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Reinforcement learning (RL) is a powerful paradigm that has gained popularity across multiple domains. 

However, applying RL may come at a cost of multiple interactions between the agent and the 

environment. This cost can be especially pronounced when the single feedback from the environment 

is slow or computationally expensive, causing extensive periods of nonproductivity. Curriculum learning 

(CL) provides a suitable alternative by arranging a sequence of tasks of increasing complexity with the 

aim of reducing the overall cost of learning. Here, we demonstrate the application of CL for drug 

discovery. We implement CL in the de novo design platform, REINVENT, and apply it on illustrative de 

novo molecular design problems of different complexity. The results show both accelerated learning and 

a positive impact on the quality of the output when compared to standard policy based RL. To our 

knowledge, this is the first application of CL for the purposes of de novo molecular design. The code is 

freely available at https://github.com/MolecularAI/Reinvent.  

mailto:atanas.patronov@astrazeneca.com
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Introduction  

The application of deep learning for drug discovery provides potential to accelerate therapeutics 

development. One fundamental challenge in any drug discovery campaign is de novo molecular design, 

involving the design and prioritization of candidate molecules for experimental validation.1,2 De novo 

molecular design entails a multi-parameter optimization (MPO) search in chemical space, estimated to 

be in the range of 1023 to 1060 molecules.3 Recently, deep learning has been applied towards more 

efficient methods of sampling chemical space such that it is possible to identify promising candidate 

molecules faster. Deep generative models using policy based reinforcement learning (RL)4–10, value 

based RL11, learning a molecular latent space12, and other methods including tree search13 and genetic 

algorithms14–16 have been proposed to generate molecules that possess a desired set of properties. In 

the policy based RL paradigm, an agent (a generative model) learns a policy (series of actions to take at 

given states) to generate molecules that maximize a reward which is typically computed based on a pre-

defined reward function.4–10 Often, physics-based approximations of binding affinity such as molecular 

docking are included as a component in the reward function in order to design candidate molecules with 

enhanced predicted potency. Given sufficiently long training time, these models can learn to generate 

molecules which satisfy the desired MPO objective. However, in cases with complex reward functions 

where minima are difficult to find, the resulting small gradients elicit minimal change to the agent policy. 

Consequently, the agent may spend many epochs sampling from areas in chemical space that are far 

away from the desired objective. The issue is exacerbated when computationally demanding 

components are included in the reward function, such as molecular docking. Thus, policy based RL can 

be infeasible for complex MPO objectives, leading to suboptimal allocation of computational resources 

and eventually suboptimal molecules identified for synthesis. 

 



 

Fig. 1 Curriculum learning overview. In the Curriculum Phase, the agent progresses through successive Curriculum Objectives that gradually 

increase in complexity. The agent samples compounds in the SMILES format through a RL cycle such that the conditional probabilities are 

updated to maximize the reward obtained based on a scoring function comprised of the current Curriculum Objective.17 Curriculum 

Progression Criterions check for sufficient learning of each Curriculum Objective based on a threshold that the agent must achieve. If and 

only if the final Curriculum Progression Criterion is satisfied does the agent progress to the Production Phase in which a scoring function 

comprised of the Production Objective is applied. 

 

Curriculum learning (CL) has been proposed as a training strategy to overcome difficulties in 

learning complex tasks.18 The basis of CL is to decompose complex objectives into simpler constituent 

objectives that are sequentially learned, guiding training towards successful convergence of the final 

objective. Provided a curriculum where constituent objectives are strongly correlated with the final 

objective, corresponding gradients from sequential simpler tasks are more effective at traversing the 

optimization landscape and can accelerate convergence.19,20 Similarly, CL can be applied to non-gradient 

based objectives, e.g., presence of a target structural motif, by devising a curriculum with gradually 

increasing complexity, e.g., decomposing the target structural motif into simpler constituents. De novo 

molecular design often requires optimizing correlated properties that cumulatively define favourable 

chemical space, e.g., generating known active scaffolds and improving binding affinity.21 By applying 

concepts from CL, existing limitations of policy based RL for de novo molecular design can be 



circumvented. CL provides a strategy to lower the learning barrier of complex MPO objectives, reaching 

a state of productivity within a reasonable timeframe. 

In this work, we build on the de novo molecular design platform, REINVENT, and introduce a CL 

implementation that can address complex tasks where policy based RL has difficulties to identify suitable 

molecules due to the complexities of the reward function.5 The use of CL extends REINVENT’s 

applicability to complex reward functions that were previously infeasible with standard policy based RL. 

