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Abstract: The design of heterogeneous catalysts is challenged by the complexity of materials and processes that govern reactivity and 
by the fact that the number of good catalysts is very small compared to the number of possible materials. Here, we show how the 
subgroup-discovery (SGD) artificial-intelligence approach can be applied to an experimental plus theoretical data set to identify 
constraints on key physicochemical parameters, the so-called SG rules, which exclusively describe materials and reaction conditions with 
outstanding catalytic performance. By using high-throughput experimentation, 120 SiO2-supported catalysts containing ruthenium, 
tungsten and phosphorus were synthesized and tested in the catalytic oxidation of propylene. As candidate descriptive parameters, the 
temperature and ten parameters related to the composition and chemical nature of the catalyst materials, derived from calculated free-
atom properties, were offered. The temperature, the phosphorus content, and the composition-weighted electronegativity are identified 
as key parameters describing high yields towards the value-added oxygenate products acrolein and acrylic acid. The SG rules not only 
reflect the underlying processes particularly associated to high performance but also guide the design of more complex catalysts 
containing up to five elements in their composition. 
Keywords: artificial intelligence, subgroup discovery, high-throughput experimentation, selective oxidation.   

Introduction 

Heterogeneous catalysis is governed by an intricate interplay of 
multiple processes1 such as the surface reaction networks and 
the typically unknown dynamic restructuring of the catalyst 
material under reaction conditions. Thus, the design of new 
materials is challenging. While theoretical approaches attempt to 
address the complexity of heterogeneous catalysis,2 the explicit 
atomistic modelling of the full catalytic progression by first-
principles methods is impractical. Another approach for 
identifying novel catalysts consists on the use of high-throughput 
experimentation (HTE) to test large amounts of materials.3 
However, utilizing the information obtained by the experiments 
to decide on the next promising materials to investigate is not 
straightforward.4 As the number of possible materials is 
practically infinite and the number of good catalysts is very small, 
the direct approach is unlikely to identify the needed catalyst 
material.  

Firstly, when large libraries of materials are tested, the detailed 
characterization of each material is typically not feasible. Thus, 
only little information on the structure and physicochemical 
properties of each compound might be available. This hinders 
the in-depth understanding of the underlying processes 
governing reactivity, which could be used for rational catalyst 
design. Secondly, distinct catalytic mechanisms might operate 
depending on the materials and reaction conditions, and only 
very few situations result in good catalytic performance. This 
leads to an unbalanced distribution between high- and low-
performance scenarios and brings into question the usefulness 
of global models to help deciding on the next materials to be 
tested. These models are trained to describe all materials and 
reaction conditions simultaneously by minimizing the expected 
average prediction error over all samples. While this approach 

may provide an accurate prediction on average, it does not 
necessarily allow for a focused modelling of the most interesting 
materials and mechanisms. Alternative approaches for catalyst 
design are therefore required.  

Here, we apply the subgroup-discovery (SGD) artificial-
intelligence local approach5 to a hybrid data set obtained from 
HTE & theory to identify key physicochemical descriptive 
parameters and constraints on their values, i.e., rules, which are 
particularly associated with high performance. The reactivity 
measured by HTE is used as target in the SGD analysis. The 
temperature and composition-dependent physicochemical 
properties evaluated with density-functional-theory (DFT) 
calculations are used as candidate descriptive parameters.  

