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Abstract  

 In the discovery process of new drugs and the development of novel therapies in 

medicine, computational modeling is a complementary tool for the design of new 

molecules by predicting for example their solubility in different solvents. Here, we 

benchmarked several computational methods to calculate the partition coefficients of a 

diverse set of 161 organic molecules with experimental logP values obtained from the 

literature. In general, density functional theory methods yielded the best correlations and 

lower average deviations. Although results are obtained faster with semiempirical and 

molecular mechanics methodologies, these methods yielded higher average deviations and 

lower correlation coefficients than hybrid density functional theory methods. We 

recommend the use of an empirical formula to correct the calculated values with each 

methodology tested. 
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Introduction 

 Over the past decades, an understanding of the lipophilicity of organic molecules has 

been essential in designing and synthesizing water-soluble drugs. Moreover, once the 

solvent solubility is determined, a correlation of the pharmacokinetics with the molecular 

structure needs to be established for the new drug submitted for clinical trials.1 Besides the 

development of profiling techniques based on the Lipinski Rule2 used in drug discovery3 , 

determination of the partition coefficient (P), reported as the base 10 logarithm of P (logP, 

see equation 1), has been a convenient strategy to provide information about a molecule’s 

lipophilicity.  The partition coefficient (P) of a substance is defined as the ratio of its 

concentration in organic and aqueous phases when the system is in equilibrium.4,5   
 

logP = 𝑙𝑜𝑔!" )
[𝐴]#$%&'()
[𝐴]&*+,#+-

- 	𝑤ℎ𝑒𝑟𝑒	[𝐴].	𝑖𝑠	𝑡ℎ𝑒	𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	𝐴	𝑖𝑛	𝑋	𝑝ℎ𝑎𝑠𝑒. (1) 

 

 For positive logP values, the substance is mainly soluble in the organic phase, while 

negative values mean that the substance is primarily soluble in the aqueous phase. 

Experimental determination of logP values can be achieved by various techniques such as 

shake flask6, chromatography7, among others.8–10 Theoretical estimation of logP values is 

a common practice to predict the solubility of a molecule during the design phase because 

it saves valuable materials and reduces time-consuming procedures by targeting 

compounds with desired solubilities and disregarding those without them. This cost-

effective strategy has a significant contribution to the synthesis and development of 

potential drug candidates.11 However, the application of the theoretical estimation of logP 

values is limited to its correlation with the logP values obtained experimentally.  The most 

common method for calculating logP values is with software based on the quantitative 

structure property relationships (QSPR) model.1 Nevertheless, the estimated value using 

the QSPR model has a poor correlation with the experimental logP value because it is 

limited to a database of experimental logP values of similar molecules.12 For that reason, 

computational physics-based free energy models where the solvent is included implicitly 

with a continuum solvent model are preferred.13,14 
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 Recently, Nedyalkova et al. used Density Functional Theory (DFT) to predict the n-

octanol/water logP values of 55 organic molecules.13 They reported the best correlations 

with the experimental data using the functionals M11 and M06-2X. In this work, we have 

expanded the list of compounds to a total of 161 molecules by adding 106 molecules from 

Spafiu et al.15 to the test set used by Nedyalkova et al.13 We proceeded to performed 

calculations with DFT, semiempirical and molecular mechanics (MM) computational 

methods to benchmark these methodologies. We found the best correlation to be obtained 

with wB97XD/6-311+G(2d,p). 

 

Methodology: 

I. Test set selection 

 A total of 161 molecules with a variety of functional groups and experimental n-

octanol/water logP values were selected from the literature by combining a test set from 

Neyalkova et al.13 and another test set from Spafiu et al15 If the experimental logP value 

for a compound was reported in both data sets, the average of the two values was used to 

build the correlations. Figure 1 shows an example molecule for each of the eight molecular 

families of compounds studied in this work. A complete list of all the molecules with their 

experimental logP values can be found in the supporting information (SI). The initial 

structures were built with Avogadro16 and preoptimized with the Universal Force Field.17 

A complete list of all the molecules in our test set with their experimental and calculated 

logP values can be found in the SI. Calculations of logP were done for each molecule 

(Table S1) with each computational methodology discussed below. A summary of the 

results can be found in Table 1. Scatter plots of correlations 1, 6, 7 and 11 are shown in 

Figure 2. 
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Figure 1. Examples of some of the molecules included in this study. The complete list can 

be found in the supplementary information (SI). 

