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ABSTRACT11

Rational design of molecules with targeted properties requires understanding quantum-mechanical (QM) structure-
property/property-property relationships (SPR/PPR) across chemical compound space. We analyze these relationships
using the QM7-X dataset—which includes multiple QM properties for ≈ 4.2 M equilibrium and non-equilibrium structures
of small (primarily organic) molecules. Instead of providing simple SPR/PPR that strictly follow physicochemical intuition,
our analysis uncovers substantial flexibility in molecular property space (MPS) when searching for a single molecule with
a desired pair of QM properties or distinct molecules with a targeted set of QM properties. As proof-of-concept, we used
Pareto multi-property optimization to search for the most promising (i.e., highly polarizable and electrically stable) molecules
for polymeric battery materials; without prior knowledge of this complex manifold of MPS, Pareto front analysis reflected this
intrinsic flexibility and identified small directed structural/compositional changes that simultaneously optimize these properties.
Our analysis of such extensive QM property data provides compelling evidence for an intrinsic “freedom of design” in MPS, and
indicates that rational design of molecules with a diverse array of targeted QM properties is quite feasible.

12

1 Introduction13

In recent years, exploration of the vast chemical compound space (CCS) of molecules and materials with data-driven approaches14

has inspired countless academic and industrial initiatives to seek out the relationships existing between chemical structure and15

physicochemical properties in this complex high-dimensional space1–8. Furthermore, the increasing availability of accurate and16

reliable molecular property data coupled with the application of sophisticated machine learning (ML) algorithms to explore17

this data have substantially improved our understanding of quantitative structure-property/property-property relationships18

(QSPR/QPPR)9–14. Such advances have been particularly helpful in the design of novel drugs, antivirals, antibiotics, catalysts,19

battery materials, and molecules with desired properties15–21—processes that have traditionally been driven by chemical20

intuition or serendipitous discoveries. Despite significant progress in this area, we still lack a comprehensive understanding of21

the complex relationships that exist (among and) between the structural signatures of molecules (e.g., chemical compositions,22

conformations) and their physicochemical properties (e.g., energies, forces, HOMO-LUMO gaps, polarizabilities), even in the23

CCS spanned by small organic molecules only. Unravelling these unknown and complex fundamental SPR/PPR would not only24

provide us with the tools needed for identifying molecules in high-dimensional molecular property space (MPS), but also the25

ability to rationally design molecules with a diverse array of targeted physicochemical properties.26

To address this challenge, the GDB databases22–26 have enumerated the molecular graphs comprising large sectors of27

CCS, enabling us to navigate swaths of CCS that are too vast to be cataloged and studied experimentally. To gain deeper28

insight into the sector of CCS spanned by small (primarily organic) molecules, several researchers have built upon this work29

by computing quantum-mechanical (QM) structural and property information corresponding to each molecular graph27–34.30

For instance, the QM7 dataset includes the equilibrium structures of 7,211 small molecules extracted from GDB-1324 (each31

containing up to seven heavy/non-hydrogen atoms, including C, N, O, S, and Cl) along with 15 physicochemical properties32

per molecule at different levels of theory (i.e., ZINDO, SCS, PBE0, GW)27, 28 with variants thereof that computed a number33

of different molecular properties using (LR-)CCSD.32 The subsequent QM9 dataset went one step further by generating the34

structures and 16 (geometric, energetic, electronic, and thermodynamic) properties of 133,885 molecules (each containing35

up to nine heavy atoms, including C, N, O, and F) from GDB-1723, all of which were computed at the B3LYP/6-31G(2df,p)36



level29. An even more exhaustive exploration of the CCS of small molecules was accomplished by the ANI-1 dataset30, 31,37

which consists of more than 20 M equilibrium and non-equilibrium conformations of molecules containing up to eight heavy38

atoms (including C, N, and O only) from GDB-1125, 26. More recently, the ANI-1x dataset33 was also introduced, which39

contains 20 properties for ≈ 5 M structures computed using the ωB97-X density functional. Despite all of these foundational40

efforts to generate a fully QM description of the CCS spanned by small molecules, many challenges exist when translating41

a series of molecular graphs (which only contain atom connectivity information) to a systematic sampling of CCS which42

contains an accurate and reliable account of both structural information (i.e., equilibrium and non-equilibrium conformations43

of constitutional/structural isomers and stereoisomers, including cis-/trans- and conformational isomers) as well as property44

information (i.e., an extensive and well-converged inventory of QM properties). To address these challenges, the recently45

published QM7-X dataset34 provides a systematic, extensive, and tightly converged (PBE0+MBD level of theory) dataset of46

42 QM-based physical and chemical properties (including global (molecular), local (atom-in-a-molecule), ground-state, and47

response properties) for ≈ 4.2 M equilibrium and non-equilibrium structures of the small molecules in QM7-X, providing what48

is arguably the most comprehensive account of the CCS spanned by small (primarily organic) molecules to date.49

In this work, we performed a comprehensive analysis of the high-dimensional MPS contained in the QM7-X dataset to50

gain a deeper understanding of the complex SPR/PPR existing in the sector of CCS spanned by small (primarily organic)51

molecules. In doing so, we found weak correlations existing between most QM properties (i.e., essentially structureless “blobs”52

in 2D), and in some cases, these relationships went beyond widely accepted chemical and/or physical intuition, e.g., the53

direct proportionality between molecular size and dispersion energy, inverse proportionality between HOMO-LUMO gap and54

polarizability, etc. Instead of uncovering simple chemical design rules, our analysis of this extensive QM property database55

demonstrated that there are very few strict limitations preventing a molecule from exhibiting a desired pair of QM properties.56

We then investigated even more complex manifolds of MPS and their underlying dependence on molecular structure and57

chemical composition (i.e., the tunable “knobs” in molecular design), and found multiple cases where two distinct molecules58

shared multiple QM properties—another indication of the flexibility (or “freedom of design”) that one has in the in silico59

search for molecules with a diverse and targeted array of QM properties. Based on these findings, we then employed Pareto60

front analysis, a powerful multi-property optimization approach, to identify the most promising small organic molecules in61