The SGD approach has been applied in computational catalysis6 
and materials science.5e, 7 It starts with the generation of a pool 
of propositions (π), statements about the data that apply only to 
a portion of the data set. For the case of continuous candidate 
descriptive parameters, the propositions are inequalities 
constraining their values. Then, SGD identifies selectors (σ), i.e., 
statements formed by a number of propositions and the “AND” 
connector (denoted “∧”), that result in the selection of subgroups 
of materials and conditions with the most outstanding 
distributions of the target values with respect to the whole data 
set (Fig. 1A). The propositions entering these selectors can be 
seen as rules describing the exceptional SG behavior. The 
parameters entering these propositions are, in turn, the key, 
most relevant, descriptive parameters, out of all the offered ones, 
associated with the desired reactivity. Because the SG search is 
performed by maximizing a quality function that measures how 
outstanding specific subselections of data points are, this 
approach identifies a local behavior. 
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Figure 1. A: SGD approach for identifying key descriptive parameters and rules associated to materials and reaction conditions with 
outstanding catalytic performance. The rules are given by the propositions and consist on constraints on the values of key descriptive 
parameters. “∧” denotes the “AND” connector. B: Elements entering the composition of the SiO2-supported materials. C: Competing 
reactions in propylene oxidation lead to the desired oxygenates but also to the combustion by-products. The values shown in parenthesis 
in C are the reaction enthalpies, in kJ/mol.8   
 
Thus, the identified rules reflect the specific underlying processes 
resulting in outstanding performance. 
We apply the SGD-HTE-&-theory approach to the selective 
oxidation of propylene on SiO2-supported catalysts based on 
ruthenium, tungsten, and phosphorus. By using the product yield 
measured by HTE as target, we circumvent the need for the 
explicit modelling of the full catalytic progression. Additionally, 
because the candidate descriptive materials parameters can be 
calculated by first-principles methods, extensive materials 
characterization by experiment is not required and the resulting 
SG rules can be used to identify promising catalyst candidates 
which were not yet synthesized by experiment. 
 

Selective oxidation reaction and high-throughput-
experimentation 

The selective partial oxidation of light alkanes to value-added 
olefins or oxygenates is an efficient technology for feedstock 
upgrading.9 However, the intricate surface reaction networks10 
typically lead to product mixtures containing up to 20 different 
molecules, including undesirable by-products such as CO and 
CO2 . In order to selectively produce the olefins or the oxygenates, 
mixed-metal oxide or phosphate heterogeneous catalysts based 
on molybdenum and vanadium redox-active species have been 
used, such as the MoVTeNbOx and the state-of-the-art industrial 
catalyst for n-butane selective oxidation, vanadyl pyrophosphate. 
Several recent investigations have explored the catalytic activity 
of mixed-metal phosphates in a systematic way.11 
In this study, we investigate materials based on ruthenium 
combined with tungsten and phosphorus (Fig. 1B) as an 
alternative class of catalysts for selective oxidation. Platinum-
group-metal-based catalysts commonly result in hydrocarbon 
combustion products (Fig. 1C). The combination of these metals 

with tungsten and phosphorus, in a tungsten-phosphate-like 
matrix, however, could favor the selectivity towards the desired 
olefins and oxygenates, following a catalyst design strategy based 
on the dilution of highly active metal sites. With the aim of 
studying these systems, HTE measurements were performed 
using 120 different three-component catalyst compositions 
containing ruthenium, tungsten and phosphorus in different 
proportions. At each catalyst composition, several reaction 
temperatures between 200ºC and 400ºC were examined. The 
detailed preparation, characterization and reactivity analysis of 
these catalysts in the selective oxidation of n-butane, propane 
and propylene is discussed in a separate contribution.12 In this 
paper, we only provide details on the propylene selective 
oxidation reaction.  
All the reactions were carried out in tubular, fixed-bed reactors 
with the following reaction feed: Ar, H2O, N2, O2 and propylene 
(C3H6) with molar rates 4.015, 4.015, 104.40, 20.08, and 1.57 
mmol/h, respectively. The same mass of catalyst was used in all 
reactions, so that the contact time, in terms of volumetric flow 
per mass of catalyst, was kept fixed across experiments. These 
three-component catalysts are prepared on a SiO2 pseudo-liquid 
support and might present a disordered, possibly amorphous, 
structure. The atomic structures of all the tested catalysts are not 
known in detail. However, similar catalytic performance was 
found for crystalline and disordered phases at the same 
composition.12 This indicates that the composition is more crucial 
for the catalytic performance than the degree of crystallinity.  
In HTE, a large materials space is accessible for catalyst design by 
changing the relative amount of each component and the specific 
elements on the catalyst composition. Approaches to guide the 
efficient exploration of such materials space, indicating the most 
promising compositions to be tested next, are thus desirable. The 

