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Abstract

Traditional small molecule drug discovery is a time consuming and costly endeavor.

High-throughput chemical screening can only assess a tiny fraction of drug-like chemi-

cal space. The strong predictive power of modern machine learning methods for virtual

chemical screening enables training models on known active and inactive compounds

and extrapolating to much larger chemical libraries. However, there has been limited

experimental validation of these models’ extensibility toward practical applications

on large commercially-available or synthesize-on-demand chemical libraries. Through

a prospective evaluation with the bacterial protein-protein interaction PriA-SSB, we

demonstrate that ligand-based virtual screening can identify many chemically-diverse

active compounds in a large commercial library. We use cross validation to com-

pare many supervised learning models and select a random forest classifier as the best

model for this target. When predicting the activity of more than 8 million compounds

from Aldrich Market Select, the random forest substantially outperforms a näıve base-

line based on chemical structure similarity. 48% of the random forest’s 701 selected

compounds are active. The random forest model easily scales to score one billion

compounds from the synthesize-on-demand Enamine REAL database. We tested 68

chemically-diverse top predictions from Enamine REAL and observed 31 hits (46%),

including one with an IC50 value of 1.3 µM.

1 Introduction

Access to very large chemical libraries opens new opportunities in drug discovery but presents

major scalability challenges for existing chemical screening workflows. Commercial libraries,

which are the primary source of compounds in academic screening efforts, can be grouped

into two categories: “in-stock” and “on-demand.” As of this writing, in-stock libraries

comprise over 12 million molecules previously synthesized and physically stored by vendors.

On-demand libraries are databases containing virtual molecules that a vendor considers to be

readily accessible given stocks of available building blocks and established synthetic routes.1
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Such libraries now measure in the billions of compounds: WuXi’s GalaXi contains 2.1 billion

and Enamine’s REAL Space spans 17 billion.2,3 On-demand libraries have superior chemical

scaffold diversity and coverage of chemical shape characteristics,2 unlocking new possibilities

to manipulate biological targets. The growth of on-demand libraries has been disruptive,

requiring new scalable strategies for enumerating, storing, and searching them. However,

the question remains as to how to effectively prioritize molecules from on-demand libraries

for acquisition and testing in the hit identification phase of drug discovery projects.

Virtual screening is essential for guiding the selection of compounds from vast on-demand

chemical resources. Virtual screening uses computational methods to select compounds to

test experimentally against a target of interest.4–7 An efficient virtual screening algorithm

can exhaustively assess compounds in a very large library so that only the most promising

compounds are screened experimentally. Two broad classes of virtual screening approaches,

structure-based and ligand-based, have had initial application to large libraries. Structure-

based virtual screening, which includes docking,8,9 uses the three-dimensional shape of the

target protein structure to evaluate candidate ligands. Despite recent examples that suc-

cessfully use docking to filter 108 to 109 compounds down to hundreds of interesting com-

pounds,10,11 there are inherent drawbacks to this approach. Structure-based screening is

limited to targets having reasonably accurate protein structure models, and these meth-

ods are far more computationally expensive than ligand-based algorithms with respect to

compound throughput.11

Ligand-based virtual screening evaluates each compound solely based on its chemical

properties, which can provide higher throughput. These approaches are applicable to a

broader range of targets, including proteins with unknown structures or assay endpoints re-

flecting perturbations to pathways, phenotypes, or cell populations. Ligand shape matching

algorithms can run faster than traditional docking and scale to current on-demand chemical

libraries.12 However, implementations like FastROCS score compounds only based on simi-

larity to active reference compounds. Unlike supervised machine learning, FastROCS cannot
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eliminate candidate compounds based on their relationships to known inactive compounds.

Other recent ligand-based virtual screening models are often formulated as a supervised

learning problem.13,14 Models, such as random forests, neural networks, and support vector

machines,15–17 are trained on examples of active and inactive compounds. The requirement

for adequate initial assay data is a limitation. However, once trained on sufficient data, these

models can evaluate a new compound in milliseconds, making them attractive for very large

libraries. Initial prospective evaluations of ligand-based models applied to large libraries

have been promising but rare.18–21 In general, the performance of such models in practical

applications with on-demand libraries is still poorly understood.

Here, we demonstrate a supervised learning approach for ligand-based virtual screen-

ing that is highly scalable and capable of strong prospective performance. We build upon

our prior virtual screening effort to find small molecule inhibitors of a bacterial protein-

protein interaction between the DNA helicase, PriA, and single-stranded DNA binding pro-

tein (SSB).22 The PriA-SSB interaction is critical for maintaining prokaryotic genome sta-

bility and as such represents a potential antibiotic target. Our previous effort involved the

prospective evaluation of a random forest model on a library of 22,434 compounds. The

random forest’s top 250 predictions identified 37 of the 54 active compounds in the library.

Here, we examine the applicability and performance of such models when operating on much

larger libraries. Our machine learning pipeline selects a random forest model that successfully

prioritizes compounds from over 8 million compounds from Aldrich Market Select (AMS).

Then, we successfully apply the model on over one billion compounds in the Enamine REAL

database, yielding a small, chemically-diverse, highly hit-enriched compound subset. These

prospective tests demonstrate a cost-effective approach for navigating very large chemical

spaces in the search for active compounds. The random forest model is easy to train and

readily scales to current and future on-demand libraries, unlike structure-based approaches.
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2 Results

Our primary goals were to identify the best supervised learning model for predicting PriA-

SSB inhibitors and then prospectively test the model in a virtual screen on the AMS and

Enamine REAL libraries that contain 8,187,682 and 1,077,562,987 compounds, respectively.

As a first step, we use a training dataset from previous PriA-SSB experimental screening

with 427,300 compounds and 554 actives to compare multiple types of supervised learning

algorithms, optimize their hyperparameters, and select the top-performing model, a random

forest classifier (RF-C). We include classification models (denoted with -C) trained to predict

binary activity as well as regression models (denoted with -R) trained to predict continuous

% inhibition. Next, we assess the RF-C model’s prospective performance. We compare pri-

oritized compounds from the RF-C model and a Similarity Baseline model based on chemical

structural similarity using the AMS library. Approximately 700 prioritized compounds are

ordered and tested from each model. After finding the RF-C model recovers more active

compounds and more chemically-diverse actives than the baseline, we assess its scalability

to the billion compound Enamine REAL library. The RF-C model again achieves a high hit

rate of 45.6% and identifies potent compounds that have notable structural differences from

those in the training set.

2.1 Supervised Learning Hyperparameter Tuning

To determine which supervised learning model would be most effective on large chemical

libraries, we systematically explored model architectures in five different model classes to find

effective hyperparameter combinations for each class based on cross validation performance.

In this stage, we pruned the hyperparameter sets for each model class down to the top 20

performers (Appendix A.7). We split the training dataset into 10 folds and used only folds

0 through 7 in this stage, reserving the last two folds (folds 8 and 9) for the next stage

(Table S1). In total, we trained 3,080 models and selected 20 top performers from each of
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the five model classes. Because our focus is on early retrieval of actives, we chose these top

models based on mean normalized enrichment factor at 1% (NEF1%) performance (Section

4.4). Figure 1 shows the mean performance for these top 20 models (with ties) for each class.

The top RF-C models consistently perform better than all other model classes on the three

evaluation metrics. The classification versions of the extreme gradient boosting (XGB) and

neural network (NN) models outperformed their regression-based counterparts.

(a) NEF1% (b) AUC[ROC]

(c) AVG[PR]

Figure 1: Cross validation mean performance on the top 20 hyperparameter sets from each
model class. For the RF-C, XGB-C, and XGB-R model classes, 21 hyperparameter sets
are shown due to ties. The -C and -R suffixes denote classification and regression variants,
respectively.
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2.2 Supervised Learning Model Selection

Next, we compared the performance of the top models from each model class on a reserved

test fold. Here, the top 20 (with ties) hyperparameter configurations per model class were

trained on folds 0-8 (fold 8 used as validation) and tested on fold 9. The results for the

top model in each class are illustrated in Table 1. In addition to the individual models,

we also examined two ensemble methods: Model-Based Ensemble and Max Vote Ensemble.

Across classes, the optimal model is an RF-C model that achieved the best performance on

two of the three metrics, NEF1% and average precision-recall (AVG[PR]). For prioritizing

compounds in a large on-demand library, these two metrics are more relevant than the area

under the receiver operating characteristic curve (AUC[ROC]). NEF1% explicitly focuses on

early hit retrieval, which is the goal when selecting a small fraction of compounds from a large

library. AUC[ROC] can provide an overly-optimistic summary of performance when there are

far more inactive than active compounds,23 which is the case in high-throughput screening.

Therefore, we selected the RF-C model and the Similarity Baseline for prospective testing.

Although the Similarity Baseline model was outperformed by most of the supervised learning

approaches, we included it in the prospective testing as a control. It represents a typical

strategy for prioritizing compounds to test from chemical libraries. This “hit expansion”

strategy simply prioritizes the closest analogs of known actives.

Table 1: Top performance across model classes on the test fold. Each model was trained on
folds 0-8 (fold 8 used as validation) and tested on fold 9. The best model is an RF-C model
in the two most relevant performance metrics AVG[PR] and NEF1%.

Model Hyperparameter ID AUC[ROC] AVG[PR] NEF1%

RF-C 14 0.89 0.19 0.64
XGB-C 140 0.92 0.17 0.58
XGB-R 81 0.88 0.05 0.42
NN-C 47 0.83 0.13 0.58
NN-R 191 0.90 0.07 0.49

Similarity Baseline - 0.81 0.09 0.40
Model-Based Ensemble 0 0.94 0.17 0.62

Max Vote Ensemble 0 0.94 0.17 0.62

7



To further explore why the ensemble methods do not improve the performance over the

best individual models (Figures S1 and S2), we examined the overlap in actives retrieved

between the ensembles and top models (Tables S2-S6). Although ensembles find some actives

not prioritized by the best RF-C model, the RF-C finds many more actives leading to better

performance. We note several methodological improvements that could improve the ensemble

performance in Appendix A.8.