We demonstrate the use of CL in REINVENT by formulating a complex task to design 3-phosphoinositide-

dependent protein kinase-1 (PDK1) inhibitors, adopting a structure-based optimization approach.22 We 

show that immediate states of productivity can be achieved by assembling a curriculum compared to 

standard policy based RL, which can circumvent high computational costs associated with reward 

components such as molecular docking. Moreover, we show that CL provides a natural method for agent 

policy regularization, such that minor changes in the curriculum can steer de novo molecular design, 

enabling control over the quality and diversity of the results in a predictable manner and leading to high 

quality molecules proposed for synthesis. 

 

Curriculum Learning Setup 

Curriculum Learning Formulation. The implementation of CL builds on the REINVENT platform described 

by Blaschke et al. (see Methods).5 In CL, a complex task is decomposed into simpler constituent tasks to 

accelerate training and convergence. The goal is to guide the agent to learn tasks with increasing 

complexity before ultimately providing the Production Objective. Agent Learning progresses through the 

Curriculum Phase to the Production Phase (Fig. 1). In the former, the agent is trained on simpler 

sequential tasks with gradually increasing complexity. In the latter, the agent reaches a state of 

productivity, whereby the agent samples compounds in favourable areas of chemical space that satisfy 

the Production Objective. Agent policy update is maintained in the Production Phase to ensure the agent 



continues to sample favourable compounds from diverse minima. The CL strategy for de novo molecular 

design is formally defined below: 

 

Definition 1: A scoring function, 𝑆: SMILES → [0, 1] is formulated as a weighted geometric mean: 

𝑆(𝑥) = (∏ 𝑐𝑖(𝑥)𝑤𝑖𝑛
𝑖=1 )1/ ∑ 𝑤𝑖

𝑛
𝑖=1 , where 𝑥 is a sampled compound in the SMILES format and 

𝑐𝑖: SMILES → [0, 1] and 𝑤𝑖 are the 𝑖th component and its corresponding weighting, respectively. 𝑆(𝑥) 

computes the desirability of the sampled compound, 𝑥, and its corresponding gradient is used to update 

the agent policy. 

 

Definition 2: A Curriculum, 𝐶 consists of a sequence of Objectives, 𝑂 = {𝑂𝐶1
, … , 𝑂𝐶𝑛−1

, 𝑂𝐶𝑛
, 𝑂𝑃}, where 

subscripts 𝐶 and 𝑃 denote Curriculum and Production Objectives, respectively. For each Objective, 𝑂, 

there is a corresponding scoring function 𝑆 to compute the desirability of a sampled compound based 

on the current Objective, e.g., possessing a specific structural motif. Progression through a Curriculum 

is controlled by Curriculum Progression Criterions, 𝑃 = {𝑃1, … , 𝑃𝑛−1, 𝑃𝑛}, such that the Curriculum, 𝐶 =

{𝑂, 𝑃}.  

 

Curriculum Phase. In the Curriculum Phase, the goal is for the agent to learn to generate compounds 

that satisfy sequential Curriculum Objectives with increasing complexity that guide the agent towards 

the Production Phase. 𝑂𝐶1
, … , 𝑂𝐶𝑛−1

, 𝑂𝐶𝑛
 are designated Curriculum Objectives with corresponding 

Curriculum Progression Criterions 𝑃1, … , 𝑃𝑛−1, 𝑃𝑛, that enforces sufficient agent learning of each 

sequential Curriculum Objective based on a score threshold. If the score threshold is met, the agent 

progresses to the sequential Curriculum Objective, otherwise, the agent continues learning the current 

Curriculum Objective. This process collectively constitutes the Curriculum Phase. 



 

Fig. 2 Curriculum learning target scaffold construction. We define a curriculum where the target dihydro-pyrazoloquinazoline scaffold is 

decomposed into sequential simpler substructures (highlighted) to guide the agent. The score drops momentarily when a successive 

substructure objective is introduced as it is unlikely that currently sampled compounds will also possess the new substructure, by chance. 

By using curriculum learning, the agent is able to find the target scaffold within 1750 epochs while standard policy based RL is unsuccessful 

in the same number of epochs (see Supporting Information Fig. S1). 

 

Production Phase. If and only if the final Curriculum Progression Criterion, 𝑃𝑛 is satisfied, the Production 

Objective, 𝑂𝑃, is activated. Presumably, the agent is in a state of productivity and samples compounds 

that satisfy the Production Objective. Balance between chemical space exploration and exploitation can 

be achieved by tuning hyperparameters (see Methods). The agent samples for a pre-defined number of 

epochs and all compounds that score above a minimum threshold are stored and outputted at the end. 