 

II. LogP determination with DFT and semiempirical methods 

 All geometry optimizations and frequency calculations were performed with Gaussian 

0918 using the solvent based on density (SMD) implicit solvent model for water or n-

octanol. SMD has been reported to yield the best results in comparison to other continuum 

based solvent models.14 The DFT hybrid methods benchmarked with this test set were 

B3LYP, M062X, and wB97xD functionals with either the 6-31G(d) or 6-311+G(2d,p) as 

basis sets. The semiempirical methods benchmarked were AM1, PM3, and PM6. 

 To calculate the logP values for each molecule, we used the Gibbs free energy of the 

molecules optimized in water and subtracted it from the Gibbs free energy of the molecules 

optimized in n-octanol (∆Go/w). Then, logP was calculated according to: 

 

𝑙𝑜𝑔𝑃 =
–∆𝐺!/#
2.303𝑅𝑇	(2) 
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III. LogP determination with MM methods 

 Molecular mechanics (MM) methods were carried out using Schrodinger’s Maestro 

12.5 software and MacroModel tools. The force fields benchmarked were OPLS3e, OPLS, 

and OPLS2005. The 161 molecules were re-optimized with each of the tested force fields 

in the gas phase. The OPLS potential parameters used were the dielectric constant as the 

electric treatment, and charges from the force field. Extended non-bond cutoffs of 8.0, 20.0, 

and 4.0 Å were used as the parameters for van der Waals, electrostatics, and H-bond, 

respectively.19 After re-optimization, the potential parameters were adjusted using n-

octanol as the primary solvent, whereas the comparison parameters were activated using 

the “logP estimation” tool. Water was set as the secondary solvent, to determine the 

partition coefficients. 

 

Figure 2. Scatter plots of the calculated vs. experimental logP values for the 

methodologies 1, 6, 7, and 11. 
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Results and Discussion 

Table 1. Results of the correlations for all methodologies benchmarked. 

Correlation 

number 
Method R2 MAD 

Max 

residual 
Slope Intercept 

1 B3LYP/6-31G(d) 0.91 0.50 1.99 0.9970 -0.3061 

2 M062X/6-31G(d) 0.90 0.49 2.47 0.9763 -0.1987 

3 wB97xD/6-31G(d) 0.88 0.53 2.04 1.0453 -0.2909 

4 B3LYP/6-311+G(2d,p) 0.90 0.50 2.58 1.0464 -0.3200 

5 M062X/6-311+G(2d,p) 0.91 0.48 2.27 0.9926 -0.2305 

6 wB97xD/6-311+G(2d,p) 0.91 0.47 1.79 1.0886 -0.3424 

7 AM1 0.89 0.50 2.97 0.9527 0.0338 

8 PM3 0.85 0.60 2.25 0.9661 -0.1639 

9 PM6 0.86 0.84 3.30 0.8481 0.9692 

10 OPLS 0.83 0.67 2.18 0.9527 0.4143 

11 OPLS2005 0.87 0.54 2.01 0.9894 0.0777 

12 OPLS3e 0.81 1.44 5.74 0.9186 1.1665 

 

 As shown in Table 1, the correlations built with hybrid DFT methods (correlations 1-

6) have correlation coefficient (R2) between 0.87 and 0.91 and mean absolute deviations 