2.3 AMS Prospective Screening

Next we applied the RF-C and Similarity Baseline models in a prospective test on Sigma-

Aldrich’s AMS library, which consists of 8,187,682 mostly in-stock compounds. First, the

RF-C and Similarity Baseline models were re-trained using all 10 data folds. Then, each

model was applied to score the AMS library. The top 1,500 ranked compounds from each

model were then filtered based on cost, delivery, and availability criteria (Section 4.8). The

union of these two prioritized and filtered sets comprised 1,028 unique compounds, which

we purchased from Sigma-Aldrich. The average cost, including dissolution in DMSO and

plating, was approximately $40 per compound.

Upon receipt of the plated compounds, we determined that four compounds were incom-

pletely dissolved. These molecules were removed from further consideration, leaving 1,024

for testing. Among the 1,024 compounds, 701 compounds were in the top 1,500 from the

RF-C and 705 were in the top 1,500 from the Similarity Baseline, including 382 compounds

selected by both models. All 1,024 compounds were tested in duplicate to reveal 412 hits

based on our established activity labeling conditions–namely that both replicate tests exceed

50% inhibition and the compound passes a pan-assay interference compounds (PAINS) filter

(Section 4.8).
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2.3.1 Prospective Hit Summary

Recall that the training set consisted of 427,300 compounds with 554 actives, a hit rate of

only 0.13%. If the hit rate is similar in the AMS library, we would expect to find on average

one hit in random selections of 1,024 compounds. Table 2 illustrates the far superior hit

rates for the 1,024 compounds grouped by the selection method. Both models were given

similar budgets: 701 and 705 compounds for RF-C and Similarity Baseline, respectively.

RF-C outperformed the Similarity Baseline, finding 337 hits compared to the baseline’s 256.

Both models prioritized a common set of 382 compounds and thus identified the same 181

hits, but the RF-C model recovers more hits (Table 2). Overall, the two models rank the

8,434,707 compounds differently with a Spearman’s rank order correlation of -0.083.

Table 2: The overlap and hit rates of the AMS compounds selected by the RF-C and
Similarity Baseline models.

Selector Count Hits Misses Hit Rate (%)
RF-C or Similarity Baseline 1,024 412 612 40.23
RF-C 701 337 364 48.07
Similarity Baseline 705 256 449 36.31
RF-C and Similarity Baseline 382 181 201 47.38
RF-C but not Similarity Baseline 319 156 163 48.90
Similarity Baseline but not RF-C 323 75 248 23.22

Figure 2 showcases the hit accumulation as each model is provided a progressively larger

screening budget. The screening budget is based on the compounds selected by each model in

descending order of score. The RF-C model consistently outperforms the Similarity Baseline,

and the gap widens as we increase the budget. It is expected that this gap eventually closes

as the budget expands due to the finite active compounds in the AMS library. However,

for practical, cost-effective virtual screening, we are most interested in early hit retrieval

performance at small budgets.
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Figure 2: Budget versus Total Hits for the RF-C and Similarity Baseline models on the 1,024
selected AMS compounds. The RF-C performance is better than the Similarity Baseline for
all compound budgets, and the gap increases with the budget. The budget is the number
of top-ranked compounds evaluated. The total hits are the actives that would be found by
screening only those compounds.

2.3.2 Chemical Diversity of the AMS Active Compounds

The ideal virtual screening algorithm will not only prioritize many active compounds but

also identify chemically-diverse or structurally-novel hits. Clustering compounds by chemical

structure provides one way to assess chemical diversity. We clustered the union of the

training set of 427,300 compounds and the 1,024 ordered AMS compounds with a custom

implementation of the Taylor-Butina24,25 method using Tanimoto distances between the

compounds’ fingerprint representations, the same chemical features used by the models.

We define two diversity metrics: unique cluster hits and novel cluster hits. Using the 412

hits from the AMS library, we counted the number of unique clusters with at least one hit

regardless of whether or not these hits appeared in training set clusters. This cluster set

is defined as the unique clusters hits metric, which gives a measure of the hit diversity. In

addition, we calculated the novel cluster hits metric, which is the number of clusters that

contain AMS hits but do not contain any training set hits. Novel cluster hits measures how
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well a model was able to generalize to active chemotypes that were either unexplored or show

no hits based on the training set labels; this is similar to a novelty measure used by Sturm et

al.26 Table 3 summarizes these cluster hit metrics at a distance threshold of 0.4 (see Table S7

for other thresholds). The RF-C model substantially outperforms the Similarity Baseline in

both hit diversity metrics.

Table 3: Summary of cluster hit metrics on the 1,024 AMS selected compounds. Unique
cluster hits denotes the number of clusters containing at least one hit. Novel cluster hits
denotes the number of clusters containing AMS hits without an active cohort in the training
set. Taylor-Butina clustering with a distance threshold of 0.4 was used to compute clusters.

Selector Unique Cluster Hits Novel Cluster Hits
RF-C or Similarity Baseline 169 72
RF-C 142 61
Similarity Baseline 115 30
RF-C and Similarity Baseline 88 19
RF-C but not Similarity Baseline 72 44
Similarity Baseline but not RF-C 40 13

There is an association between the clusters defined using chemical structures and a

chemical’s % inhibition. We categorized compounds as weak, moderate, or strong actives

based on % inhibition ranges (Appendix B.2 and Table S8) and counted the number of weak,

moderate, and strong actives in each cluster. The different categories of active compounds

do not distribute uniformly across the chemical clusters (Fisher’s exact test p-value 0.0005).

Most strong and moderate actives concentrate in a few clusters.

In addition to identifying more active compounds than the Similarity Baseline, the RF-C

model also prioritizes compounds that are less similar to the training set actives. The Tan-

imoto distances from the RF-C model’s prioritized compounds to the most similar training

set active tend to be larger than those from the Similarity Baseline (Figure 3(a)). Inspecting

the five least similar, experimentally-confirmed hits from the RF-C model (Table S9) and the

Similarity Baseline (Table S10) illustrates these differences. The maximum distance from

RF-C is 0.57 compared to a maximum distance of 0.32 for the Similarity Baseline. The Sim-

ilarity Baseline is based solely on chemical similarity to the known actives so its prioritized
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compounds are mostly minor variations on these actives. In contrast, the RF-C model uses

information from both active and inactive training instances to rank compounds. Although

there are common substructures with the known actives, the AMS hits from RF-C are more

distant overall. The distance between the prioritized AMS compounds and their nearest

known active is not predictive of whether the prioritized compound will be active. The

distance distributions for AMS actives and inactives are similar when considering all 1,024

ordered compounds (Figure 3(b)), the compounds selected by the RF-C model (Figure 3(c)),

or the compounds selected by the Similarity Baseline (Figure 3(d)).

(a) (b)

(c) (d)

Figure 3: Tanimoto distance distributions of the 1,024 AMS compounds to nearest training
set actives. Denotes distribution of (a) 412 AMS hits based on the model (RF-C or Simi-
larity Baseline), (b) 1,024 AMS compounds based on hits and misses, (c) 701 RF-C AMS
compounds based on hits and misses, and (d) 705 Similarity Baseline AMS compounds based
on hits and misses.
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2.4 Enamine REAL Prospective Screening

We used the Enamine REAL dataset to demonstrate how our supervised learning workflow

can scale to much larger on-demand chemical libraries, maintain high predictive accuracy,

and recover highly potent active compounds. Scoring all 1,077,562,987 compounds in the

library with the RF-C model requires only tens of hours when parallelized on 18 servers with

modest resources (Appendix B.3 and Table S11). We sorted all compounds by their RF-C

score and requested a quote for the top-ranked 10,000 compounds. 5,620 of the 10,000 could

be delivered in less than a month, and we discarded the rest. Figure 4 (top panel) shows

the Tanimoto distance distribution of these 5,620 compounds to their nearest Training or

AMS active. Several Enamine compounds closely resemble known active compounds from

the training dataset with distances as low as 0.0. However, many compounds are far from

their closest training or AMS active with distances exceeding 0.5. Because these compounds

already represent the top 0.001% of predictions from the Enamine REAL pool, we next

optimized the chemical diversity and distance from the known actives (Section 4.9) and

selected 68 for screening. These 68 screened compounds have Tanimoto distances to the

most similar active ranging from 0.35 to 0.62 (Figure 4).

2.4.1 Enamine REAL Hits

To determine the hits for the 68 Enamine REAL compounds, we generated dose-response

curves. We first applied the same hit assignment criteria as the AMS screen and identified

31 initial hits, a 45.6% hit rate (Figure 5). The training set has a 0.13% hit rate, so a

random selection of 68 compounds is expected to yield no hits. Our prioritization process

selected top scoring compounds from different clusters in the prioritized Enamine set, which

were also distinct from clusters with active training or AMS compounds, so that the 31

active compounds each represent a unique cluster by design. Similar to the AMS screen, the

Enamine active and inactive compounds have no substantial difference in their Tanimoto

distances to the most similar known active (Figure 4).
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Figure 4: Tanimoto distance distribution of the 5,620 prioritized and 68 screened Enamine
REAL compounds to their nearest Training or AMS active. Middle and bottom panels show
the Tanimoto distance distributions of the inactive and active screened compounds using the
initial hit criteria.