CCS (as enumerated by QM7-X) for polymeric battery materials, i.e., molecules with simultaneously large polarizabilities62

(α) and electrical stabilities (Egap). Without any prior knowledge of
(
α,Egap

)
-space, each Pareto front not only reflected63

this “freedom of design” but also revealed a series of small directed changes to the structure and chemical composition of64

each Pareto-optimal molecule that simultaneously maximize both of these seemingly contrasting QM properties. We expect65

that the insight provided in this work will emphasize the critical importance of obtaining high-quality QM property data66

and contribute to the development of ML-based tools that will considerably improve the sampling, identification, and design67

of molecular systems for a number of applications, ranging from novel polymeric batteries and organic semiconductors to68

promising pharmaceuticals and small-molecule protein inhibitors.69

2 Results70

Our comprehensive analysis of the high-dimensional MPS contained in QM7-X (see Figure 1) includes the following four71

thrusts: (i) projecting the 42-dimensional (42D) MPS onto 2D correlation plots for identifying pairwise PPR; (ii) characterizing72

the structural and compositional dependence of global and local properties; (iii) exploring more complex manifolds of MPS73

(i.e., multi-property analysis) by considering the in silico design of promising molecules for polymeric battery materials (i.e.,74

highly polarizable and electrically stable molecules with simultaneously large 〈α〉 and 〈Egap〉); (iv) finding and analyzing75

Pareto fronts of molecules with such targeted arrays of properties (i.e., multi-property optimization). For more details about the76

molecular structures used in these analyses, see Methods.77

Pairwise Correlations in Molecular Property Space78

As a first step towards understanding the MPS spanned by small (primarily organic) molecules, we analyzed the correlations79

existing between pairs of properties in QM7-X. To do so, we plotted 2D projections of the 42D QM7-X MPS in Figure 1 for80

a select subset of 18 properties (including 2 structural, 10 molecular/global, and 6 atom-in-a-molecule/local properties; see81

Table S1 for more details). In general, Figure 1 shows that the majority of properties do not exhibit clear correlations among82

them; instead, most 2D projections appear as structureless “blobs" indicating very weak (or uncorrelated) PPR, i.e., these83

properties have a Pearson correlation coefficient |ρ|< 0.42 (see Methods). In this regard, only four of the 153 (unique pair)84

projections (i.e., 2.6%; (C6,α), (C̃6, α̃), (C̃6,RvdW), (α̃,RvdW)) display a strong degree of correlation with |ρ|> 0.92, while85

eleven (i.e., 6.9%; (ETB,EAT), (ETB,EMBD), (EMBD,C6), (EMBD,α), (EMBD,EAT), (EAT,C6), (EAT,α), (α,αxx), (C6,αxx),86

(EGAP,ELUMO), and (EGAP,EHOMO)) exhibit a moderate degree of correlation with 0.42 < |ρ|< 0.92 in which the dispersion87

in the data is considerably less than a typical “blob". Here, we note in passing that these pairwise correlations also hold when88

considering just the 41,537 equilibrium structures in QM7-X (see Figure S1 for select examples).89
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Figure 1. Pairwise correlations in the QM7-X molecular property space. The QM7-X dataset34 includes ≈ 4.2 M (equi-
librium and non-equilibrium) molecular structures containing up to seven heavy (C, N, O, S, Cl) atoms, as well as an exten-
sive set of 42 physicochemical properties (per molecular structure) computed using high-level QM calculations (see Methods
for more details). Select 2D projections of the 42D QM7-X molecular property space (MPS) are depicted for a series of
structural (orange), global/molecular (brown), and local/atom-in-a-molecule (violet) properties (see Table S1 for a detailed
description of each symbol). Since a vast majority of these correlation plots are structureless “blobs” (i.e., very weak or
uncorrelated property-property relationships (PPR)), small primarily organic molecules have the flexibility to exhibit nearly
any pair of QM properties.

For instance, consider the 2D projection between EAT and the MBD dispersion energy35–38 (EMBD) in Figure 1; in this case,90

EAT tends to increase with EMBD, in agreement with the expectation that atomization and dispersion energies are extensive91

properties that increase with molecular size. In this regard, we also observed a moderate correlation between EAT and α;92

although α is non-additive, this quantity does tend to increase with molecular volume39, 40. The 2D projection between the93

molecular (isotropic) C6 coefficient and α also indicates a strong correlation; here, the observed quadratic form is rationalized94

by the Casimir-Polder integral41, in which the C6 coefficient describing the van der Waals (vdW) interaction between molecules95
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A and B is given by:96

C6 =
3
π

∫
∞

0
dω α̂A(iω)α̂B(iω)≈ 3

2

[
ηAηB

ηA +ηB

]
αAαB, (1)

in which α̂A/B(iω) is the frequency-dependent polarizability of molecule A/B evaluated in the imaginary frequency do-97

main. Substituting the leading-order Padé42, 43 (or quantum harmonic oscillator44, 45) approximation for α̂A/B(iω) (i.e.,98

α̂A/B(iω) = αA/B/[1− (ω/ηA/B)
2] into this expression yields the well-known London formula in which C6 ∝ α2 (and ηA/B is99

the characteristic excitation frequency).100

However, seemingly expected correlations (via widely accepted chemical and/or physical intuition) were not necessarily101

observed between global/molecular properties. For example, consider the well-known sum-over-states expression for α from102

perturbation theory46, 47:103

α = 2 ∑
k 6=0

|〈0|µ|k〉|2

Ek−E0
≈ |〈HOMO|µ|LUMO〉|2

Egap
, (2)

in which 〈0| and |k〉 are the ground (excited) state electronic wavefunctions, E0 (Ek) are the corresponding energies, and 〈0|µ|k〉104

is the transition dipole moment matrix element. When interpreted using a mean-field one-electron theory (e.g., Hartree-Fock105

or Kohn-Sham density functional theory), the most significant contribution in Eq. (2) is often the HOMO-LUMO transition.106

