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ABSTRACT: Although alcohols represent one of the largest 
pools of commercially available alkyl substrates, approaches 
to directly utilize them in cross-coupling and cross-
electrophile coupling are limited. We report the use of alco-
hols in cross-electrophile coupling with aryl and vinyl halides 
to form C(sp3)–C(sp2) bonds in a one-pot strategy. This 
strategy allows the use of primary and secondary alcohols 
through their very fast (<1 min) in situ conversion to the 
corresponding alkyl bromides with compatible phosphoni-
um activating reagents. The utility of the reaction is exempli-
fied by its simple reaction setup, scalability, and broad scope 
(41 examples, 57% ± 15% ave yield). The reaction can be 
performed on the benchtop without the need for electro-
chemical or photochemical equipment. Finally, translation to 
standard parallel synthesis techniques is demonstrated by 
successfully coupling all combinations of 8 alcohols with 12 
aryl cores in a 96-well plate using only one (99% coverage) or 
two (100% coverage) sets of conditions.  

Cross-coupling reactions to form C(sp3)–C(sp2) bonds are 
increasingly important for the synthesis of structurally di-
verse molecules in medicinal chemistry1 and natural product 
synthesis.2 In medicinal chemistry, small-scale high-
throughput experimentation is now routine to allow rapid 
synthesis of focused libraries to explore structure-activity 
relationships (SAR) and optimize lead compounds while 
preserving valuable material.3 In these studies, the size of the 
substrate pool is crucial and even one-step activation ap-
proaches that require intermediate isolation or purification 
can be limiting (Figure 1a). Alcohols have long been the pri-
mary source of alkyl diversity in cross-coupling via their con-
version to alkyl halides, sulfonate esters,4 and (more recently) 
other redox-activated derivatives.5 Conversion of alcohols to 
halides and pseudohalides represents the most-used func-
tional group interconversion in medicinal chemistry,1a,6 how-
ever such reactions require additional time and resources for 
each synthesis and purification, imposing an inherent bottle-
neck in the conversion of alcohols to libraries of pharmaceu-
tical compounds (Figure 1b). General one-pot activa-

tion/coupling strategies compatible with high-throughput 
experimentation (HTE) approaches7 have been elusive and 
largely limited to activated alcohols.8 

Figure 1. Direct Cross-Electrophile Coupling of Alcohols 
with Aryl Bromides Via In Situ Bromination. 

A direct, yet under-explored, approach would be the in-situ 
conversion of alcohols to alkyl bromides in tandem with 
cross-electrophile coupling (XEC).9,10 While building upon 
established chemistry, this approach presents several chal-
lenges. First, the activating agent must be selective for the 
target alcohol over other Lewis-basic functionalities (e.g., 
amides, ketones) and not directly react with other compo-
nents of the reaction (catalyst, reductant, solvent). Second, 
the co-products of this activation (e.g., phosphine oxide, ac-
id) must be tolerated by the coupling reaction. Finally, the 
reaction must be fast and high yielding to avoid the need for 
multiple manipulations of each reaction (Figure 1b and 1c). 

We have found that employing oxophilic P(V) reagents, 
especially Hendrickson’s POP reagent 
([(Ph3P)2O](OTf)2),11 for one-pot alcohol activation is 



 

compatible with XEC conditions, procedurally simple, gen-
eral, fast, and well-suited to µmol-scale HTE format (Figure 
1c). Concurrent with these studies, two other exciting ad-
vances towards this goal have appeared that utilize paired 
electrolysis10 and metallaphotoredox catalysis.12 While all 
three approaches are impressively general, our approach ap-
pears better suited to parallel synthesis,13,14 does not require 
excess of either coupling partner to achieve selective cross-
coupling, and requires no specialized electrochemical or pho-
tochemical equipment for preparative or HTE applications. 

Keys to the success of this approach are: 1) the discovery 
of a fast, homogeneous bromination reagent, POP/TBAB 
(Bu4NBr) in MeCN, that is compatible with reductive cou-
pling conditions; and 2) the development of a new ligand, 
4,4′-di-tert-butyl-6-N-cyanocarboxamidine-2,2-bipyridine (t-
BuBpyCamCN or L1) that, alone or in combination with 
dtbbpy,15 provides high yields of product. Because the new 
catalyst mixture works well in acetonitrile, problematic am-
ide solvents can be avoided16 and the bromination can occur 
concurrent with the cross-electrophile coupling (Table 1). 

A significant practical advantage of our approach is the use 
of a POP/TBAB reagent solution in MeCN, which can be 
easily handled outside of a glovebox and facilitates parallel 
reaction assembly. While amide solvents appeared better at 
solubilizing this reagent and are established for cross-
electrophile coupling, we obtained low yields in DMA (Table 
1, entry 15) and POP reagents have been reported to be reac-
tive with amides.17 The tetrabutylammonium cation is critical 
for the solubility of the POP reagent in acetonitrile as other 
cations resulted in slurries that would be impractical on small 
scale (see Supplementary Table S3). The solution is stable 
for months when stored in a septum vial in a desiccator with-
out any decrease in reactivity (entry 8). Compared to tri-
phenylphosphine dibromide (the intermediate invoked in 
the paired electrolysis report10), we found bromination with 
POP/TBAB faster (complete in 5 min at rt). In practice this 
allowed us to run reactions without any monitoring of the bro-
mination. 