When we examined the full dose response curves, we confirmed 28 compounds as hits

with IC50 values ranging from 1.3 to 37.8 µM (Table 4). Half of these hits had IC50 values

of 10.0 µM or less. The three most potent compounds (Figure 6) have the same most sim-

ilar known active compound, which is from the training set. These three and the nearest

active training instance share a common scaffold comprised of pyridine and pyrimidine rings

spanned by a hydrazone linker. Chemical differences reside on the 4- and 5-positions on

the pyrimidine substituent, ortho and para to the linker. Whereas the training compound

has 4-chloro and 5-amino substituents, Z1763598930 has only a 5-chloro substituent. In

Z734854148 and Z50106757, these positions serve as bridge carbons in purine and thienopy-

rimidine bicycles, respectively. Several of the confirmed hits contain the 1,10-phenanthroline
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Figure 5: Median % inhibition distribution of the 68 screened Enamine REAL compounds
at 33 µm. Compounds with % inhibition of at least 50 (red line) are considered initial hits.

substructure, which we previously identified as an active compound. However, the new

Enamine actives contain extensive modifications to this shared substructure with Tanimoto

distances to the nearest known active that are greater than 0.5. Even though the RF-C

model was only given a budget of 68 compounds to explore the billion compound Enamine

library, it identified tens of active compounds that are non-trivially related to all of the

known actives in the training data and AMS screen.
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Table 4: The 28 confirmed hits from the Enamine REAL compounds based on dose response
curves. The most similar known active compound from the training set or AMS compounds
is shown along with its Tanimoto distance to the Enamine hit. The similarity maps from
RDKit show similar substructures in green and dissimilar substructures in red. The IC50
values are shown along with the 95% lower and upper confidence limits.

Enamine

Hit

Nearest

Active

Similarity

Map

Tanimoto

Distance

IC50 µM

(lower, upper)

Z734854148

0.45 1.3 (1.2, 1.4)

Z1763598930

0.38 1.7 (1.6, 1.8)

Z50106757

0.45 2.7 (2.5, 2.9)

Z49571468

0.35 3.6 (3.1, 4.2)

Continued on next page
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Table 4 – Continued from previous page.

Enamine

Hit

Nearest

Active

Similarity

Map

Tanimoto

Distance

IC50 µM

(lower, upper)

Z3559392588

0.54 4.3 (4.0, 4.5)

Z3558428795

0.53 4.3 (4.1, 4.6)

Z3559518523

0.57 4.5 (4.2, 4.8)

Z2976359863

0.54 5.4 (5.1, 5.8)

PV-001914484112

0.41 6.1 (5.2, 7.2)

Continued on next page

17



Table 4 – Continued from previous page.

Enamine

Hit

Nearest

Active

Similarity

Map

Tanimoto

Distance

IC50 µM

(lower, upper)

Z339655406

0.36 6.8 (6.5, 7.2)

Z1101543176

0.35 7.0 (6.0, 8.2)

Z29466207

0.4 8.0 (6.6, 9.8)

Z3557629875

0.57 9.1 (8.4, 9.8)

Z240359708

0.39 10.0 (6.0, 16.8)

Continued on next page
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Table 4 – Continued from previous page.

Enamine

Hit

Nearest

Active

Similarity

Map

Tanimoto

Distance

IC50 µM

(lower, upper)

Z3557629872

0.56 10.8 (10.0, 11.7)

Z3295209363

0.55 11.5 (10.7, 12.4)

Z3395547714

0.38 12.1 (11.2, 13.0)

Z109132782

0.36 12.4 (11.6, 13.3)

Z3297024656

0.44 12.6 (11.8, 13.4)

Continued on next page
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Table 4 – Continued from previous page.

Enamine

Hit

Nearest

Active

Similarity

Map

Tanimoto

Distance

IC50 µM

(lower, upper)

Z3295052620

0.39 13.1 (12.0, 14.3)

Z3649501061

0.39 13.9 (13.2, 14.7)

Z1313381195

0.4 15.5 (12.1, 19.9)

Z1245633363

0.43 15.7 (14.3, 17.3)

Z1172208679

0.41 17.6 (12.2, 25.4)

Continued on next page

20



Table 4 – Continued from previous page.

Enamine

Hit

Nearest

Active

Similarity

Map

Tanimoto

Distance

IC50 µM

(lower, upper)

Z49711282

0.5 20.2 (15.8, 26.0)

Z1741972899

0.41 21.0 (16.6, 26.5)

Z3414110258

0.49 22.2 (19.6, 25.0)

PV-002421112068

0.4 37.8 (22.7, 63.0)
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(c) Z50106757

Figure 6: Dose response curves for the three Enamine compounds with the lowest IC50
values.

3 Discussion

Despite the many advances in machine learning approaches for ligand-based virtual screening,

few of these algorithms and pipelines have been validated with prospective chemical screens

or compared with appropriate baseline methods.27 Machine learning and virtual screening

tools are starting to be applied to score and prioritize millions to billions of compounds.12,28–30

There are some examples of experimentally evaluating those predictions,10,11,18–21,31–34 but

they remain rare. The strong results in our prospective evaluation of PriA-SSB inhibitor

predictions support the potential for similar machine learning-based virtual screening in

other drug discovery campaigns. The random forest model we selected generalized well to

the AMS library of over 8 million compounds and the on-demand Enamine REAL library

with over a billion compounds. These putative active compounds require further valida-

tion. The presence of false positive compounds in the training data, such as AlphaScreen

frequent hitters,35 could lead to prioritizing similar false positives in the AMS and Enamine

REAL collections. Nevertheless, the high hit rates, potency, and chemical diversity of our

prospective screens is quite encouraging.

Our PriA-SSB case study revealed some challenges of virtual screening on very large com-

mercial chemical libraries and limitations of our current approach. Compound availability in
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large libraries can change, especially when manually obtaining quotes for the desired com-

pounds. Real-time, automated access to available compounds could improve the screening

process. In addition, diversity of hits is important because it enables fruitful lead optimiza-

tion. Our random forest was trained only to predict inhibitors and was not concerned with

chemical diversity. For the AMS library, we did not filter the selected compounds based on

diversity. Rather, we ranked them by predicted activity score and assessed chemical diver-

sity post hoc. When moving to larger on-demand libraries like Enamine REAL, diversity

requires more formal attention. There are many highly similar or redundant compounds, so

prioritizing based on predicted activity alone can concentrate the selected compounds in an

undesirably small number of chemical clusters. When selecting Enamine REAL compounds,

we used heuristics such as cluster membership and Tanimoto distance from known actives to

promote diversity. Related work prioritized the compound with the highest predicted score

per cluster.20

We primarily used Taylor-Butina24,25 clustering to quantify chemical diversity because

it groups compounds with similar chemical structures, but there is no universally accepted

way to calculate the diversity of a compound pool. Taylor-Butina clustering is susceptible

to the order in which the compounds are processed and can result in different clusterings.

For example, an active may have been clustered earlier than an inactive that is within cutoff

distance. However, in three settings of the Taylor-Butina algorithm with varying distance

thresholds, our conclusions about the diversity of actives are consistent. The RF-C model

outperforms the Similarity Baseline in both unique and novel cluster hits (Tables 3 and S7),

confirming it can prioritize novel chemical structures that are not present in the training

data.

There are open questions about when our approach to virtual screening on very large

compound libraries is applicable. In this study, we had access to a large training set with

427,300 screened compounds and 554 actives. A typical target will have far fewer screened

compounds and known actives at the start of the drug discovery process. Virtual screen-
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ing will have greater impact if it can succeed without requiring an initial high-throughput

chemical screen to train models. Future work can explore the tradeoffs between training

set size and prospective accuracy in compounds selected from large libraries. The amount

of available training data may also affect the choice of machine learning model for virtual

screening.

Accurate virtual screening algorithms are essential for expanding into on-demand chemi-

cal libraries in which purchasing and screening all compounds is impossible. With an efficient

and accurate computational strategy to explore that large chemical space, the best case out-

come is far superior to a traditional high-throughput chemical screen. The large libraries can

provide access to many more hits and higher quality hits with respect to chemical diversity

and other desirable properties, as exemplified by the potent PriA-SSB inhibitors we iden-

tify. Our simple supervised learning approach has a high hit rate, good chemical diversity,

and can scale to on-demand libraries. Scoring over one billion compounds takes less than

1,000 CPU hours and can be trivially parallelized to score even larger chemical libraries in

the future. In contrast, the computational costs of structure-based scoring of a library of

this magnitude are prohibitive. One recent structure-based study required approximately 5

million CPU hours to evaluate 1.3 billion compounds.11 Another used 27,612 GPUs to score

1.37 billion compounds in less than 24 hours.30

Virtual screening of ultra-large on-demand libraries presents both opportunities and new

challenges. One concern is the possibility of getting buried by false positives due to biases

or quirks in the scoring model that are not detected during model validation.36,37 Models

may erroneously recognize uncommon or exotic chemical features as important to activity

due to limitations or mislabeled instances in a ligand-based model’s training set or unsuit-

able parameters in a structure-based model’s scoring function. The mishandled molecular

features could be rare enough in smaller libraries that they account for only a small num-

ber of false positives and go unnoticed during model development. However, the sheer size

and chemical diversity of ultra-large libraries could cause the top scoring compounds to

24



be dominated by such errors. We are encouraged that these potential issues did not arise

in our large-scale ligand-based virtual screen or the largest structure-based virtual screens

noted above. Although innovative algorithms will continue to advance virtual screening ca-

pabilities, probing the practical challenges of computationally-guided screening in ultra-large

libraries necessitates prospective experimental testing.38 The success of our two prospective

screens showcases supervised learning as a powerful approach for navigating large on-demand

chemical libraries in future drug discovery campaigns.

4 Methods

4.1 PriA-SSB Datasets

We trained virtual screening models on new and previously generated datasets for the PriA-

SSB target.22,39 This target is a protein-protein interaction that is involved in bacterial

DNA replication and was considered as a candidate target for antibiotics development.40

The compounds in these datasets come from four batches of a Life Chemicals Inc. (LC)

library designated LC1-LC4 and the Molecular Libraries Probe Production Centers Network

(MLPCN) library (Table 5). The compounds considered for prospective evaluation come

from the in-stock AMS library and the on-demand Enamine REAL library.3

Table 5: Chemical libraries and compound counts. The training dataset is merged from the
LC1234 and MLPCN libraries.