 

Results 

In this section, we devise three experiments to demonstrate the enhanced capability of CL to satisfy 

complex objectives relative to standard policy based RL: 

 



1. Production Objective: Generate compounds that possess a target scaffold. Curriculum: Achieve 

a state of productivity by decomposing the target scaffold into simpler sequential substructures 

with gradually increasing structural complexity. 

 

2. Production Objective: Generate compounds that are drug-like and satisfy a molecular docking 

constraint.23 Curriculum: Achieve a state of productivity by first teaching the agent to sample 

compounds with Tanimoto (2D) similarity to a reference ligand. 

 

3. Production Objective: Generate compounds that are drug-like satisfy a molecular docking 

constraint.23 Curriculum: Achieve a state of productivity by first teaching the agent to sample 

compounds with 3D shape-based similarity to a reference ligand (see Methods for more details 

on 3D shape-based similarity).24,25 

 

For experiments 2 and 3, we further define a “Low” (0.5) and “High” (0.8 for Tanimoto (2D) and 0.75 for 

the 3D shape-based similarity) scenario denoting the minimum score the agent must achieve with the 

Curriculum Objective activated before proceeding to the Production Objective. The purpose of these 

scenarios is to investigate the effect of variable degrees of agent Curriculum Objective knowledge on 

compound sampling in the Production Phase and how it impacts the state of productivity. 

 

Experiment 1: Target Scaffold Construction. As an initial example, we show that CL can guide the agent 

to generate compounds possessing a relatively complex scaffold that is not present in the training set 

for the prior (Fig. 2). The dihydro-pyrazoloquinazoline scaffold was identified as a promising starting 

point for PDK1 inhibitor design owing to good cell permeability and low promiscuity.22 The goal is to 

generate compounds that possess the scaffold, mimicking an analogue series generation. We first 

demonstrate that the task is too complex for standard policy based RL and denote this as baseline RL 



(see Supporting Information Fig. S1). In the baseline experiment, the only component in the scoring 

function is the dihydro-pyrazoloquinazoline scaffold. Each generated compound scores either 1.0 or 0.5, 

denoting whether the scaffold is present or not, respectively. The average score of the baseline 

experiment does not exceed 0.5 across 2000 epochs, indicating the scaffold is not found. Given that the 

scaffold is not present in the training set, the likelihood of sampling a compound possessing the scaffold 

is much lower and the inability to do so prevents meaningful agent learning. It is worth noting that 

provided unlimited time, baseline RL will almost surely find the scaffold due to sampling stochasticity. 

On the other hand, CL can accelerate convergence by decomposing the target scaffold into simpler 

substructures with gradually increasing structural complexity (Fig. 2). There are 5 Curriculum Objectives, 

each assigned to successively more complex substructures with Curriculum Progression Criterion 

thresholds of 0.8. The agent is tasked to generate compounds possessing each substructure until the 

average score is 0.8. When a Curriculum Progression Criterion is satisfied, the successive and more 

complex Curriculum Objective is activated. A sharp decrease in average score accompanies each 

Curriculum Objective update, e.g., at approximately epoch 150 (Fig. 2), as it is unlikely that currently 

sampled compounds will also possess the successive substructure, by chance. Over the course of 

training, the agent learns to generate compounds possessing increasingly complex substructures until 

the target scaffold is constructed.  

 

Experiments 2 and 3: Satisfying a Molecular Docking Constraint. Often, one does not only want to 

generate compounds with a specific target scaffold but is also interested in applying a physics-based 

approximation of binding affinity as a design criterion, such as molecular docking.6,7,13–15 By enforcing 

docking constraints, experimentally validated interactions can be retained, bolstering confidence in the 

plausibility of potency of the generated compounds. However, it is unlikely a random sampling of 

molecules will satisfy a docking configuration, especially one that enforces constraints. Consequently, in 

baseline RL with a complex objective, the agent may rely strictly on stochastic sampling to generate 



favourable compounds and leverages experience replay to achieve convergence.5 Problematically, 

generated compounds that poorly satisfy the objective yield small gradients that elicit minimal agent 

policy update. If this period of nonproductivity is extensive, the baseline RL experiment can be 

computationally prohibitive. 