B elements in phosphorus-based catalyst materials
supported on SiO2 pseudo-liquid

propylene oxidation reactionsC

three-component materials
four- and five-component materials

C3H6(g) + 3 O2(g) à 3 CO(g) + 3 H2O(g) (-1077)
2 C3H6(g) + 9 O2(g) à 6 CO2(g)+ 6 H2O(g) (-1926)

C3H6(g) + O2(g) àC3H4O(ℓ) + H2O(g) (-382)
2 C3H6(g) + 3 O2(g) à 2 C3H4O2(ℓ) + 2 H2O(g) (-646)

oxygenate products: acrolein and acrylic acid

combustion products: CO and CO2
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most interesting compositions are those that display both 
considerable activity, i.e., those providing significant propylene 
conversion, and selectivity, i.e., those that specifically form the 
desired oxygenates (acrolein and acrylic acid, Fig. 1C) from 
propylene. This is motivated by using the yield of oxygenates 
$%&'()*+,)- as target in our SGD analysis, defined as  
 

$%&'()*+,)- = $+/0%1)2* + $+/0'12/	+/25 =
6789:;<=>,:@A
6B9:BC;<><,=>

+ 6789C;=8	78=D,:@A
6B9:BC;<><,=>

 .        (1) 

 
In Eq. 1, EF,2* and EF,%G, denote the molar rate, in mmol/h, of 
species H in the reactor feed and outlet, respectively. Our goal is 
to identify key parameters and rules describing materials and 
reaction conditions that give high yields of oxygenates. 
 
Subgroup discovery approach 
The two main crucial aspects in SGD are the offered candidate 
descriptive parameters and the quality function. In this work, we 
use the reaction temperature (I) and the phosphorus molar 
content (JK) as experimental candidate parameters. In addition, 
we include a set of free-atom properties as candidate descriptive 
parameters to characterize the catalyst material in terms of the 
proportion and chemical nature of the elements entering the 
composition. The following elemental properties are used: 

§ the radius of maximum electron density of s, p, d, and 
valence orbitals (LM,	LN, LO , and LPQR , respectively); 

§ the Kohn-Sham single-particle eigenvalue of the 
highest occupied and lowest unoccupied states (ST  and 
SU , respectively);  

§ electron affinity (VH); 
§ ionization potential (WX); 
§ electronegativity (VY), defined as VY = ZF[\]

^
 . 

These properties were calculated for the isolated atoms using 
DFT-PBEsol13 and the FHI-aims14 code (further calculation details 
and values for the elemental properties used in the work 
available in the electronic supporting information, ESI). LPQR is 
defined as the radius of the highest-occupied state. For a given 
catalyst composition, the per-element free-atom properties are 
converted into system-specific properties by taking the 
composition-weighted average:  
 

_Q = _Q,`J`a ,        (2) 
 
where _Q is an arbitrary elemental property, J`	is the molar 
content of element b in the material, and b runs over all c 
elements in the composition. For the three-component materials, 
c = 3. We note that oxygen is also present in all materials, but its 
proportion is not known from the catalysts formulation nor 
measured for all materials. Therefore, the oxygen content is not 
included in the material’s characterization. Properties that can be 
readily calculated for the free atom are advantageous to 
structure-based properties because they do not have to be re-
evaluated for each new material. In total, 11 descriptive 
parameters are used in our SGD analysis: I, JK, LM, LN, LO , LPQR , ST , 
SU ,	VH,	WX, and	VY. 
As SGD quality function, we use 

 
e(X, gh) = M(jk)

M(])
∗ m/no(X, gh) ,        (3) 

 
where the coverage M(jk)

