp. R881–R903, 2002.

78. L. Sheng, L. Wang, T. Xi, Y. Zheng, and H. Ye, “Microstructure, precipitates and compressive
properties of various holmium doped NiAl/Cr(Mo,Hf) eutectic alloys,” Materials & Design, vol. 32,
no. 10, pp. 4810–4817, 2011.

79. A. Mansouri Tehrani, A. O. Oliynyk, Z. Rizvi, S. Lotfi, M. Parry, T. D. Sparks, and J. Brgoch,
“Atomic Substitution to Balance Hardness, Ductility, and Sustainability in Molybdenum Tungsten
Borocarbide,” Chemistry of Materials, vol. 31, no. 18, pp. 7696–7703, 2019.

80. Mihailovich and Parpia, “Low temperature mechanical properties of boron-doped silicon,” Physical
Review Letters, vol. 68, no. 20, pp. 3052–3055, 1992.

81. Z. Qu, T. D. Sparks, W. Pan, and D. R. Clarke, “Thermal conductivity of the gadolinium calcium
silicate apatites: Effect of different point defect types,” Acta Materialia, vol. 59, no. 10, pp. 3841–
3850, 2011.

82. T. D. Sparks, P. A. Fuierer, and D. R. Clarke, “Anisotropic Thermal Diffusivity and Conductivity
of La-Doped Strontium Niobate Sr2Nb2O7,” Journal of the American Ceramic Society, vol. 93,
no. 4, pp. 1136–1141, 2010.

83. G. Grimvall, Thermophysical Properties of Materials. Amsterdam: North Holland, 1 ed., 1999.
84. R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction

of thermal conductivity in pure and doped insulating crystals,” Applied Physics Letters, vol. 83,
no. 7, pp. 1355–1357, 2003.

85. K. Pearson, “On lines and planes of closest fit to systems of points in space,” The London, Ed-
inburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 2, no. 11, pp. 559–572,
1901.

86. L. van der Maaten and G. Hinton, “Visualizing Data using t-SNE,” Journal of Machine Learning
Research, vol. 9, pp. 2579–2605, 2008.