In this section, we demonstrate that simple curricula, utilizing a single Curriculum Objective can 

accelerate agent productivity and generate compounds that satisfy a docking constraint (see Methods 

for experiment hyperparameters). Simulating a real-world application where one must allocate limited 

computational resources, baseline RL and CL performances are compared, given a maximum number of 

permitted production epochs (300), i.e., epochs that involve docking, as these are relatively 

computationally demanding. For CL, Curriculum Objectives are first applied to guide the agent and the 

number of permitted curriculum epochs is not limited, as these are computationally inexpensive (see 

Supporting Information Table S2). Angiolini et al. design PDK1 inhibitors by leveraging the dihydro-

pyrazoloquinazoline scaffold which forms two hydrogen-bonding interactions with Ala 162 (Fig. 3a) that 

are crucial for potency.22 The structure-based optimization is mimicked by defining the following 

Production Objective: 

 

Production Objective: Generate compounds that retain the two hydrogen-bonding interactions with Ala 

162, possess enhanced predicted potency compared to the reference ligand (as assessed by docking 

score) and are drug-like, as measured by the Quantitative Estimate of Druglikeness (QED).23  



 

Fig. 3 Baseline reinforcement learning vs. curriculum learning to design PDK1 inhibitors. Values in the plots represent the average over 

triplicate experiments and the shaded regions are the minimum and maximum values observed. a. Reference ligand binding pose (PDB ID: 

2XCH). Waters and ligand-protein interactions are shown in red and as yellow dotted lines, respectively. The two hydrogen-bonding 

interactions with Ala 162 are highlighted. The objective is to design compounds that retain the hydrogen-bonding interactions and possess 

enhanced predicted binding affinity relative to the reference ligand. b. Baseline reinforcement learning vs. curriculum learning (Tanimoto 

Curriculum Objective) Production Phase docking score. Docking struggles significantly in the baseline RL experiments and only reaches a 

state of productivity after approximately 300 epochs. Curriculum learning using Tanimoto (2D) similarity guides the agent to immediately 

generate compounds that satisfy the docking constraint. c. Baseline reinforcement learning vs. curriculum learning (ROCS Curriculum 

Objective) Production Phase docking score. The same observations as b. are made. d. Top generated compounds from selected experiments 



that exceed a total score encompassing docking and QED above a threshold. The predicted poses are superimposed with the reference 

ligand (grey). The binding poses retain the two hydrogen bonding interactions with Ala 162, as enforced by the docking constraint. 

 

First, we show that the Production Objective is challenging for baseline RL (Fig. 3b and Fig. 3c). The 

docking score is approximately 0 for the first 100 epochs, indicating essentially no compounds sampled 

satisfy the docking constraint. From epochs 100-200, some compounds satisfy the docking constraint 

but the score (averaged over all compounds sampled) is still low. It is only from epoch 200 onward that 

the docking score begins a steep improvement and indicates the point at which the agent starts entering 

a state of productivity. It is evident that baseline RL is not optimal as the agent spends a significant 

amount of time generating compounds that do not satisfy the Production Objective. It is worth noting, 

however, that the agent eventually converges given enough time (see Supporting Information Fig. S4). 

To circumvent the limitations of baseline RL, we devise curricula and introduce 2 Curriculum 

Objectives to guide the agent to productivity: Tanimoto (2D) and ROCS (3D) shape-based similarity to 

the reference ligand.24,25 In the former, the rationale is that by teaching the agent to first generate 

compounds with 2D similarity to the reference ligand, subsequently generated compounds will have a 

greater likelihood of satisfying the docking constraint. The rationale for ROCS is identical except with 3D 

similarity to match the shape and electrostatics of the reference ligand, providing an opportunity to 

modify the central core, termed ‘scaffold hopping’.21 Triplicate baseline RL experiments with Tanimoto 

and ROCS components (using a scoring function comprised of Tanimoto/ROCS, docking, and QED 

together, respectively) were conducted for a thorough comparison with CL.  These baseline experiments 

did not improve agent productivity and similar training progress as the baseline shown in Fig. 3b and Fig. 

3c is observed (see Supporting Information Fig. S5 and S6). For the “Low” and “High” Tanimoto scenarios, 

the agent is immediately capable of generating compounds that satisfy the docking constraint (Fig. 3b). 