M(])
 is the ratio between the number of data 

points in the subgroup, 	p(gh), and the total number of data 

points in the whole data set, p(X), and m/no(X, gh) is the 
cumulative Janson-Shannon divergence between the distribution 
of the target values in the SG and the distribution of the target 
values in the whole data set.15 The coverage term controls the 
subgroup size and prevents that very small SGs with little 
statistical significance are selected. The second term, m/no, is the 
cumulative-distribution-function formulation15 of the Jensen-
Shanon divergence, which is a properly symmetrized version of 
the information-theoretic Kulback-Leibler divergence. m/no 
measures the dissimilarity between two distributions: It assumes 
close-to-zero values for similar distributions and increases, for 
instance, as the distributions have different standard deviations 
or different means. Thus, the second term in Eq. 3 favors the 
identification of SGs presenting target values as “unusual” as 
possible compared to the majority of observations. It also favors 
distributions which are contained in narrower value ranges 
compared to the whole data set. When most of the data points at 
hand contain low-performing materials and conditions, the use 
of m/no in the quality function allows focusing on the exceptional 
high-performing materials. Further SGD details, including the 
detailed description of the approach and of the Jensen-Shanon 
divergence are available in ESI.  
 
Subgroup of three-component catalysts with exceptional 
performance  
The propylene conversion vs. oxygenates selectivity profiles and 
the distribution of yield of oxygenates in the dataset (Fig. 2A and 
B, respectively) show that the vast majority of observations 
correspond to low performance. Indeed, 50% of the measured 
materials and conditions result in less than 2% oxygenates yield 
and only 41 measurements, out of 1220, are associated to yields 
of oxygenates above 20%. The average oxygenates yield over the 
whole data set is equal to 4.83% and the maximum $%&'()*+,)- 
value is 26.85 %. 
By applying the SGD, we identified several SGs providing near-
optimal quality-function values (Fig. S3). Among the SGs 
displaying quality-function values within 40% of the optimal value 
(see Fig. S3), we selected, for further analysis and discussion, the 
SG that presents the highest value of cumulative Janson-Shannon 
divergence (0.693). This SG contains only 15 data points, i.e., 
approximately 1.2 % of the data set, which all have high yield of 
oxygenates (Fig. 2A and B, in black). The average yield of 
oxygenates in this SG is equal to 24.15%, i.e., five times higher 
than the average on the whole data set. This SG  is described by 
rules on three descriptive parameters: 280 ≤ I ≤ 300℃, JK >
0.55, and 3.910	 ≤ VY 	< 4.002	eV (Fig. 2C). The rule on the 
temperature highlights that the highest yields of oxygenates are 
observed for intermediate temperatures within the tested range 
of 200-400ºC (Fig. 2C). The rule on the phosphorus content shows 
that a relatively high phosphorus content is needed to achieve 
outstanding performance (Fig. 2D). This could be related to the 
dilution of metal active sites on a phosphate matrix that occurs 
at high phosphorus loadings.12 Finally, the rule on the 
composition-averaged electronegativity (Fig. 2F) effectively limits 
the range of Ru contents, as shown in the ternary diagram of Fig. 
3B. Indeed, Ru is needed to achieve propylene conversion (Fig. 
S5A) but too much of this element in the composition leads to 
undesired combustion products (Fig. S5B).  
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Figure 2. SGD analysis of propylene selective oxidation using three-component materials with ruthenium, tungsten, and phosphorus. A: 
Overview of reactivity measured by HTE. B: Distribution of oxygenates yield over the data set of 1220 measurements. C: Identified rules 
describing the SG. D, E, and F: SG rules (indicated by the black dashed lines and arrows) on the identified key descriptive parameters: 
temperature (I), phosphorus molar content (JK), and composition-averaged electronegativity (VY), respectively. The data points 
corresponding to the identified SG are displayed in black. The propylene conversion and the selectivity towards oxygenates are defined 

by �Ä0%Ä'1)*) =
6B9:BC;<><,=>Å6B9:BC;<><,:@A

6B9:BC;<><,=>
 and g%&'()*+,)- =

6789:;<=>,:@A[6789C;=8	78=D,:@A
6B9:BC;<><,=>Å6B9:BC;<><,:@A

, respectively. 