Hence, this sum-over-states expression is commonly approximated (to leading order) by including this term only48; within this107

approximation, α ∝
1

Egap
, suggesting an inverse proportionality between these properties. While this inverse proportionality108

can often be observed for a set of homologous molecules (i.e., polyenes49 and s-trans alkenes50 with increasing length), this109

relationship does not hold when analyzing the more diverse molecules in QM7-X. Similarly, components of the polarizability110

tensor (e.g., αxx) appear to be essentially uncorrelated with C6, and do not follow the London formula in Eq. (1) (which111

corresponds to the scalar/isotropic form of α). However, such a lack of correlation between such fundamental molecular112

properties is by no means uninteresting, and can provide a degree of flexibility that can be exploited in the search for molecules113

with specific properties, i.e., molecules with preferred polarization directions/orientations to form different molecular crystal114

polymorphs.115

Unlike the global/molecular properties which form single connected “blobs,” 2D projections between local/atom-in-a-116

molecule properties often exhibit distinct clusters, e.g., those involving the Hirshfeld charge (qH), atomic C6 coefficient (C̃6), and117

isotropic atomic polarizability (α̃) depicted in Figure 1. Such clusters are most visible when analyzing 2D projections between118

two local properties, and are related to the different atomic environments present in the molecules in QM7-X. For example, the119

projections involving qH show the largest number of local atomic environments, and represent the different charge distributions120

existing in the diverse QM7-X dataset. Local response properties such as C̃6, α̃ , and RvdW (vdW radius) also account for local121

atomic environments and tend to be strongly correlated. For instance, one can observe multiple quadratic-type functions in122

the
(

C̃6, α̃
)

-space, which can be rationalized by the Casimir-Polder relationship applied to each chemical environment (see123

Eq. (1)). In the same breath, we also find a high degree of correlation between α̃ and RvdW—a fundamental relationship that124

has been the topic of discussion in the recent literature51, 52.125

With only a handful of exceptions, this analysis of pairwise PPR does not yield simple chemical design rules in the QM7-X126

sector of CCS spanned by small (primarily organic) molecules. While one might initially view this as a challenge for rational127

molecule design, this analysis shows that there are very few limitations preventing a molecule from simultaneously exhibiting128

any desired pair of QM properties. This “freedom of design” hypothesis, which has profound implications in the rational design129

of molecules with targeted and diverse properties, will be analyzed in more details and confirmed throughout the remainder of130

this work.131

Structural and Compositional Dependence of Molecular Property Space132

The complex set of pairwise PPR found above suggests a certain degree of flexibility in the design of small molecules with a133

pre-defined set of properties. However, the dependence of the QM7-X MPS on molecular structure and chemical composition—134

the tunable “knobs” in molecular design—still requires investigation. To do so, we now consider the thermally-averaged135

(〈EMBD〉 ,〈EAT〉)-space as an illustrative probe of this MPS since 〈EMBD〉 and 〈EAT〉 strongly depend on molecular structure136

and chemical composition (see Methods). Figure 2(a) plots 〈EMBD〉 versus 〈EAT〉 with each data point colored according to137

〈Dmax〉, the maximum pairwise distance between heavy/non-hydrogen atoms in a molecular structure. The range of 〈EMBD〉 and138

〈EAT〉 values (0.02−0.48 eV and 19.3−103.3 eV) is quite large, indicating that QM7-X spans a diverse sector of CCS. The139

molecules with the lowest 〈EMBD〉 and 〈EAT〉 values are small hydrocarbons such as CH4 (∼ 0.02 eV and ∼ 19.3 eV) and C2H2140

(∼ 0.02 eV and ∼ 19.9 eV), while the largest values correspond to C7H16 isomers/conformers (∼ 0.48 eV and ∼ 103.3 eV);141

molecules containing second-row atoms (i.e., S and Cl) tend to be characterized by intermediate values.142
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Figure 2. Structural and compositional dependence of molecular property space: global and local properties. (a)
Correlation plot between the thermally-averaged (T = 300 K) MBD dispersion energy (−〈EMBD〉) and atomization en-
ergy (〈EAT〉) for the equilibrium structures in QM7-X, with each point colored according to the corresponding thermally-
averaged maximum distance between heavy/non-hydrogen atoms (〈Dmax〉); see Methods for more details. Also depicted
are select molecules from the 〈EMBD〉 = −0.25± 0.01 eV and 〈EMBD〉 = −0.10± 0.01 eV windows (top inset) and the
〈EAT〉= 80±0.2 eV window (bottom inset). (b) 2D projections of the molecules in the highlighted 〈EAT〉 windows in panel
(a) using global/molecular properties (

〈
Egap

〉
and 〈α〉). Pink lines show the HOMO-LUMO values (

〈
Egap

〉
= 6.0±0.05 eV

and 7.0± 0.05 eV) used during our analysis. Also depicted are select molecules from the 〈EAT〉 = 80± 0.2 eV and
〈EAT〉= 90±0.2 eV windows (right inset). (c) 2D projections of the molecules in the highlighted 〈EAT〉 windows in panel
(a) using local/atom-in-a-molecule properties (〈q〉X, 〈µ〉X, and 〈α̃〉). Dashed pink lines are used to delineate the local atomic
environments according to the corresponding element (X = H, C, N, O, S). Also depicted are select S-containing molecules
from the 〈EAT〉= 68.5±0.2 eV window (bottom inset). While global and local properties can be used to distinguish molecules
in MPS, our analysis uncovers multiple instances where two distinct molecules (with different structures and compositions)
share four or more global properties—compelling evidence for a certain intrinsic flexibility or “freedom of design” in MPS.