More specifically, although docking starts at a relatively low value (but higher than baseline RL) for the 

“Low” Tanimoto experiment, the agent quickly improves over the first 50 epochs and continues to do so 

for the remainder of the experiment. In the “High” Tanimoto scenario, docking starts at a score that 



exceeds the maximum score achieved by the baseline RL agent over 300 epochs and maintains 

productivity. The results are intuitive as enforcing the agent to first learn to generate compounds with 

higher 2D similarity to the reference ligand should increase the likelihood of satisfying the docking 

constraint. Similar observations are made when using ROCS as a Curriculum Objective (Fig. 3c). In both 

the “Low” and “High” scenarios, docking starts more favourably than baseline RL but unlike the 

Tanimoto experiments, the ROCS experiments start at a less favourable docking score. Firstly, these 

results are not completely surprising as training the agent to satisfy a 3D shape similarity objective will 

decrease the likelihood, relative to 2D similarity, in satisfying the docking constraint owing to more 

potential conformational discrepancies of the generated compounds compared to the reference ligand, 

and is not without precedent.26 Secondly, the agent still improves significantly over 100 and 50 epochs 

for the “Low” and “High” ROCS scenarios, respectively. These results convincingly demonstrate that the 

improvement in CL performance over baseline RL is attributed to the sequential nature of the CL 

objectives as opposed to the presence of the additional Curriculum Objectives only.  

To visualize the quality of the results, the binding pose of the top generated compound (based 

on total score: docking and QED) from selected experiments is superimposed with the reference ligand 

(Fig. 3d). The binding poses retain the two hydrogen bond interactions with Ala 162, as enforced by the 

docking constraint. Furthermore, the superimposed binding poses demonstrate excellent agreement 

with the reference ligand, supporting plausibility. Thus, we show that using Tanimoto (2D) and ROCS 

(3D) shape-based similarities to the reference ligand as Curriculum Objectives can guide the agent to 

satisfy a complex Production Objective and the results demonstrate CL outperforms baseline RL given 

the same number of production epochs. Moreover, tuning the degree of Curriculum Objective 

optimization, as shown in the “Low” and “High” scenarios, provides direct control in guiding the agent 

to productivity. 



 

Fig. 4 Baseline reinforcement learning vs. curriculum learning docking scores distribution. RL: Reinforcement Learning and CL: Curriculum 

Learning. Each individual violin plot represents pooled triplicate experiments. The results shown consist of all the stored compounds from 

the 300 permitted production epochs with the Production Objective: docking and QED. ‘N’ in the x-axis labels is the number of compounds 

collected (those that exceed a total score encompassing docking and QED above a threshold) in each pooled violin plot. ‘Baseline Tanimoto 

RL’ and ‘Baseline ROCS RL’ refers to baseline reinforcement learning using a scoring function composed of docking, QED, and 

Tanimoto/ROCS together, respectively. Lower Glide docking scores denote a greater predicted binding affinity. The docking score for the 

reference ligand is -10.907 kcal/mol and is shown by the horizontal black dotted line. Curriculum learning not only collects more compounds 

than baseline reinforcement learning but the compounds also possess more favourable docking scores, on average. 

 

Curriculum Objectives Enhance Objective Optimization. To further investigate the output of the 

baseline RL and CL experiments, all docking scores of the collected compounds were pooled from the 

triplicate experiments and the resulting distributions are illustrated in Fig. 4. Firstly, CL generates a 

significantly greater quantity of favourable compounds compared to baseline RL, as only those that pass 

a minimum score based on docking and QED are stored. This is consistent with Fig. 3b-d where the 

baseline RL agent struggles for the first 150 epochs, predominantly sampling compounds that do not 

satisfy the Production Objective. Secondly, compounds generated by CL exhibit more favourable docking 

scores than baseline RL, on average. Thirdly, between the Curriculum Objectives (Tanimoto and ROCS), 

the “High” scenario has a greater density of favourable docking scores (around -11 kcal/mol) compared  



 

Fig. 5 Baseline reinforcement learning vs. curriculum learning unique Bemis-Murcko scaffolds. RL: Reinforcement Learning and CL: 

Curriculum Learning. Number of unique Bemis-Murcko scaffolds in the collected compounds (those that exceed a total score encompassing 

docking and QED above a threshold). Values in the plot represent the average over triplicate experiments (see Supporting Information 

Table S4 for individual experiment quantities). ‘Favourable Unique Scaffolds’ denotes the scaffolds that possess a more favourable docking 

score than the reference ligand. The fraction of ‘favourable’ scaffolds generated is shown as an annotated percentage.   

 

to the “Low” scenario. To quantify this, the fraction of compounds collected that possess a docking score 

better than the reference ligand (-10.907 kcal/mol) was calculated for each experiment (see Supporting 

Information Table S3). The task chosen resembles a potential real-world application as the reference 

ligand is an experimentally validated nanomolar (nM) inhibitor.22 In all cases, CL generates between 

2941-9068 and between 12.42%-23.79% more compounds that dock more favourably than the 

reference ligand by absolute counts and percentage, respectively, compared to baseline RL. 