 
 

 
Figure 3. Ternary diagrams for three-component materials with ruthenium, tungsten, and phosphorus tested in propylene selective 
oxidation using HTE. A: Measured yield of oxygenates at 300º C. B: composition-averaged electronegativity VY for each tested 
composition.  The SG rules are shown by the dashed lines and arrows in B and the portion of the ternary diagram selected by the SG 
rules is shown in blue. 
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Similar SG rules are obtained when the training is performed with 
randomly-selected 90% of the data points (see cross-validation 
study in ESI) or when the data points presenting yield of 
oxygenates lower than 3% are excluded from training (see details 
in ESI). SG rules constraining the VY	parameter to an 
intermediate range, for instance, are always observed when only 
90% of the data is used for training. Furthermore, the ranges of 
variation of minimum and maximum thresholds are [3.882, 3.910 
eV] and [3.989, 4.031], respectively, i.e., similar to the thresholds 
shown in Fig. 2F. These results indicate that the SG rules are not 
strongly affected by variations on the data used for their 
derivation. 
Overall, these results demonstrate the ability of the HTE & theory 
SGD approach to detect interpretable, chemically meaningful, 
and complex patterns associated to very few data points with 
exceptional catalytic performance. 
 
Exploiting the subgroup rules for the design of four- and five-
component catalysts 
Using the rules defining the SG of outstanding oxygenate 
production for the three-component data, we designed more 
complex materials containing additional elements. We start by 
considering four-component materials containing ruthenium, 
tungsten,  phosphorus, and one additional VÇ element. For this 
analysis, we fix the phosphorus content to 0.60 according to the 

rule identified in Fig. 2C. To further reduce the number of 
possible variables determining the catalyst composition, we also 
fix the ruthenium molar content to 0.05. We focus on such 
relatively low ruthenium loadings to ensure that the formation of 
combustion products is not significant. In this way, the 
compositions of the four-component materials are determined 
solely by the choice of VÇ element and its molar content. Materials 
with VÇ molar content of 0.35, which do not contain tungsten and 
are thus composed by three elements, are also referred to as 
four-component materials in our analysis to highlight that they 
contain different chemical elements compared to ruthenium, 
tungsten and phosphorus, the elements used to derive the rules. 
We concentrate on VÇ elements that show octahedral 
coordination patterns among reported phosphorus-containing 
materials structures16 and that have a maximum atomic radius 
difference compared to tungsten of 0.10 Å (see details in ESI). This 
is to ensure that only elements that are compatible with 
tungsten, i.e., that could possibly replace tungsten in the material 
structure, are taken into account. The following VÇ are 
considered: niobium, tantalum, chromium, molybdenum, tin, 
antimony, and tellurium. These elements have atomic radii of 
1.45, 1.45, 1.40, 1.45, 1.45, 1.45, and 1.40 Å, respectively. The 
atomic radius of tungsten is 1.45 Å. We have also included lead in 
this analysis, since materials containing this element were also 
experimentally tested (see below).  

 
Figure 4. SG rules applied to the design of four- and five-component materials for propylene selective oxidation. A and C: Composition-
averaged electronegativity (VY) for different	elements and molar contents in four- and five-component materials, respectively. B and D: 
Distribution of all measured yield of oxygenates (214 and 533 data points) for four- and five-component materials, respectively. In A and 
C, the VY values are shown in bold and are marked with starts if they satisfy the SG rules on VY identified based on the three-component 
materials. The colors in A and C indicate the highest measured yield of oxygenates for each material. The SG rules identified based on 
the three-component materials are indicated by the dashed lines and arrows in B and D. The shaded areas in B and D indicate the 
variability of VY thresholds observed when using only 90% of the data set for training (Table S2). The oxygenate yields shown in C 
correspond to materials with JÉ = 0.035 for the cases V^ = Mo, Nb, and with JÉ = 0.050 for the cases V^ = Ta, Sb. The white cells in C 
indicate materials not measured by HTE. 
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Figure 5. SGD analysis of propylene selective oxidation on four and five-component materials. A: Overview of reactivity measured by 
HTE. B: Distribution of oxygenates yield over the data set of 746 measurements. C: Identified rules describing the SG. D, E, and F: SG 
rules (indicated by the black dashed lines and arrows) on the identified key descriptive parameter: temperature (I), composition-
averaged valence radius (Lã+1), and electron affinity (VH), respectively. The data points corresponding to the SG are displayed in black. 