Stage Library # Compounds
Pre-processing LC123 (Primary and Retest) 74,763
Pre-processing LC4 (Primary) 25,278
Pre-processing MLPCN (Primary and Retest) 337,104
Hyperparameter Tuning
Model Selection
Prospective

Training set 427,300

Prospective AMS 8,187,682
Prospective Enamine REAL 1,077,562,987
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4.1.1 Training Data Chemical Screening and Preprocessing

We screened the MLPCN compound library using an AlphaScreen (AS) assay at a single

concentration (33.3 µm) following the same protocol previously used to screen the LC1234

libraries.22,39 Briefly, library compounds and controls were dispensed from 10 mM DMSO

stocks into white 1,536-well plates with an Echo 550 acoustic liquid handler. Next, 3 µL of a

master mix was added to each well using a Mantis liquid handler with a high-volume silicone

chip to yield a final reaction mixture containing 10 mM HEPES-HCl (pH 7.5), 150 mM

NaCl, 1 mM MgCl2, 10 mM dithiothreitol, 1 mg/mL bovine serum albumin, 0.01% Triton

X-100, 0.1 µM PriA (with N-terminal 6XHis tag), 0.1 µM Biotinylated-SSBct (N-Biotin-

Trp-Met-Asp-Phe-Asp-Asp-Asp-Ile-Pro-Phe-C), 5 µg/mL of both AS acceptor and donor

beads, and 33.3 µM of compound. For positive and negative control wells, the compound

was replaced with 25 µM SSBct peptide (N-Trp-Met-Asp-Phe-Asp-Asp-Asp-Ile-Pro-Phe-C)

or 25 µM ∆FSSBct (N-Trp-Met-Asp-Phe-Asp-Asp-Asp-Ile-Pro-C), respectively. Plates were

centrifuged briefly and rocked for an hour at room temperature. Then, the AS signal of each

well was measured with a PheraStar plate reader using a 0.1 s settling time, 0.3 s excitation,

a 0.04 s delay, and a 0.6 s integration time. AS signals for each well were adjusted as

previously described to reduce the impact of plate and edge effects.39 We calculated a Z’

factor for each plate41 and repeated plates with Z’ < 0.5. In addition, we calculated the %

inhibition relative to the controls for each compound. We retested compounds with ≥ 35%

inhibition and that passed PAINS filters42,43 with the same assay to confirm activity.

We compiled the training dataset by merging the MLPCN screening data with the LC1234

screening data (Table 5). We defined active compounds, also referred to as hits, by requiring

the median % inhibition of the primary screens is ≥ 35%, the median % inhibition of the

retest screens is ≥ 35%, and the compound does not match a PAINS filter (Appendix A.1).

The merged training dataset contained 427,300 compounds with 554 actives. We split the

training data into 10 folds for cross validation. The splitting method takes into account

library information (LC1234 and MLPCN) by grouping the molecules based on their libraries
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and then stratifying each of these groups into 10 folds that maintain roughly the same binary

activity label distribution.

4.2 Feature Generation and Clustering

We used RDKit Morgan fingerprint features44,45 for all virtual screening methods. We con-

verted each compound SMILES to an RDKit mol object, removed salt counter ions using

RDKit’s SaltRemover function, and generated a Morgan fingerprint with length 1,024 and

radius 2. Using the fingerprints, we then defined molecule relationships based on Tanimoto

distance, which is equivalent to Jaccard distance. To judge chemical diversity, we used

Taylor-Butina24 25 clustering at various Tanimoto distance thresholds (0.2, 0.3, and 0.4).

Taylor-Butina takes a distance threshold as input that forces compounds within the same

cluster to be within that threshold. Table S12 summarizes the number of compounds, num-

ber of clusters, and number of unique clusters that are in each cross-validation fold. The

number of unique clusters that are in a given fold but not the others can measure a virtual

screening model’s ability to generalize. Because we generated cross-validation folds by split-

ting on library and activity instead of cluster membership, the clusters are not uniformly

distributed across folds.

4.3 Virtual Screening Methods

We considered a variety of supervised learning ligand-based virtual screening algorithms.

Most of these could be trained in a classification setting to predict binary activity as well as

a regression setting to predict the % inhibition, which is indicated by appending -C or -R,

respectively, to the model name.

Random Forest (RF): A RF model consists of a collection of base learners, typically

decision trees.16 Each base learner is trained on random subsamples of the training data

with replacement. This process is known as bootstrap aggregation (bagging), which helps

to combat overfitting.46 Furthermore, individual decision trees are split on random sub-
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sets of the features, which further helps to combat overfitting.16,47 Classification is done by

aggregating the votes from the base learners. We used the scikit-learn random forest im-

plementation.48 The RF hyperparameters include the number of base learners, number of

features, leaf node samples, and class weights (Table S13). Because RF-R regression models

grew too large under some hyperparameter settings, we ultimately only considered RF-C

classification models.

eXtreme Gradient Boosting (XGB): XGB is an ensembling method that is based

on the concept of gradient boosting.49–51 It builds the base learners sequentially, where

each learner is built to reduce a loss function whose terms include the gradients (residuals)

of previously built learners. As a result, each consecutively built learner aims to correct

the mistakes of past learners using the gradients. We use the XGBoost Python package

implementation.51 The XGB hyperparameters involve varying the maximum depth, learning

rate, and number of estimators (Tables S14 and S15).

Neural Network (NN): A NN consists of a series of hidden layers corresponding to

weight matrices followed by non-linear activation functions. The process of forward propa-

gating the input along the hidden layers via matrix multiplication is repeated until a final

output layer is reached, which makes a prediction. The weight matrices are trained by gra-

dient descent on the loss of the output; the technique is called backward propagation. Our

implementation uses Keras52 with the Theano backend53 and the Adam optimizer.54 The

NN hyperparameters involve varying the learning rate, drop out, and multi-layer perceptron

architecture (Tables S16 and S17).

Ensembles: The ensemble models combine predictions from multiple existing models,

which are referred to as base models. Max Vote Ensemble applies the max function and

outputs the largest value from the base models. The Model-Based Ensemble is a stacking

ensemble method,55 which consists of two layers: several base models as the first layer and

another classifier as the second layer. In the first layer, multiple classification and regression

models (the base models) output the predicted values for each molecule. In the second
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layer, another classifier (the ensemble model) is trained to balance the output values from

the base models. In this way, the simple classifier from the second layer can ensemble the

performance from different base models. Finally, all the base models are retrained on the

complete training data, passing through an ensemble model to get the final prediction value.

Both ensemble methods incorporate a subset of the best models from the hyperparameter

tuning stage and have 13 hyperparameter sets that vary the base models used (Table S18).

Details of the ensemble training are described in Appendix A.8 and Figure S3.

Similarity Baseline: The baseline model represents a simple strategy for prioritizing

compounds based on their similarity to known actives.56,57 It ignores the inactive compounds

in the training data. Given the known actives in the training data and a query molecule, the

Similarity Baseline calculates the Tanimoto similarity between each active and the query.

The maximum Tanimoto similarity is returned as the query molecule’s score. Therefore,

query molecules whose fingerprints are most similar to those of known actives are prioritized.

4.4 Performance Metrics

The computational models generate different types of scores, such as the probability a com-

pound is active or the predicted % inhibition. In all cases, compounds can be sorted by these

scores so that those most likely to be active are first. We consider performance metrics that

are based only on these compound ranks. For instance, one can move from most likely to

be active to least likely, applying thresholds to compute the true-positive rate (TPR), false-

positive rate (FPR), recall, and precision. If one plots the TPR versus FPR and computes

the area under the curve (AUC), the resulting metric is the AUC of the Receiver Operating

Characteristic curve (AUC[ROC]). The AUC[ROC] serves as a general metric for comparing
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performance among models as it does not focus on early or late retrieval exclusively.

TPR =
TP

TP + FN
, FPR =

FP

FP + TN
(1)

Recall =
TP

TP + FN
, Precision =

TP

TP + FP
(2)

Similarly, the average precision (AVG[PR]) summarizes a precision-recall curve across dif-

ferent thresholds. Using scikit-learn’s48 implementation, the AVG[PR] metric computes the

precision P and recall R at each threshold k, then sums as follows:

AV G[PR] =
∑
k

(Rk −Rk−1)Pk (3)

This avoids interpolation issues with computing the AUC of the PR curve. The AVG[PR]

gauges the overall retrieval and correctness of actives as we increase the threshold.

Enrichment factor (EF) computes the ratio between the number of actives found by a

model in its top k selected compounds versus a random selection of k compounds. We

normalize EF by the maximum EF possible for a perfect model. Given a fraction R ∈

[0%, 100%], we compute the normalized enrichment factor (NEFR) as follows:

EFR =
# actives in top R ranked compounds

# actives in entire library × R
(4)

EFmax,R =
min{# actives, total # compounds × R}

# actives in entire library × R
(5)

NEFR =
EFR

EFmax,R

(6)

We use NEF1% to assess the early retrieval performance in the top 1% of compounds ranked

by a model.
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4.5 Pipeline Overview

We follow a four stage pipeline: hyperparameter tuning, model selection, and two prospective

screening stages. The hyperparameter tuning stage considers many hyperparameter combi-

nations and filters them to the top 20 per model class (with ties). The model selection stage

includes the best models from the hyperparameter tuning stage and introduces ensembles

that combine these best models. This stage selects a single model for prospective evaluation.

The AMS prospective stage uses the best selected model from the model selection stage and

the Similarity Baseline to prioritize compounds from the AMS dataset. The Enamine REAL

prospective stage uses that same best selected model from the model selection stage to prior-

itize compounds from the Enamine REAL dataset. Table 6 summarizes the hyperparameters

per stage for each model class.

Table 6: The number of hyperparameter configurations evaluated for each model class at
each stage. The pipeline culminates with a single top performing model. The Similarity
Baseline was added as a control in the model selection and AMS prospective stages.