Control reactions showed that each component of the sys-
tem is necessary for high yields (Table 1, entry 2-5). Tri-
phenylphosphine dibromide and [(Me3P)2O](OTf)2/TBAB 
were both reasonable alternatives to POP (Table 1, entries 6 
and 7). Triphenylphosphine dibromide proved useful with 
substrates prone to elimination,18 (3ag, Scheme 1) and 
(Me3P)2O](OTf)2 could be useful on larger scale because 
Me3P=O is water soluble. While a variety of non-
nucleophilic organic bases were effective, Barton’s base 
((Me2N)2C=N(t-Bu)) was superior (entries 1, 9, Supple-
mentary Table S2). The reactions worked best with an excess 
of Mn (entries 1, 12-13), but could be run at lower tempera-
ture and without a glovebox, if needed (entries 14, 8). 

Informed by our previous studies on carboxamidine lig-
ands19 and mixed-ligand systems,15 we found that a new 
mixed-ligand system with tbuBpyCamCN (L1)20 and dtbbpy 

provided enhanced selectivity for the cross-coupled product 
in comparison to a single ligand system (Table 1, entry 9-10 
and Supporting Information Table S1). Examination of our 
results with single ligands showed that L1 and dtbbpy had 
complementary reactivity: dtbbpy-ligated Ni primarily con-
sumed the aryl bromide, whereas L1-ligated Ni favored alkyl 
bromide consumption. The synergistic effect of both ligands 
enabled the development of a general, tunable reaction sys-
tem (vide infra, Scheme 2), even in a non-amide solvent.21 
Table 1. Optimization of Deoxygenative Cross-Electrophile 
Coupling with Aryl Bromides.a  

 
entry deviations from above conditions 3ab (%) 

1 none 89 (79) 

2 no POP/TBAB 0 

3 no TBAB (Bu4NBr) 28 

4 no base 41 

5 no ligand 2 

6 PPh3Br2 in place of POP/TBAB 43 

7 [(Me3P)2O](OTf)2 in place of POP 62 

8c benchtop assembly 89 

9 DIPEA instead of Barton’s base 57 

10 only dtbbpy (10 mol %) as ligand 34 

11 only L1 (10 mol %) as ligand 23 

12 4 equiv of Zn instead of Mn 58 

13 2 equiv of Mn 82 

14 rt instead of 60 °C 75 

15 DMA instead of CH3CN 4 
aReactions run at a 0.25 mmol scale. The alcohol, 

POP/TBAB solution, and base were mixed for 30 s before being 
combined with the rest of the reagents. bCorrected GC yields. 
Isolated yields shown in parentheses.  cReaction run with 
POP/TBAB solution stored in a desiccator for 2 months.  

These new conditions enable a simple, one-pot reaction 
for the cross-coupling of alcohols with aryl bromides by 
stepwise addition of reagents. The alcohol is combined with 
the POP/TBAB solution and Barton’s base for about 1 min 
before being combined with the catalyst, aryl bromide, and 
Mn. Importantly, the alcohol activation solution remains 
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homogeneous throughout, with no need to monitor for 
completion. 

This system proved effective for the coupling of a wide ar-
ray of 1° and 2° unactivated alcohols with aryl, heteroaryl, 

and vinyl bromides (Scheme 1).22 The one-pot bromina-
tion/cross-coupling reaction has a wide functional group 
tolerance for both aryl and alkyl coupling partners (Scheme 
1).  

Scheme 1. Substrate Scope for the Deoxygenative Cross-Coupling of Alcohols with Aryl, Heteroaryl, and Vinyl Halidesa  

 
aIsolated yields of reactions run at 0.25 mmol scale. Alcohol 1, POP/TBAB solution, and base were mixed for 1 min before being 
combined with the rest of the reagents, capped, and stirred at 60 °C overnight. b1.5 equiv of alcohol, POP, TBAB, and Barton’s 
base used. cOnly dtbbpy (10 mol%) was used. dOnly L1 (10 mol%) was used. e(1:3) dtbbpy:L1 used.  f1.25 equiv of PPh3Br2, and 
DIPEA used. gProduct appears to decompose on silica flash column chromatography. 