 

We evaluated the composition-averaged electronegativity (VY) 
for the selected VÇ and the molar contents 0.05, 0.175, 0.30 and 
0.35 in Fig. 4A. In this figure, the VY values for the new four-
component materials are shown in bold and marked with starts 
if they satisfy the SG rule 3.910 ≤ VY < 4.002	eV. This catalyst map 
suggests that the use of 5.0 to 17.5 % (molar) of niobium, 
chromium, molybdenum, tin, lead and antimony, in the catalyst 
composition in addition to ruthenium, tungsten and phosphorus, 
results in catalysts which are part of the identified SG, and thus 
likely high-performant materials. For the case of tantalum and 
tellurium, 17.5 % (molar) or more of these elements is needed for 
the resulting materials to present the VY values compatible with 
the SG. 
The four-component catalyst compositions shown in Fig. 4A were 
tested in propylene oxidation using HTE at the same reaction 
conditions compared to those used for testing the three-
component materials. The highest yield of oxygenates achieved 
for each composition is shown by the colors in Fig. 4A. The 
comparison of the experimental results with the SG rules on VY 
shows that the catalyst design rules derived by SGD correctly 
describe the experimental trend. In particular, the materials 
based on niobium, chromium, molybdenum, tin, lead and 
antimony achieve the highest oxygenate yields at relative lower 
VÇ molar fractions compared to the tantalum and tellurium-
based materials, in line with the optimal ranges of VY values 
indicated by the SG rules. 
All measured yield of oxygenates, corresponding to the materials 
shown in the catalyst map of Fig. 4A at all tested temperatures, 

are plotted as a function of VY in Fig. 4B. In this figure, the SG 
rules on VY are shown as vertical black lines and arrows. The 
variability of VY thresholds in the SG rule with respect to the 
input data set is indicated by the ranges of VY values in the grey 
shaded areas. These ranges correspond to the variations of the 
thresholds observed when using only 90% of the data set for 
training (see Table S2). The catalyst achieving the highest yield of 
oxygenates (60.19 % at 400ºC) contains 0.35 molar fraction of 
tellurium as VÇ element and lies within the window of VY values 
suggested by the SG rules.  
We have also used the SG rules derived from the three-
component materials to address five-component materials, 
which were tested experimentally (Fig. 4C and D). For this 
purpose, VÇ was fixed as tellurium based on the best four-
component catalysts and molybdenum, niobium, tantalum, and 
antimony were evaluated as V^. Thus, ruthenium, tungsten, 
phosphorus, tellurium, and V^ enter in the composition of the 
considered five-component materials. The agreement between 
the SG rule and the measured oxygenate yield is reasonable in 
spite of the much higher materials complexity with respect to the 
catalysts used for training. In particular, the five-component 
catalyst corresponding to the highest yield of oxygenates (59.60 
% at 400ºC) contains tantalum as V^ element and the 
composition-averaged electronegativity for this material is 3.947 
eV. Such VY value lies within the threshold defined by the SG rule.  
These results demonstrate the potential of the SGD-HTE-&-
theory approach to identify generalizable rules describing 
exceptional performance. Indeed, the identified four- and five-
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component catalysts are significantly more complex than those 
of the training data set (three-component materials). Moreover, 
the four- and five-component outstanding catalysts achieve 
oxygenate yields (60.19 and 59.60%, respectively) up to twice as 
large as those obtained with three-component materials (highest 
value of 26.85 %). Thus, the SG rules hinted at materials that are 
significantly more performant that any of the observations used 
in training.  
We note that the four- and five-component materials achieve the 
highest yields of oxygenates at higher temperatures (400 ºC) 
compared to the the three-component systems (300ºC) - see Fig. 
S4. The SG rule on the reaction temperature derived based on 
the three-component materials data set is thus not transferable 
to the four-component ones.   
Finally, we applied the SGD approach to the four- and five-
component HTE data (746 data points, Fig. 5A and B) using the 
same candidate descriptive parameters used for the previous 
SGD analysis of three-component materials. The identified SG 
presenting the highest m/no (0.355) contains 18 data points, i.e., 
ca. 2.4 % of the data set (black points in Fig. 5A and 5B). The 
selected data points correspond to one four-component material 
with tellurium as VÇ element as well as different compositions of 
five-component materials with VÇ = Te and V^ = Mo, Nb. The rules 
describing this SG (Fig. 5C) constraint the values of three 
parameters: I ≥ 360	℃, Lã+1 ≤ 1.001	Å, and VH < −1.593	eV, (Fig. 
5D, E, and F, respectively). The comparison of these SG rules with 
that for the SG obtained with the three-component materials 
data set (Fig. 2C) highlights the higher temperatures needed for 
the four- and five-component materials to achieve outstanding 
performance. Moreover, different composition-dependent 
parameters (Lã+1 and VH) are required to describe this SG 
compared to the case of three-component materials (JK and VY), 
even though the electronegativity and the electron affinity are 
related by VY = ZF[\]