Both of these extensive molecular/global properties increase with the number of constituent atoms (independent of chemical143

composition, see Figure S2), and we again observe a moderate degree of correlation between them (in agreement with that found144

above when considering all 4.2 M QM7-X structures, cf. Figure 1). However, there is considerable dispersion in Figure 2(a),145

indicating that more diverse (〈EMBD〉 ,〈EAT〉) combinations are possible, i.e., for a fixed value of one property, there is visible146

flexibility when choosing the values of the other. From this correlation plot, one can see that this dispersion is fairly well147

correlated with 〈Dmax〉, a measure of the spatial extent of each molecule. To explore this point further, we characterized the148

structure and composition of the molecules contained in two fixed 〈EMBD〉 windows, i.e.,−0.25±0.01 eV and−0.10±0.01 eV,149

which represent the intermediate-to-low regions of the dispersion energy spectrum (Figure 2(a), top panel). In doing so, one can150
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see that molecules with markedly distinct structures (i.e., compact vs. extended as quantified by 〈Dmax〉) and compositions151

can have the same 〈EMBD〉 but completely different 〈EAT〉. This so-called “freedom of design” is clearly illustrated by the152

C3H7NO2S and C7H10 isomers at the top of Figure 2(a): while both exist in the 〈EMBD〉 = −0.25± 0.01 eV window, their153

〈EAT〉 values differ by more than 20 eV. Since 〈EMBD〉 is fairly well correlated with the number of atoms in a molecule as well154

as its volume/spatial extent, C7H10 (an extended molecule with more atoms, 〈Dmax〉 = 6.78 Å) and C3H7NO2S (a compact155

molecule with less atoms, 〈Dmax〉= 3.79 Å) represent a non-trivial compromise between these two effects that results in similar156

〈EMBD〉 values. In the same breath, the sizeable difference in 〈EAT〉 between these molecules can be largely attributed to the157

larger number of atoms in C7H10 as well as its conjugated/extended π-system, which further stabilizes this hydrocarbon and158

increases 〈EAT〉. When analyzing the smaller 〈EMBD〉=−0.10±0.01 eV window, we can just as easily find another distinct159

pair of molecules (again located at the edges of the data dispersion) that exhibit markedly different 〈EAT〉 values. Here, we find160

an ≈ 15 eV 〈EAT〉 difference between C2H7N and C4H3NO2 (Figure 2(a) top) which can be rationalized by the larger number161

of heavy atoms and more complex bonding motifs (e.g., C O, C N, C C) present in C4H3NO2.162

With such dispersion in (〈EMBD〉 ,〈EAT〉)-space, a similar degree of flexibility also exists when holding 〈EAT〉 fixed. For163

instance, analyzing the molecules with 〈EAT〉= 80±0.2 eV uncovered a group of molecules with different structures and/or164

compositions with the same or different 〈EMBD〉 (e.g., the C4H11NO2 and C7H8 isomers at the bottom of Figure 2(a)). When165

comparing the extended (left, 〈Dmax〉= 6.71 Å) and compact (right, 〈Dmax〉= 3.17 Å) C4H11NO2 isomers, we find that the latter166

exhibits a more negative 〈EMBD〉, consistent with the larger dispersion energy contributions between (closer) non-bonded atoms167

in compact molecular arrangements. On the contrary, the extended C4H11NO2 isomer has the same 〈EMBD〉 (and 〈EAT〉) as the168

more compact ring-like C7H8 hydrocarbon (〈Dmax〉= 3.10 Å)—another illustrative example of the non-trivial compromise169

between the number of atoms, chemical composition, and volume/spatial extent of a molecule in determining 〈EMBD〉. This170

example also illustrates another aspect of “freedom of design” in MPS, i.e., that two completely distinct molecules can share171

multiple physicochemical properties (vide infra). Interestingly, despite having very similar 〈Dmax〉, the compact C4H11NO2172

isomer has a more negative 〈EMBD〉 when compared to the compact but ring-like C7H8 isomer—a result of more nuanced173

topological effects (i.e., packed/globular vs. void space) on the dispersion/vdW interactions in molecules53.174

Based on these findings, a natural question arises as to whether or not a similar degree of flexibility exists for other175

QM properties. To answer this question, we selected three 〈EAT〉 windows (68.5± 0.2 eV, 80± 0.2 eV and 90± 0.2 eV)176

in Figure 2(a), and analyzed select global and local PPR among the molecules in these sectors. For global properties, we177

considered Egap and α , which are important for identifying molecules (with tunable electrical stabilities and polarizabilities)178

for use in organic electronics and photovoltaic devices. Figure 2(b) depicts the corresponding
(〈

Egap
〉
,〈α〉

)
correlation plots179

(colored according to the 〈EAT〉 windows in Figure 2(a)), which appear as structureless "blobs" similar to that found when180

considering all 4.2 M QM7-X structures (cf. Figure 1). Here, we find that the span of
(〈

Egap
〉
,〈α〉

)
-space is reduced when181

〈EAT〉 increases and relegated to larger
〈
Egap

〉
and 〈α〉, implying that molecules with high stabilities to dielectric breakdown182

and enhanced capacities for strong non-covalent interactions can be identified by an initial screen based on 〈EAT〉. Since the183 (〈
Egap

〉
,〈α〉

)
-space in Figure 2(b) still contains a large number of molecules, we selected two

〈
Egap

〉
windows (6.0±0.05 eV184

and 7.0± 0.05 eV) for further analysis. As a first example, consider the compact
(〈

Egap
〉
= 6.00 eV, 〈α〉= 80.8 a3

0
)

and185

extended
(〈

Egap
〉
= 7.00 eV, 〈α〉= 85.0 a3

0
)

C4H11NO2 isomers in the 〈EAT〉= 80 eV window (Figure 2(b)). In this case, the186

extended isomer has a larger 〈α〉 despite having a larger
〈
Egap

〉
—an illustrative counterexample to the widely used α ∝

1
Egap

187

approximation in Eq. (2). In the same breath, we can just as easily find a pair of isomers that follows this inverse relationship,188

i.e., the unsaturated
(〈

Egap
〉
= 6.09 eV, 〈α〉= 97.4 a3

0
)

and saturated
(〈

Egap
〉
= 6.97 eV, 〈α〉= 94.6 a3

0
)

C6H13N isomers189

in the 〈EAT〉 = 90 eV window. Another interesting finding is the 4.7−7.5 a3
0 enhancement in 〈α〉 when morphing from190

C6H13N to C5H14N2—a clear example of the non-additivity in α (whose role is often underestimated in small molecules) as191