 

Aryl substrates bearing esters (3g-h, 3m, 3s), ethers (3c, 3f, 
3j), ketones (3l, 3r), carbamates (3b), chloride (3k), and 
heteroarenes (3b-e) were compatible under these condi-
tions. Sterically hindered aryl substrates bearing ortho sub-
stituents such as in 2-naphthalene, methoxy, and isopropyl 
could also be coupled (3i-j, 3am). Because the alcohol acti-
vation is usually complete before aryl bromide is added, the 
development of reactions that tolerate free alcohols on the 
aryl bromide is feasible: in the coupling of 3p the less reactive 
alcohol is coupled over the benzylic alcohol, albeit in only 
34% yield (unoptimized). Future improvements will enable 
telescoped three-component reactions and sequential cross-
couplings. 

While the optimized two-ligand system worked best for 
electron-rich aryl halides, more reactive C(sp2) electrophiles, 
such as 2-bromopyridines (3w, 3x, 3aa, 3ac, 3ad, 3ae, 3an), 
aryl bromides with strong electron withdrawing groups in 
the para position (3u, 3v), and alkenyl electrophiles (3y, 3z, 

3aj) performed best using only L1 (10 mol%) with no 
dtbbpy. Furthermore, the ratio of L1 to dtbbpy can be ad-
justed to improve yields: the coupling between primary alco-
hol 1b and methyl 3-bromobenzoate 2h afforded the product 
in 72% yield with 75:25 L1/dtbbpy compared to 62% using a 
1:1 ligand ratio. 

We next explored the scope of the alcohol coupling part-
ner. Our attention was focused on alcohol substrates for 
which the corresponding alkyl bromide was either not com-
mercially available or is an order of magnitude more expen-
sive per mole (Supporting Information Table S3). A wide 
variety of primary and secondary alcohols23 could be coupled 
with aryl, heteroaryl, and vinyl substrates to give a structural-
ly diverse set of products. Finally, we could scale the reaction 
of 3ak from 0.25 mmol to 3.6 mmol scale using standard 
glassware with about the same yield (from 70% to 67% 
yield). 

 
Scheme 2. Coupling of Alcohols with Aryl Halides on 10 µmol Scale in 96-Well Plate Format. 

 
aHTE survey of 96 combinations of alcohols and aryl bromides with each reaction run at 10 µmol scale. UV Product/Internal standard 
ratios vs. 1,3,5-trimethoxybenzene obtained from SFC-MS analysis.
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More hindered alcohols and those with β-heteroatoms re-
acted more slowly and were prone to form elimination prod-
ucts, consistent with literature reports on the POP reagent.18 
A preliminary workaround is the use of Ph3PBr2 instead of 
POP/TBAB, which enabled coupling with serine to form 
heteroaryl phenylalanine derivative 3ag with useful stereore-
tention (93% cee). 

As noted above, the ability to directly use alcohols in cross-
electrophile coupling reactions without extra steps will be of 
particular advantage in the generation of small libraries in 
medicinal chemistry.1,19c To explore this application, we cou-
pled all combinations of 12 aryl halide cores with 8 alcohols 
on 10 µmol scale in a 96 well plate using three ligand regimes 
(dtbbpy only, 1:1 dtbbpy/L1, and L1 only). All reagents ex-
cept Mn were dosed using liquid handling and standard mul-
tichannel pipettes. We used the AbbVie Mn@Chembead 
approach19c to dose the Mn using a calibrated scoop and a 
shaker/heater was used in place of a tumble stirrer. These 
results show that 1:1 dtbbpy/L1 is the most general set of 
conditions (product observed in 95/96 cases, 99% hit rate), 
but that L1 alone can improve yields for some combinations: 
E10 had no detected product with L1/dtbbpy but product 
was detected with L1 alone. When combined, the two cata-
lyst combinations, dtbbpy/L1 and L1, provided product in 
all 96 combinations. 

Mechanistically, the bromination and cross-electrophile 
coupling reactions are expected to proceed by their estab-
lished mechanisms.24 The bromination reaction is quantita-
tive in about 5 min at rt (monitored by GC). Nickel-
mediated cross-electrophile coupling then occurs between 
the alkyl bromide and the aryl electrophile. 

In conclusion, the combination of a new catalyst system 
(dtbbpy/L1) and a carefully-tuned bromination reagent 
(POP/TBAB/Barton’s base) enables a new, general cross-
electrophile coupling of unactivated 1° and 2° alcohols with 
aryl bromides. The power of this approach is exemplified by 
the fact that 36 out of the 40 products in Scheme 1 are new 
compounds, despite being simple derivatives of commercial 
materials. Further, because the alcohol activation reagents 
and byproducts of the bromination step are homogeneous 
and do not impede cross-electrophile coupling step, these 
conditions are ideal for parallel synthesis. This advance, in 
tandem with related advances from MacMillan5 and Li,9 may 
lead to alcohols supplanting alkyl halides in the synthesis of 
Csp3–Csp2 bonds. Further, these reactions set the stage for 
selective deoxygenation of more complex polyols, such as 
those recently reported by Diao5c and MacMillan,12 and im-
proved activating agents tuned to cover an even wider range 
of alcohols. 
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