^
.  

The SG rules derived in this study are expected to describe 
outstanding materials whose performance is governed by the 
same processes governing the reactivity of the exceptional 
materials in the input data sets used for training. The analysis of 
four- and five-component materials was focused, nevertheless, 
on low ruthenium contents and on VÇ and V^ elements 
compatible with tungsten, i.e., with similar atomic radii. Thus, it is 
unclear if the SG rules presented in Fig. 5C can identify 
exceptional materials and conditions for any arbitrary ruthenium 
content or for VÇ and V^ elements which have significantly 
different radii compared to tungsten. This is because different 
mechanisms may operate on these materials which could also 
lead to exceptional performance. Therefore, the SGD analysis 
might need to be performed including new data points covering 
such so-far unexplored portions of the materials space for 
enlarging the domain in which the SG rules can detect 
exceptional catalysts and reaction conditions.  
 
Conclusions 
In this paper, we applied the SGD approach to the design of 
selective oxidation phosphorus-containing supported catalysts 
based on data from HTE and DFT calculations. The yield of value-
added oxygenate product measured by HTE was used as target, 
and parameters obtained from DFT-calculated free-atom 
properties were offered as candidate descriptive parameters. 
The composition-weighted electronegativity, the phosphorus 
content and the temperature are identified as key parameters 
associated to outstanding production of acrolein and acrylic acid 
from propylene in three-component catalysts containing 

ruthenium, tungsten and phosphorus. The SG rules on these key 
parameters not only rationalize a local reactivity pattern 
particularly associated with exceptional catalytic performance, 
but also guide the design of more complex catalysts. In particular, 
a five-component material containing ruthenium, tungsten, 
phosphorus, tellurium and tantalum in the composition, which 
presents an oxygenate yield more than twice as large as any 
observation in data set used for training, is captured by the SG 
rules. This local modelling approach is suitable for the search of 
exceptional materials whose structures and functions are hardly 
modelled explicitly by theory. 

Electronic supplementary information 
DFT calculation details, additional SGD details, and details on the 
choice of compatible elements for the four- and five-component 
materials are available as ESI. The SGD analysis described in this 
publication can be found in a Jupyter notebook at the NOMAD 
Artificial-Intelligence Toolkit (https://nomad-lab.eu/AItutorials/), 
where it can be repeated and modified directly in a web browser.  
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