〈α̃〉C ≈ 〈α̃〉N + 〈α̃〉H. From the perspective of Eq. (2), this polarizability enhancement is even more surprising, as C5H14N2192

has a
〈
Egap

〉
that is larger than (or equal to) the C6H13N isomers. Such an increase in 〈α〉 is non-trivial and has substantial193

implications for non-covalent interactions involving these molecules, as C6 ∝ α2 (cf. Eq. (1)).194

From this analysis, we also found multiple cases where two molecules with markedly different structures and compositions195

share four (extensive and intensive) global properties, further demonstrating the flexibility one has when designing molecules196

with an array of targeted properties. As an illustrative example, consider again the saturated C6H13N and C5H14N2 isomers in197

Figure 2(b), which have similar 〈EMBD〉 ≈ 0.36±0.02 eV and 〈µ〉 ≈ 0.26±0.02 eÅ (in addition to 〈EAT〉 and
〈
Egap

〉
). Hence,198

additional properties (i.e., 〈α〉 and 〈Dmax〉) are needed to uniquely identify molecules in high-dimensional QM7-X MPS.199

In the same breath, local/atom-in-a-molecule properties can also be used to distinguish molecules in MPS. To demonstrate200

this, we analyzed the molecules in the three 〈EAT〉 windows in Figure 2(a) by partitioning them according to 〈qH〉, 〈µH〉, and201

〈α̃〉; to enable an atom-specific discussion, the subscript H will be removed from all Hirshfeld quantities (i.e., 〈qH〉 → 〈q〉,202

〈µH〉 → 〈µ〉), and 〈q〉X (〈µ〉X) will now refer to the thermally averaged Hirshfeld charge (dipole) on atom X. As depicted in203

Figure 2(c), we again observe significant clustering in (〈q〉 ,〈α̃〉)-space and (〈µ〉 ,〈α̃〉)-space, reflecting the diverse chemical204

environments in this subset of QM7-X. By delimiting the sectors belonging to each element (X = H, O, N, C, S), we also found205
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Figure 3. Multi-property analysis in molecular property space. Three different multi-property analyses (Ω) of the mani-
fold of MPS defined by EAT, Egap, and α were performed in which the molecules in QM7-X were progressively partitioned
according to an increasing number of properties: (a) Ω{EAT} (one property), (b) Ω{EAT,Egap} (two properties), and (c)
Ω{EAT,Egap,α} (three properties). (a) Correlation plot between α and Egap, with each point colored according to the corre-
sponding EAT range. Light gray points correspond to molecules with EAT ∈ [52,92] eV. (b) Plots of frequency versus α for
molecules with Egap < 4.5 eV and Egap > 8.0 eV, with each distribution colored according to the EAT ranges in panel (a). (c)
Correlation plot between Egap and Dmax for molecules with {EAT > 92 eV, Egap > 8.0 eV, α > 100 a3

0} and {EAT < 52 eV,
Egap < 4.5 eV, α < 65 a3

0}, with each point colored according to the corresponding α value. Also depicted are select molecules
from each of these sectors of

(
EAT,Egap,α

)
-space. From this tiered multi-property analysis, we find further evidence of the

“freedom of design” that exists across wide swaths of MPS—there exists a number of molecules with different structures and
chemical compositions that share an array of physicochemical properties (e.g., simultaneously large EAT and Egap values).

that H and S display the smallest (1−3 a3
0) and largest (16−22 a3

0) 〈α̃〉, respectively. Since the molecules with 〈EAT〉= 68.5 eV206

are partitioned into three well-defined clusters in (〈q〉 ,〈α̃〉)-space, we focus our discussion on the diverse S-containing207

molecules in this subregion of QM7-X. Such well-defined clusters reflect the the number of different chemical environments208

surrounding each S atom; depending on the local charge distribution, this versatile third-row element can act as an electron209

acceptor (〈q〉S < 0) or donor (〈q〉S > 0), or remain essentially neutral (〈q〉S ≈ 0), see Figure 2(c) bottom. In contrast to 〈µ〉, 〈q〉210

seems to be a more sensitive probe of the local chemical environment (and charge distribution) surrounding each atom, and may211

therefore be a useful local property for identifying molecules in high-dimensional QM7-X MPS.212

Multi-Property Analysis: Exploring More Complex Manifolds of Molecular Property Space213

Since molecular design often involves the simultaneous optimization of multiple (typically more than two) physicochemical214

properties, we continue our analysis by exploring more complex manifolds of MPS. As an illustrative example, we consider215

the in silico design of promising molecules for polymeric battery materials (i.e., highly polarizable and electrically stable216

molecules with simultaneously large 〈α〉 and 〈Egap〉)54, 55. To accomplish this goal, we carried out three different multi-property217

analyses (Ω) in which the molecules in QM7-X are progressively partitioned according to an increasing number of the following218

global/molecular properties: EAT, Egap, and α . At the single-property Ω{EAT} level, the QM7-X molecules are partitioned219

according to pre-defined EAT ranges (see Figure S3 for analogous Ω{Egap} and Ω{α} analyses); after doing so, a number of220

discernible trends emerge despite the fact that a plot of the total (unpartitioned)
(
α,Egap

)
-space has no visible correlation221

between these properties (see Figure 3(a)). For one, if we just consider molecules with EAT < 52 eV (blue points in Figure 3(a)),222

we find that these molecules exhibit a remarkably wide range of α (∈ [16.5,101.2] a3
0) and Egap (∈ [3.0,11.6] eV) values, while223

the molecules with EAT > 92 eV (red points) are more likely to have large α and Egap. In both cases, the molecules exhibit224

considerable flexibility in their α and Egap values, which bodes well for identifying promising polymeric battery material225

candidates and again illustrates that small organic molecules do not necessarily follow the α ∝
1

Egap
relationship espoused by226

Eq. (2).227

We continue by partitioning the molecules in QM7-X according to EAT (using the partitions outlined above) and Egap228
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(coarse-grained partitioning into small and large Egap), i.e., multi-property analysis at the Ω{EAT,Egap} level. As depicted in229

Figure 3(b), we find that molecules with Egap < 4.5 eV (small gap) lacked diversity in both structure and composition, and230

were constrained to intermediate α (∈ [54.3,92.3] a3
0). On the other hand, the molecules with Egap > 8.0 eV (large gap) span a231

significantly wider range of α (∈ [15.8,120.8] a3
0) and their structure/composition is noticeably more diverse.232