(MAD) between 0.47 and 0.53. Thus, almost no difference was observed between the 

functionals and basis sets tested in this work. A possible explanation for this similarity is 

that the experimental challenges and uncertainties of measuring logP values7,20 is what 

limits the strength of the correlations. Correlation 6, (wB97xD/6-311+G(2d,p)) yielded 

slightly better results than the other DFT correlations (1-5) and the best results overall. This 

can be rationalized in the light that DFT methods are based on quantum mechanics and 

have been reported to yield energy calculations with good physical accuracy.21 

 On the other hand, the correlations built with semiempirical methods (correlations 7-9) 

resulted in lower R2 values and higher MAD than the hybrid DFT correlations. These 

results are explicable since semiempirical methods are parametrized with experimental 

data resulting in approximations that may lead to non-systematic errors. Nevertheless, the 
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R2 are all greater than 0.84, which is reasonable considering the significantly faster 

convergence of the calculations. 

 Finally, the correlations built with MM methods showed a large variety between them. 

Correlation 10 showed R2 values, MAD and Max residuals that are comparable to 

semiempirical correlations (7-9), while correlation 12 showed MAD and Max residuals 

that are twice as large. In contrast correlation 11 showed results that were comparable to 

correlation 3 (a DFT method). These MM calculations run in seconds which significantly 

reduces the computational resources needed and may be useful as a first approximation. 

The reason for these faster calculations is that force fields are parametrized based on the 

Gibbs free energies determined after optimization of each molecule.22,23 These correlations 

could be improved by identifying a better extended parametrization for the Maestro’s 

cutoff potential options that considers the van der Waals, electrostatics, and hydrogen 

bonding interactions which have been well studies and reported in the literature.19,23 

Moreover, since each force field has a particular training set, the nature of the training set 

must be considered. For example, OPLS and OPLS3e are force fields preferred for 

biopolymers and carbohydrates, whereas OPLS2005 is the preferred force field for 

biological systems and organic molecules.24 This could explain the higher correlation 

coefficient obtained with OPLS2005. 
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Figure 3. Two conformers of 1-n-butoxy-3-iso-propoxy-2-propanol (molecule 7) 

optimized using B3LYP/6-31G(d). This is an example of a case in which higher energy 

structures (left) yield better results than lower energy structures (right). 

 

 In the context of conformational structures, using the lowest energy structures was 

assumed to be crucial to obtain the best computational results as it has been reported by Ho 

et al.14 Nevertheless, we found a couple of cases where using higher energy structures 

yielded better agreement between the calculated and experimental values. One example is 

shown in Figure 3, where using the higher energy structures (left) resulted in a lower 

deviation from the experimental logP than using the lower energy structures (right). These 

results suggest the possibility of improving the correlations by using a Boltzmann 

population distribution weighted approach25 to calculate logP values. 
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Conclusions:  

 Computational chemistry is a key tool to study the solubility of molecules in complex 

systems. Therefore, it is important to benchmark the accuracy of computational methods 

to enable direct comparison to experimental results, and prediction of the lipophilicity and 

other properties of new compounds.  

 We tested the accuracy of three DFT functionals, three semiempirical methods, and 

three molecular mechanics models. Among the methods benchmarked, the most efficient 

was wB97xD/6-311+G(2d,p). Semiempirical and molecular mechanic methods yielded 

reasonable correlations, but hybrid DFT methods are recommended for more precise 

results. To correct systematic errors, we suggest using the correction logPcorrected = 

mlogPcalculated + b (where m and b are the slope and intercept found in Table 1, respectively) 

for calculations done with each methodology presented in Table 1. 

 These results provide the benchmarking of a diversity of molecules and methodologies 

that will be useful for future studies in the design and characterization of complex systems 

such as large molecules, surfactants, and drugs.2,3,20,26–28 Conducting a Boltzmann 

population distribution analysis could provide improved calculated logP values as 

suggested by the results shown in Figure 3 and discussed above. Finally, the inclusion of 

explicit solvent molecules in combination with implicit solvent models has been reported 

to be essential to reproduce some experimental results30–32 and this could further improve 

the correlations, although some reports claim the contrary.29 
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