Model Hyperparameter Tuning
Model

Selection
AMS

Prospective
Enamine

Prospective
RF-C 216 21 1 1

XGB-C 1,000 21 - -
XGB-R 1,000 21 - -
NN-C 432 20 - -
NN-R 432 20 - -

Similarity Baseline - 1 1 -
Model-Based Ensemble - 13 - -

Max Vote Ensemble - 13 - -
Total 3,080 130 2 1

4.6 Hyperparameter Tuning

The purpose of the hyperparameter tuning stage is to prune the large number of hyperpa-

rameter settings to the top 20 (with ties) for each of the base model classes: RF-C, XGB-C,

XGB-R, NN-C, and NN-R. For this stage, we only use the first eight folds of the 10-fold

training set. The last two folds are reserved for building ensemble models and assessing test
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set performance in the subsequent model selection stage. For each hyperparameter setting,

we conducted four cross-validation runs with different combinations of the first 8-folds (Ta-

ble S1). For each cross-validation run, we record the test fold performance on AUC[ROC],

AVG[PR], and NEF1%.

4.7 Model Selection

We consider the top 20 (with ties) hyperparameter sets from the hyperparameter tuning

stage for each base model class based on mean performance of NEF1%. This gives a total of

103 selected models (3 are selected due to ties). We train all of the candidate models (103

base models + 1 Similarity Baseline + 26 ensembles for a total of 130 models) a single time.

We use folds 0 through 7 for training, fold 8 for validation, and fold 9 for testing. This yields

a total of 130 performance measures on AUC[ROC], AVG[PR], and NEF1%. The single top

performing model is selected for the two prospective screening stages. In the RF model class,

three models were tied in NEF1%. To break the tie, we used AVG[PR] to select the best RF

model.

Our original intention was to select the final prospective model based on fold 9. From

Table 1, this would be RF-C model with hyperparameter ID 14. However, the final prospec-

tive model was inadvertently selected based on hyperparameter tuning stage performance

instead. This best model was also an RF-C model with hyperparameter ID 139 and fold 9

performance 0.94, 0.17, and 0.62 for AUC[ROC], AVG[PR], and NEF1%, respectively. This

RF-C model is still better than the top performers from other model classes on the NEF1%

metric that we used to select the model. Furthermore, selecting on the hyperparameter tun-

ing stage performance is still a valid approach to select a model for the prospective evaluation

because it uses cross validation.
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4.8 AMS Compound Selection and Screening

The AMS prospective stage uses two models: the best performing model from the model

selection stage (an RF-C model) and the Similarity Baseline. Both models are retrained on

all 10 folds and then predict scores on the AMS library, which contains 8,187,682 compounds

after removing compounds that are also in the training data. First, the RF-C and Similarity

Baseline models each select the top 1,500 ranked compounds based on their prediction scores.

This produces two lists with many compounds present in both lists. In an effort to maximize

the number of compounds that could be purchased, we removed compounds that cost >$75

for the smallest sample, had delivery time >21 days, or came from vendors providing fewer

than six compounds in our list. After filtering, we took the union of the remaining top 600

compounds from the RF-C model and the top 600 from the Similarity Baseline model. We

ordered the 1,028 unique compounds in the union that were still available for purchase from

AMS. When evaluating the hit rate for the RF-C and Similarity Baseline models, we con-

sidered not only their top 600 ranked predictions after filtering but rather all compounds we

ordered that were in their original top 1,500 ranked compounds. For example, the compound

ranked 73 by the RF-C and 986 by the Similarity Baseline is considered to be predicted by

both models in Table 2.

After receiving the 1,028 compounds, we conducted two replicate screens following the

same protocol described above for the MLPCN library. We excluded four compounds because

they could not be dissolved and plated. We analyzed the % inhibition distributions for the

1,024 screened compounds for each replicate individually to determine the hit criteria (Figure

S4). For a large random screen, we could set the % inhibition cutoff some standard devia-

tions above the mean.41 Thus, we could use the same MLPCN threshold of 35% inhibition.

However, these AMS screens were targeted towards likely active compounds. Therefore, we

applied a more stringent cutoff of 50%, which is the smaller % inhibition distribution mean

from the two replicates (Figure S4). In addition to requiring at least 50% inhibition in both

replicates, we also required active compounds to not match a PAINS filter.42,43
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4.9 Enamine REAL Computational Scalability, Compound Selec-

tion, and Screening

The Enamine REAL database3 consisted of 1,077,562,987 compounds when we downloaded

it on October 11, 2019. To estimate computational scalability of scoring compounds with the

RF-C model from the model selection stage, we split the REAL dataset into 18 batches of

about 60.3 million compounds each. Each batch was run as a job on a generic CPU compute

node at the University of Wisconsin-Madison Center for High-Throughput Computing using

HTCondor.58 Each job processes the batch by generating the chemical fingerprint features

and then making activity predictions using the RF-C model. The model was trained only

on the training set, not the 1,024 AMS compounds.

After scoring the entirety of Enamine REAL, we requested a quote for the top 10,000

ranked compounds. We then pruned the list to 5,620 compounds based on availability of

starting materials and delivery constraints. We clustered the training set compounds, the

1,024 AMS compounds, and the 5,620 Enamine REAL compounds using Taylor-Butina with

a 0.4 distance cutoff. We used these clusters to select a final list for purchase, seeking com-

pounds that were predicted to be highly active, were chemically diverse, and were chemically

dissimilar from known active compounds in the training set and AMS set.

To emphasize novel chemical structures, we retained only Enamine REAL clusters that

did not contain an active compound from the training set or the AMS set. We were interested

only in clusters that the model predicts to have actives despite not belonging to a cluster with

known actives. This filter reduced the Enamine REAL list from 5,620 to 2,679 compounds.

Next, we retained only compounds that pass the PAINS42 filter, Inpharmatica filter, and

Lipinski’s rule of five. The PAINS filter used RDKit’s FilterCatalog. The Inpharmatica

and Lipinski filters used rd filters (https://github.com/PatWalters/rd_filters).59 This

filtering step reduced the Enamine REAL list from 2,679 to 1,604 compounds. Because

over 1,000 compounds remained, we further emphasized chemical diversity by only retaining

compounds that had a Tanimoto distance ≥ 0.35 from the closest training set active and
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AMS active. This filter reduced the Enamine REAL list from 1,604 to 1,354 compounds.

For the remaining clusters, we selected the highest scoring predicted active as the rep-

resentative. This selection reduced the Enamine REAL list from 1,354 to 311 compounds.

Finally, we selected 100 diverse compounds from the remaining list via iterative Tanimoto

distance selection. In the first iteration, the compound with highest activity prediction is

selected. Then, the greedy method iteratively selects the candidate compound that is most

distant to the already selected compounds until 100 compounds are selected.

We requested an updated quote for these 100 compounds. Only 90 of the 100 selected

compounds were still available in stock or in the REAL database. The other 10 required

custom chemistry, which is more expensive and has a longer delivery time. We ordered the

90 that did not require custom chemistry. Synthesis failed for 22 of the 90 compounds, so

we screened 68 Enamine compounds against PriA-SSB.

All 68 compounds were initially screened in four replicates at eight concentrations ranging

from 515.6 nm to 66 µm. We defined compounds whose median % inhibition at 33 µm was at

least 50%, the same threshold used for the AMS screen, as initial hits. We repeated the dose

response curve screens for two additional rounds of ten compounds each, expanding the range

of concentrations tested to improve the quality of the curve fits (Appendix A.9). We defined

confirmed hits as those with a dose response curve in curve class60 1.2 or in curve class 2.2

with an IC50 95% upper confidence limit within the tested range of concentrations. We used

the Collaborative Drug Discovery Vault software61 to fit dose response curves, calculate IC50

values and the 95% upper and lower confidence limits, and define curve classes.

4.10 Software and Data Availability

Our Python implementation and conda environments with the required Python packages are

available on GitHub (https://github.com/gitter-lab/pria-ams-enamine) and archived

on Zenodo (doi:10.5281/zenodo.5551235). The chemical screening datasets are available at

PubChem (AID: 1272365) and Zenodo (doi:10.5281/zenodo.5348290).
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A Supplementary Methods

A.1 Training Data Preprocessing Overview

Here we describe in detail how we preprocessed the LC and MLPCN screening data in

Table 5 to create the 427,300 compound training dataset. At the time this dataset was

assembled, the LC4 retest dataset was not available so hits were defined using only the LC4

primary screen. The first preprocessing step involved merging the three primary and two

retest screens.

1. Primary screen for 74,896 LC123 compounds.

2. Retest screen for 2,698 LC123 compounds.

3. Primary screen for 25,290 LC4 compounds.

4. Primary screen for 337,990 MLPCN compounds.

5. Retest screen for 1,400 MLPCN compounds.

Merging these datasets yields a total of 442,274 entries; a compound can have multiple

readings. This dataset is then processed to determine the binary activity of each compound.

Specifically, for each compound, the scores are grouped, and three criteria are assessed: the

median % inhibition of primary screens is ≥ 35%, the median % inhibition of retest screens

is ≥ 35%, and the compound does not match a PAINS filter.42,43 A compound is deemed

active if it meets all three conditions. Finally, the training dataset is constructed such that

it contains one row per compound that includes its binary activity label and its median

inhibition score based on all recorded primary inhibition scores.

A.2 Merged Dataset Structure

Each of the original screening data files have eight columns: SMSSF ID, CDD SMILES,

Batch Name, Library ID, Plate Name, Plate Well, Run Date, PriA-SSB AS %
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inhibition. We created a combined dataset with the following columns:

1. Molecule ID: uniquely identifies a molecule. A non-negative integer.

2. Duplicate ID: denotes the duplicate number (replicate). This is done so that the

same molecule can have multiple % inhibition readings; allows grouping by ‘Molecule

ID’.

3. SMSSF ID: molecule ID used by the screening facility.

4. Batch Name: used at the screening facility for screening batch identification. Not

used in this project.

5. Library ID: the libraries that contain the molecule: LC1, LC2, LC3, LC4, and

MLPCN. Note that a molecule can be in multiple libraries.

6. Plate Name: specifies the plate identifier for this molecule. Can help identify retests

if Plate Name contains the text CP.