At the Ω{EAT,Egap,α} level, we further partition the molecules in Figure 3(b) according to α . In the region of233 (
EAT,Egap,α

)
-space defined by small atomization energies (EAT < 52 eV), small HOMO-LUMO gaps (Egap < 4.5 eV), and234

small polarizabilities (α < 65 a3
0), we find relatively few molecules and a general lack of diversity in structure, composition, and235

size (Figure 3(c)). More specifically, we found only 146 molecular structures in this manifold (originating from three different236

chemical compositions) with a rather limited range of molecular sizes (i.e., 3.4 Å < Dmax < 5.1 Å)—in this case, simultaneously237

restricting the range of these three properties significantly (and not unexpectedly) constrains the molecular design space. On the238

other hand, the molecules in QM7-X with large atomization energies (EAT > 92 eV), high electrical stabilities (Egap > 8.0 eV)239

and high polarizabilities (α > 100 a3
0) are markedly more diverse (7,365 structures, 3.5 Å < Dmax < 8.0 Å, see Figure 3(c)).240

Furthermore, we expect that the molecules in this sector of
(
EAT,Egap,α

)
-space would be even more diverse (and potentially241

more promising polymeric battery material candidates) if CCS was probed with an even larger molecular database. From242

this tiered multi-property analysis, we find that it is feasible to design molecules with completely different structures and243

compositions that share an array of different physicochemical properties—yet another manifestation of the freedom of design244

that exists across wide swaths of MPS.245

Multi-Property Optimization: Finding Optimal Pareto Fronts in Molecular Property Space246

When optimizing multiple objective functions among a large candidate pool, Pareto fronts (or frontiers) represent the so-called247

Pareto-optimal solutions for which no single objective function can be improved without degrading the others. Pareto fronts248

have been used in a number of fields (e.g., economics, medicine, materials science, chemical engineering)56–60 and have given249

rise to evolutionary multi-objective optimization61, 62. In this work, we extend our analysis in the previous section by using this250

approach to identify the most promising small organic molecules in CCS (as enumerated by the QM7-X database) to form251

polymeric battery materials54, 55, i.e., the Pareto front of molecules in QM7-X which simultaneously have the largest 〈α〉 and252

〈Egap〉 values (see Methods). Here, we note that this approach is general and could be used to search for molecules with any253

number/combination of properties (e.g., promising small-molecule protein inhibitors with large 〈α〉 and reduced 〈µ〉 values).254

In Figure 4, Pareto fronts with simultaneously optimal 〈α〉 and 〈Egap〉 values are provided for three different 〈EAT〉 ranges255

(enabling us to explore different chemical compositions in each front). Overall, these fronts generally follow the inverse256

α ∝
1

Egap
relationship in Eq. (2); however, there are exceptions and unexpected structures that appear along each front, reflecting257

the freedom one has when designing molecules with an array of targeted properties. The A → B front corresponds to258

molecules with 〈EAT〉 ∈ [40,50) eV and contains 11 diverse structures with varied compositions, starting with (C,N,S)-based259

molecules with large 〈α〉 and (relatively) small 〈Egap〉, and ending with simpler and more compact molecules with substantially260

lower 〈α〉 and very large 〈Egap〉. The first three structures are constitutional isomers of C4H2N2S with a terminal alkyne (ethynyl261

group) directly adjacent to an aromatic thiadiazole ring. Such conjugation facilitates charge delocalization and π-electron262

mobility across each molecule; as such, these isomers have large (but similar) 〈α〉 ≈ 86.0 a3
0 and (relatively) small gaps.263

However, the 〈Egap〉 are more sensitive to the relative positions of the heteroatoms in the thiadiazole ring and can differ by264

0.6 eV. Continuing along the A → B front, we find a linear yet highly conjugated molecule (penta-2,4-diynenitrile, C5HN),265

with a structure and composition completely different from the C4H2N2S isomers. Despite such differences, 〈α〉 and
〈
Egap

〉
for266

this molecule are very similar to the Pareto-adjacent C4H2N2S isomers, which again illustrates the flexibility inherent to MPS.267

Ethynyl sulfone (C4H2O2S) is the next molecule, which contains two terminal alkynes connected via a central sulfonyl (SO2)268

moiety in a kinked arrangement—a large change in both structure and composition when compared to C5HN. This non-linear269

molecular geometry significantly reduces π-electron mobility and charge delocalization, and results in a rather large (> 1 eV)270 〈
Egap

〉
change. In the same breath, this molecule has a very similar 〈α〉 value to C5HN—an interesting example of how the271

concept of “freedom of design” naturally emerges from Pareto front analysis. Even more interesting is how Pareto front analysis272

can be used to facilitate rational in silico design of molecules with targeted properties. To see this, consider the small directed273

changes needed to arrive at the next three Pareto-optimal molecules in the A → B front. Since the polarizability of a N274

atom is smaller than that of a C H group, replacing an ethynyl (C C H) group in C4H2O2S with a nitrile (C N) group275

(i.e., C4H2O2S→ C3HNO2S) can be used to design a molecule with a lower 〈α〉. Since the central sulfonyl group provides276

an effective conduit for charge delocalization in C3HNO2S, replacing SO2 with a more insulating methylene (CH2) group277

(i.e., C4H2O2S→ C5H4) decreases 〈α〉 by ≈ 12% and increases
〈
Egap

〉
by ≈ 1 eV. Finally, making both replacements (i.e.,278

C4H2O2S→ C4H3N) leads to further (and rather predictable) changes in both 〈α〉 and
〈
Egap

〉
. These small but rational changes279

to the structure and composition of these molecules are well-aligned with “chemical intuition” and emerged from this analysis280

without prior knowledge of
(
α,Egap

)
-space; as such, we would argue that Pareto front analysis has tremendous potential in the281
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Figure 4. Multi-property optimization: Pareto front analysis in molecular property space. Pareto (multi-property) op-
timization in the manifold of MPS defined by EAT, Egap, and α was performed to identify molecules with simultaneously
large α and Egap values (i.e., an illustrative example for the in silico design of promising candidate molecules for polymeric
battery materials). Depicted is a correlation plot between 〈α〉 and