Furthermore, between the Curriculum Objectives Tanimoto and ROCS, the “High” scenario outperforms 

the “Low” scenario (between 316-3415 and between -0.4%-10.57%) at the same task. Thus, a single 

Curriculum Objective provides a tunable parameter that can enhance and control the degree in which 

the agent is able to satisfy a Production Objective. 

 



Curriculum Objectives Maintain Scaffold Exploration. Scaffold diversity was investigated by extracting 

and averaging the number of unique Bemis-Murcko scaffolds from the triplicate experiments, shown in 

Fig. 5. (see Supporting Information Table S4 for individual experiments).27 It is evident that the CL 

experiments generate more unique scaffolds than baseline RL. This is expected from the training plots 

observed in Fig. 3b and 3c where the baseline RL experiments generate essentially no favourable 

compounds in the first 100 epochs. Between the Curriculum Objectives, Tanimoto generates more 

unique scaffolds than ROCS. Similarly, “High” scenarios generate more unique scaffolds than “Low” 

scenarios for both Tanimoto and ROCS. To assess the quality of the generated scaffolds, we denote 

scaffolds ‘favourable’ if the corresponding compound exhibits a more favourable docking score than the 

reference ligand. CL generates more unique ‘favourable’ scaffolds than baseline RL by absolute counts 

and percentage (Fig. 5). This is in agreement with the docking scores distributions in Fig. 4 that illustrate 

clear enrichment in docking scores for the CL experiments. The results show that using Curriculum 

Objectives increases the number of ‘favourable’ scaffold ideas generated and maintains agent 

exploration as enforced by the diversity filter (DF, see Methods). 

To further investigate scaffold diversity, the overlap between the unique Bemis-Murcko scaffolds 

of the pooled triplicate experiments is quantified. In general, replicate experiments result in different 

datasets with low scaffold overlap (see Supporting Information Fig. S9-11). Interestingly, however, there 

is no overlap between the pooled scaffolds in both the “Low” and “High” scenarios in the CL Tanimoto 

and ROCS experiments (see Supporting Information Fig. S10 and S11, respectively). This suggests that 

tuning the Curriculum Objective optimization can guide the agent to different areas of chemical space. 

In addition, no overlap is observed between the baseline RL experiments and the CL Tanimoto and ROCS 

experiments (see Supporting Information Fig. S10 and S11, respectively). Taken together, these 

observations show that CL and variable degrees of Curriculum Objective optimization guides the agent 

to different areas of chemical space compared to baseline RL.  

 



 

Fig. 6 Agent knowledge retention and effects of Curriculum Objectives on the solution space diversity. Values in the plots represent the 

average over triplicate experiments and the shaded regions are the minimum and maximum values observed. a. Tanimoto similarity to the 

reference ligand evolution. Left subplot depicts the Curriculum Phase where the agent is taught to sample compounds with Tanimoto (2D) 

similarity to the reference ligand. The right subplot depicts the Production Phase. In general, “High” Tanimoto experiments sample more 

compounds that possess greater similarity to the reference ligand. b. Cross-Tanimoto similarity for intra-set diversity. The plot shows the 

pooled collected compounds (those that exceed a total score encompassing docking and QED above a threshold) from the triplicate 

experiments, in which the overall dataset was reduced in size by a factor of 10 to decrease computation time. Relative to the baseline RL 

experiments, CL generates compounds with notably greater intra-set similarity. The effect is more pronounced in the “High” scenarios 

compared to the “Low” scenarios. c. Curriculum learning (Tanimoto Curriculum Objective) UMAP. The top 3000 compounds were extracted 

from each triplicate experiment. Overall, the “Low” and “High” scenarios sample from areas ‘close’ in chemical space, but generally distinct 

from baseline RL. 



Direct Steering of Agent Policy: Trade-off Between Production Objective Optimization and Solution 

Space Diversity. To further elucidate the role of Curriculum Objectives and the extent to which the agent 

retains acquired knowledge in downstream production tasks, the generated compounds from the CL 