7. Plate Well: specifies the well row-column location of the molecule on the plate.

8. Run Date: specifies the date the data was entered into Collaborative Drug Discovery

(CDD) software.

9. CDD SMILES: the CDD software SMILES string of the molecule.

10. rdkit SMILES: rdkit canonical smiles of the molecule. This is used for uniqueness

identification of molecules.

11. MorganFP: rdkit Morgan fingerprint of the molecule.

12. PriA-SSB AS % inhibition: the % inhibition score of the molecule.

13. PriA-SSB AS Activity: the binary activity {0, 1} of the molecule.
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14. Primary Filter: is active (denoted as 1) if the median of the primary screens for this

molecule is greater than or equal to binary threshold.

15. Retest Filter: is active (denoted as 1) if the median of the retest screens for this

molecule is greater than or equal to binary threshold.

16. PAINS Filter: is active (denoted as 1) if the molecule is not reported as a PAINS

compound by the rdkit PAINS filter.

A.3 Ensuring Uniqueness

There are two types of repeated molecules for which we retain all measurements. The first

is molecules that were experimentally tested more than once, which we generally refer to as

replicates. Molecules can be tested more than once because they belong to multiple libraries

(e.g., LC1 and MLPCN) or they were included in a primary and a retest screen. The

other type of repeated molecules has different SMSSF IDs but the same rdkit SMILES

due to salts. These molecules with the same SMSSF ID or the same rdkit SMILES are

grouped together. The grouping operation assigns them the same Molecule ID and different

Duplicate IDs. This allows us to compute aggregate % inhibition scores by grouping on

Molecule ID.

In addition to grouping replicate measurements, we also ensure that a single experimental

measurement is not erroneously recorded twice. Entries in the combined dataset should not

match in the following columns: SMSSF ID, Plate Name, Plate Well, Run Date,

PriA-SSB AS % inhibition. If two entries match on these columns, the same data has

been copied so one entry is removed.

A.4 Preprocessing Steps

The preprocessing steps for the combined dataset are as follows:

1. Read in the merged five individual measurement files.
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2. Remove 140 outliers with % inhibition ≤ -100.0 based on inspection of the % inhibition

distribution.

3. Remove rows with missing values. Some molecules had SMSSF ID present, but other

entries like CDD SMILES, Plate Name, etc. missing.

4. Define unique identifiers for each row to [SMSSF ID, Plate Name, Plate Well,

Run Date, PriA-SSB AS % inhibition]. Assert that there are no duplicates on

the uniqueness columns.

5. Add rdkit SMILES and fingerprints. Remove salts using rdkit’s SaltRemover and

Salts.txt (https://github.com/rdkit/rdkit/blob/master/Data/Salts.txt).

6. Add Molecule ID and Duplicate ID placeholders. Group molecules that have the

same SMSSF ID or rdkit SMILES giving them the same Molecule ID and in-

creasing Duplicate ID.

7. Generate binary labels PriA-SSB AS Activity according to binarization rules below.

8. Save the combined dataset containing 441,900 molecules.

A.5 Binary Activity Rules

Molecules can have up to four % inhibition score measurements (same Molecule ID but

different Duplicate ID). We defined the following rules for creating binary activity labels

for training classifiers:

1. The median % inhibition value over all primary screens of the molecule is ≥ 35%.

2. If one or more retest screens were conducted, the median % inhibition value over all

retest screens of the molecule is ≥ 35%.

3. The molecule does not match a PAINS filter per rdkit’s FilterCatalog.
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These rules are applied to all molecules individually by grouping using the Molecule ID.

The binary activity label is assigned to all instances of the molecule identified by Molecule

ID.

A.6 Generating the Training Dataset

The combined dataset can have many % inhibition readings for a single molecule. The train-

ing dataset will contain a single entry for each unique molecule identified by its Molecule

ID. It is generated as follows:

1. Read in the combined dataset.

2. Remove retests, leaving the primary screens. Recall that the binary activity is still

recorded in the primary entries.

3. Standardize Library IDs to support stratifying by library.

4. Group by Molecule ID and compute the median % inhibition for the primary screens

in the PriA-SSB AS % inhibition (Primary Median) column.

5. Save this as the training dataset.

Each entry in the training dataset has a unique Molecule ID and is thus regarded as

a unique molecule. The method to generate folds for cross validation starts by grouping

molecules based on the Library ID column. The next step performs stratified sampling on

each Library ID value, grouping it into 10 folds based on the binary activity labels. This

ensures that each library is well represented in each fold and the activity ratios are similar.

For example, if LC1 has 1,000 total molecules with 10 actives, then each of the 10 folds will

have 1 LC1 active and 99 LC1 inactives.
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A.7 Hyperparameters

Here we enumerate the hyperparameters for the STNN-C, STNN-R, RF-C, XGB-C, and

XGB-R models. We performed grid searches over the hyperparameter values in the tables

below. Each combination of hyperparameters in the grid search was assigned a numeric ID.

The mapping from numeric IDs to hyperparameter combinations is available in our GitHub

repository.

For each model, we report the top-performing hyperparameter IDs sorted by performance.

Some training jobs took over a week to complete. We recorded results for all the jobs that

terminated within a week and randomly picked additional long jobs to run to termination.

The remaining long jobs are reported below as missing hyperparameter IDs because they

did not generate results.

Table S13 shows the 216 hyperparameters for Random Forest-Classification. Top 20

(with ties) hyperparameter IDs: 139, 69, 111, 210, 148, 212, 28, 61, 124, 130, 131, 141, 14,

38, 165, 65, 123, 94, 3, 88, 72. Missing hyperparameter IDs: 5, 6, 19, 23, 24, 26, 27, 29, 37,

47, 52, 64, 71, 75, 91, 101, 113, 114, 126, 133, 136, 137, 145, 153, 156, 158, 160, 167, 168,

179, 187, 189, 191, 193, 201, 208.

Table S14 shows the XGBoost-Classification hyperparameters. There are 1,866,240 hy-

perparameter combinations from which we randomly select 1,000. Top 20 (with ties) hyper-

parameter IDs : 140, 967, 807, 263, 694, 440, 47, 116, 792, 663, 32, 564, 950, 84, 364, 605,

431, 55, 388, 960, 735. No missing hyperparameter IDs.

Table S15 shows the XGBoost-Regression hyperparameters. There are 829,440 hyperpa-

rameter combinations from which we randomly select 1,000. Top 20 (with ties) hyperparam-

eter IDs are: 187, 880, 514, 605, 754, 6, 321, 753, 294, 718, 280, 214, 545, 507, 81, 65, 440,

409, 586, 721, 911. Missing hyperparameter IDs are: 56, 120, 434, 589, 708, 874.

Table S16 shows the 432 hyperparameters for Single-task Neural Network-Classification.

Top 20 hyperparameter IDs: 356, 88, 180, 5, 416, 183, 47, 124, 93, 385, 54, 423, 363, 370,

215, 415, 29, 132, 254, 404. Missing hyperparameter IDs: 7, 35, 48, 69, 73, 79, 91, 92, 95,
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97, 113, 120, 122, 126, 137, 138, 142, 143, 166, 225, 231, 234, 237, 239, 251, 261, 275, 281,

284, 294, 297, 301, 303, 314, 317, 320, 336, 338, 340, 341, 342, 346, 368, 369, 372, 376, 378,

380, 382, 384, 389, 391, 395, 398, 399, 403, 420, 429, 431.

Table S17 shows the 432 hyperparameters for Single-task Neural Network-Regression.

Top 20 hyperparameter IDs: 47, 199, 175, 27, 178, 20, 114, 106, 157, 270, 123, 191, 323, 369,

265, 17, 45, 115, 108, 67. Missing hyperparameter IDs: 7, 15, 26, 69, 92, 93, 137, 138, 166,

231, 234, 237, 281, 297, 303, 336, 338, 341, 346, 380, 398, 403.

A.8 Ensemble Model Training

The Model-Based Ensemble and Max Vote Ensemble models are introduced in the model

selection stage. Both ensemble models make use of N base model predictions as input and

produce a single activity probability prediction as output. The Max Vote Ensemble uses

a heuristic strategy that takes the maximum of the base model predictions. On the other

hand, the Model-Based Ensemble trains an XGB model with the base model predictions as

input.

The steps for training the ensemble models (depicted in Figure S3) are as follows:

• Step 1: The base models are trained on folds 0-8 with fold 8 being used as the

validation fold. The RF and Similarity Baseline models do not require a validation set,

so they do not make use of fold 8.

• Step 2: The trained base models from step 1 are then used to generate predictions

for folds 0-7 and fold 9.

• Step 3: All N base model predictions from step 2 for folds 0-7 are concatenated

(stacked) to construct ensemble features. The Model-Based Ensemble is then trained

with these ensemble features as input and the true labels as output for folds 0-7. For

the Max Vote Ensemble, no training is needed as the output is just the maximum of

the ensemble features.
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• Step 4: All N base model predictions from step 2 for fold 9 are concatenated. The

trained ensemble from step 3 is then used to generate the final fold 9 prediction with

the concatenated features as input.

There are several ways in which our ensembling approach could be improved. In a typical

stacking ensemble,55 the ensemble is trained on predictions that the base models did not train

on. If the training set is denoted as A, then one common stacking method is to do K-fold

cross validation with the base models and then use the stacked K held-out fold predictions

to train the ensemble. Another strategy is to split A into two subsets, one for training the

base models, and one for generating base model predictions to train the ensemble. However,

we train the base models on a dataset A, generate predictions on A, and train the ensemble

on these predictions. This can introduce a bias in a parameter-based ensemble like Model-

Based Ensemble towards favoring base models that have a better fit on A. The Max Vote

Ensemble does not have this potential bias because it is parameter free.

In addition, we could have used a more flexible and thorough strategy to select the base

model mixtures and excluded ensemble configurations with a single base model (Table S18).