〈
Egap

〉
, with each point colored according to the corre-

sponding EAT range (cyan: 〈EAT〉 ∈ [40,50) eV; tan: 〈EAT〉 ∈ [60,70) eV; light green: 〈EAT〉 ∈ [70,80) eV). The optimal
Pareto fronts corresponding to each of these 〈EAT〉 windows are provided as highlighted points (connected via solid lines) in
this correlation plot; see Methods for a more detailed description of the Pareto optimization procedure. Also depicted are the
QM7-X molecules located on each of these Pareto fronts (and corresponding to the highlighted points in the correlation plot),
which reflect the intrinsic flexibility in MPS as well as the small directed structural/compositional changes that are needed in
the rational design of molecules with an array of targeted QM properties.

field of in silico molecular design. The last segment of this front is somewhat unsurprising and comprised of three simpler and282

more compact molecules (C3H6O→ C3H5N→ C3H8), all of which exhibit small (but similar) 〈α〉 and relatively large
〈
Egap

〉
.283

To search for even larger candidate molecules, we performed a similar analysis on the QM7-X molecules with 〈EAT〉 ∈284

[60,70) eV and 〈EAT〉 ∈ [70,80) eV. In doing so, we again find numerous examples illustrating the flexibility woven into MPS285

as well as the fact that Pareto front analysis is a powerful (and largely underutilized) tool for in silico molecular design. In286

the 〈EAT〉 ∈ [60,70) eV sector, the C → D front is essentially a straight line (with 12 molecules) mirroring the inverse287

relationship between 〈α〉 and
〈
Egap

〉
with a few exceptions. For example, consider the sixth, seventh, and eighth molecules288

in the C → D front in Figure 4 (i.e., C6H6O, C7H4, and C6H6). Here, we find a sharp increase in
〈
Egap

〉
accompanied289

by almost no change in 〈α〉 as we move from C6H6O (a kinked molecule with two alkynes connected by a central alcohol290

moiety) to C7H4 (a propeller-like molecule with three terminal alkynes connected by a central aliphatic CH group). This can291

be rationalized by the additional non-conjugated triple bond in C6H6O, which localizes the π electrons and increases
〈
Egap

〉
.292

At this point, we also arrive at the front edge, i.e., among all QM7-X molecules with 〈EAT〉 ∈ [60,70) eV, this propeller-like293

C7H4 isomer has simultaneously optimal 〈α〉 and
〈
Egap

〉
. Next, we observe a sharp decrease in 〈α〉 accompanied by almost294

no change in
〈
Egap

〉
as we move from C7H4 to C6H6 (a more extended but staggered molecule with two terminal alkynes295

connected by a central insulating ethylene ( CH2 CH –
2 ) group). This transition maintains the locality of the π electrons and296

is accompanied by the loss of a C atom and the gain of two H atoms; since α̃C > 2α̃H , this will tend to decrease 〈α〉. In the297

〈EAT〉 ∈ [70,80) eV sector, the E → F front (N = 17) is more parabolic in shape. This front is populated by large stretches of298
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structural/constitutional isomers, peppered with local functional group changes, all of which reflect the key aspects of rational299

molecular design discussed above. For brevity, we leave a more detailed analysis of this front to the interested reader.300

3 Discussion301

The recently developed QM7-X dataset—which includes 42 physicochemical properties obtained via high-level QM calculations302

for approximately 4.2 M (equilibrium and non-equilibrium) molecular structures containing up to seven heavy atoms—allows303

us to study the sector of CCS spanned by small (primarily organic) molecules. By performing 2D projections of the high-304

dimensional MPS described by QM7-X, we gained tremendous insight into the complex QM-based SPR/PPR existing in305

this region of CCS. In general, we found weak correlations among the majority of QM properties considered herein (i.e.,306

essentially structureless “blobs” in 2D), although we did find more nuanced relationships that go beyond chemical and/or307

physical intuition in some cases. For instance, we did not observe the widely accepted inverse relationship between molecular308

polarizability and HOMO-LUMO gap (α ∝
1

Egap
), i.e., the leading-order approximation for α in Eq. (2). Instead of uncovering309

simple chemical design rules, our analysis of this extensive QM property database demonstrated that there are generally no310

hard-and-fast limitations preventing a molecule from exhibiting a desired pair of QM properties. In other words, there exists a311

certain “freedom of design” when searching for small organic molecules which have a desired set of targeted QM properties,312

i.e., molecules that are both highly polarizable and have high electrical stabilities as candidates for polymeric battery materials.313

We then investigated how the QM7-X MPS depends on molecular structure and chemical composition (i.e., the tunable314

“knobs” in molecular design) by considering the (〈EMBD〉 ,〈EAT〉)-space in more detail. Despite a moderate degree of correlation315

between these QM quantities, we still found that diverse (〈EMBD〉 ,〈EAT〉) combinations are accessible, i.e., we were able to316

easily identify molecules with very different structures (i.e., compact vs. extended) and compositions with the same 〈EMBD〉 but317

completely different 〈EAT〉 and vice versa. Given such findings for two extensive QM energetic properties, we then looked for318

evidence of a similar “freedom of design” when targeting additional QM properties. In doing so, we found multiple cases where319

two distinct molecules shared four (extensive and intensive) global QM properties—a strong indication of the flexibility one has320

when designing molecules with a diverse and targeted array of QM properties. Local QM properties, which provide tremendous321

insight into the distinct chemical environments inside molecules, are largely uncorrelated with global QM properties and can322

instead be used as features to distinguish between molecules in high-dimensional MPS. As such, we argued that combinations323

of global and local QM properties (including extensive and intensive properties, as well as ground- and excited-state properties)324

can potentially be used to develop more robust molecular descriptors in ML applications. One could also imagine combining325

such rich QM-property-based molecular descriptors with current descriptors that only utilize structural information to further326

improve the transferability and scalability of next-generation ML models.327

Since molecular design often involves the simultaneous optimization of multiple QM properties, we also used the ex-328

tensive QM property data in QM7-X to explore more complex manifolds of MPS. From a tiered multi-property analysis of329 (
EAT,Egap,α