Tanimoto experiments were pooled and the average Tanimoto similarity to the reference ligand 

calculated for each epoch (Fig. 6a). The left subplot shows the gradual optimization of Tanimoto 

similarity for the “Low” and “High” scenarios, representing the Curriculum Phase. The right subplot 

shows the Tanimoto similarities for all the compounds that are collected (those that exceed a total score 

encompassing docking and QED above a threshold) in the Production Phase. In general, the compounds 

generated from the “High” Tanimoto experiments possess a greater Tanimoto similarity to the reference 

ligand than the “Low” Tanimoto experiments, as expected (see Supporting Information Fig. S13 for 

distribution of Tanimoto similarities). Interestingly, however, the difference is not drastic and can be 

explained by cross-referencing the training plots shown in Fig. 3b. The “Low” Tanimoto experiments 

start at notably lower docking scores than the “High” Tanimoto scenario and suggests that the 

compounds collected at the beginning are those that happen to exhibit high Tanimoto similarity to the 

reference ligand. This is further supported by extracting the number of compounds collected at each 

epoch (see Supporting Information Fig. S14). The “Low” Tanimoto experiments generate less favourable 

compounds in the first 50 epochs when the Production Objective is activated. In contrast, the “High” 

Tanimoto experiments generate more favourable compounds at every production epoch, on average, 

as the decreased selective pressure encourages the agent to continue sampling from similar areas of 

chemical space to maintain reward. However, without incentive, beyond the applied DF that penalizes 

the agent for repeated sampling of the same Bemis-Murcko scaffold to explore more diverse areas of 

chemical space, the question arises whether the agent becomes overwhelmingly focused on a narrow 

solution space.  

To investigate the effect of Curriculum Objectives on the sampled solution space, cross-Tanimoto 

similarities between each unique compound pair in the pooled datasets were calculated to quantify how 



different the collected compounds are to each other (see Methods). Relative to the baseline RL 

experiments, collected compounds in the CL experiments exhibit greater intra-set similarity, interpreted 

as the agent sampling compounds from ‘closer’ areas in chemical space (Fig. 6b). Moreover, the “High” 

scenarios have a greater density of high cross-Tanimoto similarities than the “Low” scenarios. Uniform 

Manifold Approximation and Projection (UMAP) was used as a dimension reduction technique to 

visualize the sampled solution space from the CL Tanimoto experiments.28 There is notable similarity, 

without overlap (as there is no scaffold overlap, see Supporting Information Fig. S10), between the 

compounds sampled from the “Low” and “High” scenarios, with the former spanning some separate and 

distinct areas (Fig. 6c). The results suggest that moderate optimization of Curriculum Objectives (as in 

the “Low” scenarios) already significantly narrows the agent perceived solution space, in agreement 

with the cross-Tanimoto similarity distributions shown in Fig. 6b. The similarity between the generated 

compounds from the “Low” and “High” experiments was quantified by calculating the cross-Tanimoto 

similarity between the two datasets (see Supporting Information Fig. S16). The majority of cross-

Tanimoto similarities is > 0.7, confirming that the generated compounds from both scenarios were 

sampled from areas ‘close’ in chemical space (Fig. 6c). Taken together, the observations in this section 

suggest that devising a curriculum and using Curriculum Objectives to guide the agent to a Production 

Objective facilitates knowledge retention that is exploited to achieve a state of productivity. However, 

there is an inverse relationship between using similarity-based Curriculum Objectives to enhance 

Production Objective optimization and intra-set diversity, imposing a trade-off when using CL over 

baseline RL. 

 

Conclusions 

In this work, we build on the de novo molecular design platform, REINVENT, by adapting curriculum 

learning (CL) to accelerate agent convergence on complex multi-parameter optimization (MPO) 



objectives.5 Relative to baseline reinforcement learning (RL) which may issue many non-productive calls 

to expensive physics-based descriptors, simple curricula consisting of even one Curriculum Objective can 

successfully guide the agent to achieve productivity in substantially reduced time. We demonstrate the 

application of CL on two Production Objectives: Constructing a relatively complex scaffold and satisfying 

a molecular docking constraint. In the former, given the same number of epochs, CL successfully 

constructs the complex structure from simpler constituents while baseline RL is unsuccessful. In the 

second application example, using Tanimoto (2D) or ROCS (3D) shape similarity to the reference ligand 

as Curriculum Objectives guides the agent to areas of chemical space that satisfies the docking 

constraint.24,25 In contrast, baseline RL significantly struggles, spending many epochs generating 

unfavourable compounds. CL facilitates direct steering of agent policy towards a Production Objective 

by providing the ability to teach the agent specific knowledge. The results show that teaching the agent 

to optimize Curriculum Objectives to a greater degree can enhance the ability to satisfy a complex 

Production Objective, relative to baseline RL. However, optimizing similarity-based Curriculum Objectives 

to a greater degree leads to lower intra-set diversity, as the agent generates compounds that are ‘closer’ 

in chemical space. Thus, devising appropriate curricula allows one to accelerate agent convergence and 

steer agent policy update for bespoke applications.   