In retrospect, we observed that including regression models in the ensembles hurt perfor-

mance (Figures S1 and S2). Furthermore, the regression base model outputs were not scaled,

which could be detrimental to the Max Vote Ensemble when combining classification and

regression models. The Model-Based Ensemble is less affected by the scale of the regression

model outputs because its XGB model can account for different score distributions provided

by each base model.

A.9 Enamine REAL Dose Response Curves

We generated three sets of dose response curves: eight-point curves with four replicates

for all 68 compounds, 16-point curves with eight replicates for 10 compounds, and another

set of 16-point curves with six replicates for 10 compounds. The initial eight-point dose

response curves started with an initial concentration of 66 µm and progressively divided the
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concentration in half until reaching 515.6 nm. Both 16-point dose response curves started

with an initial concentration of 100 µm, then 66.7 µm, and then progressively divided the

concentration in half until reaching 4.2 nm. All dose response screens followed the same

protocol used for the MLPCN library.

We generated the 16-point dose response curves because we were unable to reliably estab-

lish IC50 values for some compounds in the eight-point screen. The minimum concentrations

tested were not low enough. When reporting IC50 values and bounds in Table 4 we used

the screening data from the highest-quality dose response curve. The second set of 16-point

curve were the highest quality because they had 16 concentrations and were unaffected by

any spatial plate effects. The first set of 16-point curve were the next highest quality because

they also had 16 concentrations and the most replicates. However, some of the readings at

the lowest concentration in these curves were skewed due to assay spatial effects at the plate

edge. The eight-point curves were used only if the compound was not tested in a 16-point

curve. Some of the replicates at the lowest concentration in the eight-point curves were also

affected by the spatial effects.

The Collaborative Drug Discovery Vault software61 modifies the original dose response

classification criteria.60 It defines curve class 1 as a “complete curve, showing multiple points

near both asymptotes” and curve class 2 as a “partial curve, showing multiple points near

only one asymptote.” The 1.2 and 2.2 subclasses indicate that the curve fit has R2 > 0.9

and maximum activity ≤ 80%.

B Supplementary Results

B.1 Base Model versus Ensemble Model Actives

In the model selection stage, fold 9 was used for performance comparison among models.

The motivation for using ensembles was to pool the predictions of various models and thus

promote diversity in the top predicted compounds. We compared the prediction overlap
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between the ensembles and the best base models in the model selection stage (Table 1).

Specifically, for each top base model, we compared the top 1% predicted compounds from

fold 9 against the top 1% predicted by the ensembles (Tables S2, S3, S4, S5, and S6). This

examines the similarity and difference in the actives retrieved by the top base models and

the ensembles.

Note that the predictions for the Model-Based Ensemble were regenerated using a newer

version of Keras. The performance of the regenerated ensemble and the ensemble referred

to in Table 1 differs by no more than 10−3.

B.2 AMS Activity Level versus Cluster Membership

The 1,024 AMS prospective compounds were delineated into three activity level categories

based on their % inhibition values in the two replicates:

• Weak Actives: Compounds with % inhibition in [35.0, 50.0) in both replicates. The

value 35.0 is close to the 40th percentile in replicate 1.

• Normal Actives: Compounds with % inhibition between [50.0, 72.0) in both repli-

cates. The value 50.0 is the threshold used to define hits.

• Strong Actives: Compounds with % inhibition ≥ 72.0 in both replicates. The value

72.0 is close to the 75th percentile in replicate 1.

Table S8 summarizes the AMS prospective compound counts by activity level. Note

that the sum of normal and strong actives is equal to the total hits. A Jupyter note-

book in our GitHub repository shows the cluster membership versus activity level counts.

Fisher’s exact test was performed using the stats package in R62 with the following argu-

ments: workspace=2e8, hybrid=FALSE, alternative="two.sided", conf.level=0.95,

simulate.p.value=TRUE.
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B.3 Scaling to a Billion Compounds with Enamine REAL

Using the top RF-C model from the model selection stage trained on the training set, we

scored the entirety of the 1,077,562,987 Enamine REAL compounds. A total of 18 jobs, each

processing about 60.3 million compounds, were processed on generic compute nodes with a

single CPU, 6GB RAM, and 30GB disk space. Table S11 summarizes the processing time in

hours and number of compounds per node. The mean time was 53.21 hours with a 6.40 hour

standard deviation. Because each compound is scored independently, we could easily reduce

the total wall time needed to score over a billion compounds by distributing the compounds

across hundreds or thousands of compute nodes.
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C Supplementary Figures

(a) NEF1% (b) AUC[ROC] (c) AVG[PR]

Figure S1: Model-Based Ensemble results on fold 9. Table S18 lists the base models associ-
ated with each ensemble hyperparameter ID.

(a) NEF1% (b) AUC[ROC] (c) AVG[PR]

Figure S2: Max Vote Ensemble results on fold 9. Table S18 lists the base models associated
with each ensemble hyperparameter ID.
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Figure S3: Illustration of ensemble training steps in the context of the model selection stage.
Step 1 trains base models on folds 0-8 with fold 8 being used as the validation fold. Step 2
generates predictions on folds 0-7 and fold 9. Step 3 trains the ensemble classifier on base
model predictions for folds 0-7. Step 4 uses the trained ensemble to generate final predictions
on fold 9.
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(a) Replicate 1 (b) Replicate 2

Figure S4: % inhibition distributions of the 1,024 AMS compounds for both replicates.
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D Supplementary Tables

Table S1: Cross validation (CV) training, validation, and test fold splits for each run ID. A
total of four runs were done for each hyperparameter setting in the hyperparameter tuning
stage. Note that Ensemble models follow a different splitting scheme. The RF-C and Sim-
ilarity Baseline models do not use the validation folds. They are merged into the training
folds.

CV run ID Validation fold Test fold Training folds
0 0 1 2, 3, 4, 5, 6, 7
1 2 3 0, 1, 4, 5, 6, 7
2 4 5 0, 1, 2, 3, 6, 7
3 6 7 0, 1, 2, 3, 4, 5

Table S2: Top RF-C model versus the ensembles. Set difference of actives when filtering for
the top 427 predictions on fold 9 in the model selection stage.

Model Ensemble Ensemble \ Model Model \ Ensemble
RF-C Model-Based #0 0 0
RF-C Model-Based #1 1 3
RF-C Model-Based #2 2 22
RF-C Model-Based #3 0 4
RF-C Model-Based #4 2 13
RF-C Model-Based #5 2 13
RF-C Model-Based #6 3 13
RF-C Model-Based #7 2 12
RF-C Model-Based #8 2 13
RF-C Model-Based #9 3 11
RF-C Model-Based #10 2 8
RF-C Model-Based #11 2 7
RF-C Model-Based #12 1 11
RF-C Max Vote #0 0 0
RF-C Max Vote #1 1 3
RF-C Max Vote #2 2 22
RF-C Max Vote #3 0 4
RF-C Max Vote #4 2 13
RF-C Max Vote #5 2 13
RF-C Max Vote #6 2 12
RF-C Max Vote #7 2 13
RF-C Max Vote #8 2 11
RF-C Max Vote #9 2 12
RF-C Max Vote #10 2 12
RF-C Max Vote #11 2 12
RF-C Max Vote #12 1 10
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Table S3: Top XGB-C model versus the ensembles. Set difference of actives when filtering
for the top 427 predictions on fold 9 in the model selection stage.

Model Ensemble Ensemble \ Model Model \ Ensemble
XGB-C Model-Based #0 3 1
XGB-C Model-Based #1 0 0
XGB-C Model-Based #2 2 20
XGB-C Model-Based #3 2 4
XGB-C Model-Based #4 2 11
XGB-C Model-Based #5 2 11
XGB-C Model-Based #6 4 12
XGB-C Model-Based #7 3 11
XGB-C Model-Based #8 3 12
XGB-C Model-Based #9 4 10
XGB-C Model-Based #10 4 8
XGB-C Model-Based #11 4 7
XGB-C Model-Based #12 3 11
XGB-C Max Vote #0 3 1
XGB-C Max Vote #1 0 0
XGB-C Max Vote #2 2 20
XGB-C Max Vote #3 2 4
XGB-C Max Vote #4 2 11
XGB-C Max Vote #5 2 11
XGB-C Max Vote #6 3 11
XGB-C Max Vote #7 2 11
XGB-C Max Vote #8 4 11
XGB-C Max Vote #9 3 11
XGB-C Max Vote #10 3 11
XGB-C Max Vote #11 3 11
XGB-C Max Vote #12 2 9

60



Table S4: Top XGB-R model versus the ensembles. Set difference of actives when filtering
for the top 427 predictions on fold 9 in the model selection stage.

Model Ensemble Ensemble \ Model Model \ Ensemble
XGB-R Model-Based #0 22 2
XGB-R Model-Based #1 20 2
XGB-R Model-Based #2 0 0
XGB-R Model-Based #3 18 2
XGB-R Model-Based #4 14 5
XGB-R Model-Based #5 14 5
XGB-R Model-Based #6 13 3
XGB-R Model-Based #7 15 5
XGB-R Model-Based #8 12 3
XGB-R Model-Based #9 15 3
XGB-R Model-Based #10 18 4
XGB-R Model-Based #11 19 4
XGB-R Model-Based #12 14 4
XGB-R Max Vote #0 22 2
XGB-R Max Vote #1 20 2
XGB-R Max Vote #2 0 0
XGB-R Max Vote #3 18 2
XGB-R Max Vote #4 14 5
XGB-R Max Vote #5 14 5
XGB-R Max Vote #6 15 5
XGB-R Max Vote #7 14 5
XGB-R Max Vote #8 16 5
XGB-R Max Vote #9 15 5
XGB-R Max Vote #10 15 5
XGB-R Max Vote #11 15 5
XGB-R Max Vote #12 15 4
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Table S5: Top NN-C model versus the ensembles. Set difference of actives when filtering for
the top 427 predictions on fold 9 in the model selection stage.