)
-space in which we partitioned the molecules in QM7-X according to an increasing number of properties, we330

again found a surprising degree of flexibility in MPS: by restricting the seemingly infinite search space to molecules with certain331

EAT (or certain EAT and Egap), one can still find molecules with a markedly diverse range of complementary QM properties.332

Hence, we again found compelling evidence of the “freedom of design” that exists across wide swaths of a QM-based MPS, i.e.,333

the rational in silico design of molecules with completely different structures and compositions that share an array of different334

QM properties is quite feasible.335

Based on these findings, we then employed Pareto front analysis, a powerful multi-property optimization approach, to336

identify the most promising small organic molecules in CCS (as enumerated by QM7-X) for polymeric battery materials (i.e.,337

molecules which simultaneously have the largest 〈α〉 and 〈Egap〉). In doing so, we found that the molecules in each Pareto front338

generally follow the inverse α ∝
1

Egap
relationship; however, there were a number of exceptions and unexpected structures that339

appeared along each front, reflecting the freedom one has when designing molecules with multiple targeted QM properties.340

A deeper analysis of each front also revealed a series of small and rational changes to the structure and composition of each341

Pareto-optimal molecule that were very well-aligned with “chemical intuition”. Since these findings emerged without any prior342

knowledge of the
(
α,Egap

)
-space, we argued that Pareto front analysis is a powerful (and largely underutilized) tool for in silico343

molecular design56–60. A potentially interesting next step would use these Pareto-optimal structures in conjunction with current344

ML approaches (e.g., active learning) to build reliable multi-objective frameworks for identifying the molecules in CCS (beyond345

that in QM7-X) missing in each front63, 64. Such a framework would considerably improve the sampling, identification, and346

design of molecular systems for a number of applications, ranging from novel polymeric batteries and organic semiconductors347

to promising pharmaceuticals and small-molecule protein inhibitors. Hence, we hope that this work will emphasize the critical348

importance of obtaining high-quality QM property data and motivate the development of next-generation ML approaches that349

will allow us to gain a deeper and more fundamental understanding of the complex SPR/PPR in MPS as well as explore even350

more vast swaths of the seemingly infinite CCS—both of which are crucial for chemistry-based decision-making processes in351
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the science, technology, and engineering fields.352

Methods353

Generation of the QM7-X dataset354

In the construction of QM7-X34, we performed a systematic and exhaustive sampling of the (meta-)stable equilibrium355

structures (i.e., constitutional/structural isomers and stereoisomers, e.g., enantiomers and diastereomers (including cis-/trans-356

and conformational isomers) of all molecules containing up to seven heavy (C, N, O, S, Cl) atoms in the GDB-13 database24
357

using a density-functional tight binding (DFTB) approach65, 66 including many-body dispersion (MBD) interactions35, 67, 68 for358

equilibrium structure generation. To further sample each molecular potential energy surface (PES), we generated 100 non-359

equilibrium conformers for each of these 41,357 equilibrium structures (via DFTB normal-mode displacements, see examples360

in Figure 1) producing a total of ≈ 4.2 M molecular structures. For each of these equilibrium and non-equilibrium structures,361

QM7-X includes an extensive number of physicochemical properties (i.e., 42 global (molecular), local (atom-in-molecule),362

ground-state, and response properties) obtained via QM calculations, most of which were computed using non-empirical hybrid363

density-functional theory (DFT) with a many-body treatment of vdW dispersion interactions (i.e., PBE0+MBD) in conjunction364

with tightly-converged numeric atom-centered basis sets69 as implemented in the FHI-aims code70, 71. This level of theory365

has proven to be accurate and reliable for describing the intramolecular degrees of freedom in small organic molecules as well366

as the intermolecular interactions in organic molecular dimers, supramolecular complexes, and molecular crystals35, 72–75.367

Analysis details368

For the analysis in the Pairwise Correlations in Molecular Property Space section, we considered the properties of all ≈ 4.2 M369

(equilibrium and non-equilibrium) molecular structures in QM7-X. The degree of correlation between properties X and Y was370

measured by the Pearson correlation coefficient, i.e.,371

ρ =
cov(X ,Y )

σX σY
, (3)

in which cov and σ are the covariance and standard deviation, respectively. For the analysis in the Multi-Property Analysis:372

Exploring More Complex Manifolds of Molecular Property Space section, we considered the 51 lowest-energy non-equilibrium373

conformations per equilibrium structure (≈ 2.1 M structures, see energy range in Figure S4). The analyses in the Structural374

and Compositional Dependence of Molecular Property Space and Multi-Property Optimization: Finding Optimal Pareto375

Fronts in Molecular Property Space sections were performed using thermally-averaged values for each property at T = 300 K,376

i.e., obtained by Boltzmann averaging over all 101 (equilibrium and non-equilibrium) molecular structures per equilibrium377

structure in QM7-X. We used thermal averages (represented by 〈· · ·〉 throughout this work) as this protocol is often employed in378

molecular design procedures.379

Multi-property optimization algorithm380

Each Pareto front was found using a multi-objective evolutionary algorithm, i.e., the non-dominated sorting genetic algorithm II381

(NSGA-II)76, 77, as implemented in the pymoo code78. NSGA-II performs a fast sorting of non-dominant samples to define the382

Pareto fronts, while the diversity in each front is controlled by a crowding-distance calculation61, 62. In our proof-of-concept383

search for promising candidate molecules for polymeric battery materials, i.e., molecules that are both highly polarizable and384

have high electrical stabilities, we employed the following two objective functions: f1(x) = x and f2(y) = y, where x =
〈
Egap

〉
385

and y = 〈α〉. Here, we note that the choice for these objective functions can be specifically tailored for a given application and386

modified accordingly, e.g., f (x) = x2 could be used for the molecular polarizability when looking for molecules with large387

vdW/dispersion interactions, given the quadratic C6 ∝ α2 relationship between these quantities (cf. Eq. (1)).388
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