 

Methods 

REINVENT Curriculum Learning Extension. The implementation of CL builds on the REINVENT generative 

model, which uses a recurrent neural network (RNN) architecture.5,29 The de novo molecular design task 

is formulated as a natural language processing (NLP) problem where compounds are sampled in the 

SMILES format based on conditional probabilities.17,30 The RNN in this work features three hidden layers 

of 512 long short-term memory (LSTM) cells with an embedding size of 256 and a linear layer with 

softmax activation.5,31 A prior generative model is first trained on the ChEMBL dataset to learn the 



SMILES syntax before focusing the model towards a MPO task.5,17,32 For further details on REINVENT, 

see the work by Blaschke et al.5  

 

REINVENT’s Learning Hyperparameters. The same hyperparameters were used for the baseline RL and 

CL experiments: batch size of 128, learning rate of 0.0001, sigma scalar factor of 128, and using the Adam 

optimizer.33 

 

Agent Exploration and Exploitation. Balance between agent chemical space exploration and 

exploitation was achieved by using a diversity filter (DF) and inception. A DF enforces diverse results by 

defining buckets with limited size that track the number of compounds sampled possessing the same 

scaffold. Once a bucket is full, further sampling of compounds with the same scaffold will be 

penalized.5,34 Inception is a form of experience replay to mitigate catastrophic forgetting and can speed 

up convergence by replaying previously sampled favourable compounds to the agent.5,35 For further 

details on REINVENT, see the work by Blaschke et al.5 In the baseline RL experiments, an Identical Murcko 

Scaffold DF (penalizes the agent if the same Bemis-Murcko scaffold is sampled beyond the bucket size) 

and inception were applied. In contrast, the implementation of CL in REINVENT allows one to initialize 

separate DFs and inception for the Curriculum Phase and Production Phase. During the Curriculum Phase, 

the goal is for the agent to acquire intermediate knowledge. Thus, no DF was applied as it can be 

counterproductive to guiding the agent to favourable areas of chemical space. In the Production Phase, 

a new inception (previous favourable compounds during the Curriculum Phase cleared) was initialized. 

Presumably, the agent is in a state of productivity and samples compounds that satisfy the Production 

Objective.5,34 Thus, an Identical Murcko Scaffold DF was applied to encourage exploration, such that the 

agent samples from different local minima.5,27 

 



ROCS 3D Shape Similarity. ROCS is a 3D shape similarity metric, comprised of two components: ‘shape’ 

and ‘color’. The components are quantified by the match, if at all, between the volumes occupied and 

the defined pharmacophoric features between the two ligands, respectively.24,25 Compounds with 

similar “shape” and “color” are more likely to exhibit similar properties. The implementation of ROCS in 

REINVENT is described in detail by Papadopoulos et al.36 In the CL experiments, the hyperparameters 

used for ROCS were 1:1 shape:color, giving equal weighting to each component in the final ROCS 

similarity score.  

 

Molecular Docking Constraint Experiments. The PDK1 receptor crystal structure was obtained from the 

Protein Data Bank (PDB) with PDB ID: 2XCH.22 A receptor grid was generated in the Maestro GUI with 

two hydrogen-bonding constraints specified between the reference ligand and Ala 162.37 Ligand 

preparation and docking was performed using DockStream, which is integrated with REINVENT, 

facilitating parallelization over numerous CPU cores.38 3D coordinates for all agent sampled compounds 

from the baseline RL and CL experiments were generated using LigPrep. Default parameters were used 

except for the pH tolerance range set to 7.0 ± 1.0 with Epik and a maximum of two stereoisomers kept 

per compound.39 Glide docking used Standard Precision (SP) with the followings settings: allow only 

amide trans isomers, allow up to 25 poses for post-docking minimization, apply strain correction, and 

apply enhanced sampling with a factor of 2.40–43 All baseline RL and CL experiments were allowed 300 

production epochs, i.e., epochs that involve docking, for a reasonable allocation of computational 

resources and for a fair comparison between baseline RL and CL. The docking score transformation was 

chosen to encourage agent sampling of compounds that possess a more favourable docking score than 

the reference ligand (see Supporting Information Fig. S2). 

 

 

 



Cross-Tanimoto Similarity.  

The cross-Tanimoto similarity is calculated as the Tanimoto similarity for each unique compound pair in 

a dataset. Note that the compound pairs ‘AB’ and ‘BA’ are the same, and hence only calculated once. 
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