Model Ensemble Ensemble \ Model Model \ Ensemble
NN-C Model-Based #0 4 0
NN-C Model-Based #1 4 2
NN-C Model-Based #2 2 18
NN-C Model-Based #3 0 0
NN-C Model-Based #4 2 9
NN-C Model-Based #5 2 9
NN-C Model-Based #6 3 9
NN-C Model-Based #7 2 8
NN-C Model-Based #8 2 9
NN-C Model-Based #9 3 7
NN-C Model-Based #10 2 4
NN-C Model-Based #11 2 3
NN-C Model-Based #12 1 7
NN-C Max Vote #0 4 0
NN-C Max Vote #1 4 2
NN-C Max Vote #2 2 18
NN-C Max Vote #3 0 0
NN-C Max Vote #4 2 9
NN-C Max Vote #5 2 9
NN-C Max Vote #6 2 8
NN-C Max Vote #7 2 9
NN-C Max Vote #8 2 7
NN-C Max Vote #9 2 8
NN-C Max Vote #10 2 8
NN-C Max Vote #11 2 8
NN-C Max Vote #12 1 6
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Table S6: Top NN-R model versus the ensembles. Set difference of actives when filtering for
the top 427 predictions on fold 9 in the model selection stage.

Model Ensemble Ensemble \ Model Model \ Ensemble
NN-R Model-Based #0 13 2
NN-R Model-Based #1 11 2
NN-R Model-Based #2 5 14
NN-R Model-Based #3 9 2
NN-R Model-Based #4 0 0
NN-R Model-Based #5 0 0
NN-R Model-Based #6 3 2
NN-R Model-Based #7 1 0
NN-R Model-Based #8 3 3
NN-R Model-Based #9 4 1
NN-R Model-Based #10 5 0
NN-R Model-Based #11 6 0
NN-R Model-Based #12 4 3
NN-R Max Vote #0 13 2
NN-R Max Vote #1 11 2
NN-R Max Vote #2 5 14
NN-R Max Vote #3 9 2
NN-R Max Vote #4 0 0
NN-R Max Vote #5 0 0
NN-R Max Vote #6 1 0
NN-R Max Vote #7 0 0
NN-R Max Vote #8 2 0
NN-R Max Vote #9 1 0
NN-R Max Vote #10 2 1
NN-R Max Vote #11 2 1
NN-R Max Vote #12 3 1

Table S7: Summary of cluster hit metrics for the 1,024 AMS compounds. Unique cluster (U.
Cl.) hits denotes the number of clusters containing at least one hit. Novel cluster (Nov. Cl.)
hits denotes the number of clusters with AMS hits but no training set actives. Taylor-Butina
(TB) clustering with the specified distance thresholds is used to define clusters.

Selector
U. Cl.
Hits

(TB 0.2)

Nov.
Cl. Hits
(TB 0.2)

U. Cl.
Hits

(TB 0.3)

Nov.
Cl. Hits
(TB 0.3)

U. Cl.
Hits

(TB 0.4)

Nov.
Cl. Hits
(TB 0.4)

RF-C or Baseline 351 304 242 138 169 72
RF-C 295 258 217 132 142 61
Baseline 200 153 124 21 115 30
RF-C and Baseline 144 107 99 15 88 19
RF-C but not Baseline 151 151 130 120 72 44
Baseline but not RF-C 63 48 43 7 40 13
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Table S8: The 1,024 AMS compounds grouped by activity level. Only Strong Actives and
Normal Actives were considered to be hits in all primary analyses. Weak Actives fell below
the % inhibition threshold.

Selector Count Hits Strong Actives Normal Actives Weak Actives
RF-C or Baseline 1,024 412 221 191 178
RF-C 701 337 208 129 110
Baseline 705 256 111 145 146
RF-C and Baseline 382 181 98 83 78
RF-C but not Baseline 319 156 110 46 32
Baseline but not RF-C 323 75 13 62 68
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Table S9: Illustration of the five AMS hits selected by RF-C that are the farthest from their
nearest training set active.

Prospective Hit
Closest

Training Active
Similarity Map

Tanimoto
Distance

0.57

0.56

0.55

0.55

0.53
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Table S10: Illustration of the five AMS hits selected by the Similarity Baseline that are the
farthest from their nearest training set active.

Prospective Hit
Closest

Training Active
Similarity Map

Tanimoto
Distance

0.32

0.32

0.32

0.31

0.31
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Table S11: Timing estimates in hours for RF-C prediction on the Enamine REAL library
consisting of 1,077,562,987 compounds. The library processing was split among 18 compute
nodes.

Part Hours # compounds
0 50.83 60262531
1 63.71 60262531
2 46.62 60262531
3 45.81 60262531
4 63.43 60262531
5 63.70 60262531
6 51.81 60262531
7 64.35 60262531
8 49.12 60262531
9 49.86 60262531
10 52.74 60262531
11 46.51 60262530
12 54.52 60263531
13 49.47 60263531
14 47.12 60263531
15 55.65 60263531
16 55.88 60263531
17 46.63 53094961
Mean 53.21 59864610
Std 6.40 1641881

Table S12: Summary of fold information denoting the number of compounds, number of
clusters, and number of clusters not present in other folds. Compounds were clustered using
Taylor-Butina at the 0.4 distance threshold.

Fold ID # Compounds # Clusters # Clusters not in other folds
0 42729 26753 3377
1 42730 26734 3392
2 42737 26696 3276
3 42734 26709 3326
4 42730 26708 3352
5 42729 26772 3342
6 42730 26746 3397
7 42727 26717 3345
8 42727 26783 3442
9 42727 26667 3386
All folds 427300 88324 33635
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Table S13: Random Forest-Classification. 216 hyperparameter combinations.

Hyperparameter Hyperparameter values

number of estimators 50; 250; 1000; 4000; 8000; 16000
max features None; Sqrt; Log2
min sample leaf 1; 10; 100; 1000
class weight None; balanced subsample, balanced

Table S14: XGBoost-Classification. 1,866,240 hyperparameter combinations from which we
randomly select 1,000.

Hyperparameter Hyperparameter values

max depth 5; 10; 50; 100
learning rate 1; 3e-1; 1e-1; 3e-2
number of estimators 30; 100; 300; 1000; 3000
subsample 1; 0.5
colsample bylevel 1; 0.5; 0.2
colsample bytree 1; 0.5; 0.2
min child weight 1; 5; 20
reg alpha 0; 0.3
reg lambda 1; 0.7
scale pos weight 1; 0.1; 0.001
max delta step 0; 1; 3
eval metric AVG[PR]; AUC[ROC]
eval round 100; 300; 1000
booster gbtree; gblinear
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Table S15: XGBoost-Regression. 829,440 hyperparameter combinations from which we ran-
domly select 1,000.

Hyperparameter Hyperparameter values

max depth 5; 10; 50; 100
learning rate 1; 3e-1; 1e-1; 3e-2
number of estimators 30; 100; 300; 1000; 3000
subsample 1; 0.5
colsample bylevel 1; 0.5; 0.2
colsample bytree 1; 0.5; 0.2
min child weight 1; 5; 20
reg alpha 0; 0.3
reg lambda 1; 0.7
scale pos weight 1; 0.3; 0.1; 0.003
eval metric AVG[PR]; AUC[ROC]
eval round 100; 300; 1000
booster gbtree; gblinear

Table S16: Single-task Neural Network-Classification. 432 hyperparameter combinations.

Hyperparameter Hyperparameter values

learning rate 0.00003; 0.0001; 0.003
weighted schema no weight; weighted sample

epoch patience
epoch size: 200, patience: 50;

epoch size: 1000, patience: 200
early stopping AUC[ROC]; AVG[PR]
drop out 0.1, 0.25

layers

500(ReLU), 200(Sigmoid), 1(Sigmoid);
1000(ReLU), 500(Sigmoid), 1(Sigmoid);
2000(ReLU), 2000(Sigmoid), 1(Sigmoid);
2000(ReLU), 2000(ReLU), 1(Sigmoid);

2000(Sigmoid), 2000(Sigmoid), 1(Sigmoid);
2000(ReLU), 4000(Sigmoid), 2000(Sigmoid), 1(Sigmoid);

2000(ReLU), 1000(Sigmoid), 1(Sigmoid);
2000(ReLU), 4000(Sigmoid), 1000(Sigmoid), 1(Sigmoid);

2000(ReLU), 4000(Sigmoid), 8000(Sigmoid), 1000(Sigmoid), 1(Sigmoid)
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Table S17: Single-task Neural Network-Regression. 432 hyperparameter combinations.

Hyperparameter Hyperparameter values

learning rate 0.00003; 0.0001; 0.003
weighted schema no weight; weighted sample

epoch patience
epoch size: 200, patience: 50;

epoch size: 1000, patience: 200
early stopping AUC[ROC]; AVG[PR]
drop out 0.1, 0.25

layers

500(ReLU), 200(Sigmoid), 1(Linear);
1000(ReLU), 500(Sigmoid), 1(Linear);
2000(ReLU), 2000(Sigmoid), 1(Linear);
2000(ReLU), 2000(ReLU), 1(Linear);

2000(Sigmoid), 2000(Sigmoid), 1(Linear);
2000(ReLU), 4000(Sigmoid), 2000(Sigmoid), 1(Linear);

2000(ReLU), 1000(Sigmoid), 1(Linear);
2000(ReLU), 4000(Sigmoid), 1000(Sigmoid), 1(Linear);

2000(ReLU), 4000(Sigmoid), 8000(Sigmoid), 1000(Sigmoid), 1(Linear)

Table S18: The 13 different variants of the ensemble models. An ensemble model combines
the top N models from each type of base machine learning model, where N is listed below.

ID RF-C XGB-C XGB-R NN-C NN-R

0 1 0 0 0 0
1 0 1 0 0 0
2 0 0 1 0 0
3 0 0 0 1 0
4 0 0 0 0 1
5 1 1 1 1 1
6 2 2 2 2 2
7 2 2 1 2 1
8 5 5 3 5 3
9 10 10 5 10 5
10 5 5 10 5 10
11 20 20 10 20 10
12 10 10 20 10 20
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