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ABSTRACT 

The Programmed Cell Death Protein 1/Programmed Death-Ligand 1 (PD-1/PD-L1) interaction is 

an immune checkpoint utilized by cancer cells to enhance immune suppression. There is a huge 

need to develop small molecule drugs that are fast acting, cost effective, and readily bioavailable 

compared to antibodies. Unfortunately, synthesizing and validating large libraries of small-

molecules to inhibit PD-1/PD-L1 interaction in a blind manner is both time-consuming and 

expensive. To improve this drug discovery pipeline, we have developed a machine learning 

methodology trained on patent data to identify, synthesize, and validate PD-1/PD-L1 small 

molecule inhibitors. Our model incorporates two features: docking scores to represent the 

energy of binding (E) as a global feature and sub-graph features through a graph neural network 

(GNN) of molecular topology to represent local features. This interaction energy-based Graph 

Neural Network (EGNN) model outperforms traditional machine learning methods and a simple 

GNN with a F1 score of 0.9524 and Cohen’s kappa score of 0.8861 for the hold out test set, 

suggesting that the topology of the small molecule, the structural interaction in the binding 

pocket, and chemical diversity of the training data are all important considerations for enhancing 

model performance. A Bootstrapped EGNN model was used to select compounds for synthesis 

and experimental validation with predicted high and low potency to inhibit PD-1/PD-L1 

interaction. The potent inhibitor, (4-((3-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-2-

methylbenzyl)oxy)-2,6-dimethoxybenzyl)-D-serine, is a hybrid of two known bioactive scaffolds, 

with an IC50 of 339.9 nM that is comparatively better than the known bioactive compound. We 

conclude that our bootstrapped EGNN model will be useful to identify target-specific high 

potency molecules designed by scaffold hopping, a well-known medicinal chemistry technique. 
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INTRODUCTION 

Programmed cell death protein 1 (PD-1) is an immune checkpoint receptor implicated for 

the creation of new cancer therapeutics.1 The prolonged interaction between the T-cell receptor 

and the major histocompatibility complex (MHC) leads to upregulation of PD-1 on the activated 

T-cell surface.2 Activated T cells produce cytokines, such as Interferon-γ, which in turn cause 

tumor cells to express programmed death ligand 1 (PD-L1) on the their cell surface.2 Tumors 

escape the action of immune system by utilizing the interaction between PD-1 and ligand PD-L1 

resulting in lower effector T-cell function and survival, as such resulting in a suppressive immune 

response in the tumor microenvironment.2 The inhibition of the PD-1/PD-L1 interaction can 

enhance anti-tumor immunity and a large amount of work has been done to develop monoclonal 

antibodies as inhibitors of PD-1/PD-L1 interaction inhibitors.3,4 For example, pembrolizumab, 

cemiplimab, and nivolumab are three FDA approved anti-PD-1 monoclonal antibodies.4 The 

discovery of small-molecule inhibitors would be an advantageous over monoclonal antibodies, 

such as being fast-acting, simple for in vivo administration, ability to penetrate through cell 

membranes and interact with the cytoplasmic domains of cell surface receptors.5 Since a few 

years, there has been significant development in designing PD-1/PD-L1 inhibitors.6,7 Specifically, 

Bristol-Myers Squibb (BMS) discovered a set of potent PD-1/PD-L1 small molecule inhibitors 

based on the peptidomimetic molecules and non-peptidic small molecules.6,7  In particular, BMS 

revealed a 2-methyl-3-biphenyl-methanol scaffold containing chemical libraries. Later, Holak et 

al. studied the interaction of BMS molecules with PD-L1 suggesting that BMS molecules induce 

PD-L1 dimerization and also reported crystal structures of compounds with dimeric PD-L1.8,9 
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Based on these findings, we envisioned to develop a machine learning (ML) framework for 

selecting and testing new PD-1/PD-L1 inhibitors. 

Traditionally, the development of small-molecule inhibitors requires high throughput 

screening of a large library of diverse drug-like compounds10 or a medicinal chemist iterating over 

a scaffold with weak receptor activity to enhance potency.11 This entire process is – (i) time 

consuming; (ii) needs expensive instrumentation and robotics; (iii) based on trial-and-error; and 

(iv) highly inefficient to identify several new scaffolds rapidly.12 In addition, virtual screening using 

docking methods have been developed to improve this process but with limited success.13 

Further, ML architectures such as Support Vector Machine (SVM)14–16, Random Forest (RF)17–19, 

Graph Convolution Network20, and Graph Neural Networks (GNN)21,22 have been used for drug 

design and predicting drug-target interactions23,24. Recently, new architectures utilizing a 

combination of graph features in the binding site of a protein have shown great promise for 

calculating binding affinities and determining whether a compound will bind to a target.20,22 

Several new neural network-based architectures have also been proposed which promise 

to identify potent scaffolds, but many have not been tested experimentally,15,16,25–28 and 

developments in the ability to mine and characterize protein crystallography data hopes to drive 

the creation of these models.29 Recently, it has been shown that molecular sub-graph features 

incorporated through a GNN and protein features encoded by their sequence can be combined 

to predict if a compound can target a given protein.24 Inspired by this work and based on our 

interest in developing methods for drug design and immunology29–36, we have developed a new 

machine learning model to predict if a compound can inhibit the PD-1/PD-L1 interaction. Our 

method replaces the protein sequence features with docking scores representing the free energy 
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of binding and due to this global energetic interaction of the small molecule in the binding pocket, 

we have termed this model as an “Energy Graph Neural Network” (EGNN). The three-dimensional 

atomic interaction energetic scores are calculated using CANDOCK31 (Figure 1B) and are 

combined with local molecular graph features (Figure 1A) using an end-to-end training 

methodology (Figure 1C-D). In this work, we use this EGNN model to select designs for synthesis, 

and experimentally test a curated list of compounds from these predictions to prospectively 

identify potent PD-L1 small molecule inhibitors using the Homogenous Time-Resolved 

Figure 1. The EGNN model takes advantage of a combination of local (A) and global (B) features. The local features 

are calculated from the molecular graph of a molecule using a GNN to assign weights to various sub-graphs of the 

molecule. The global features are a collection of docking scores used to represent the interactions between the 

compound and protein. These two features are combined to create a concatenated vector (C) which is passed 

through a SoftMax layer and bootstrapped to classify a molecule as having ‘low’ or ‘high’ potency against PD-1/PD-

L1 interaction. 
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Fluorescence (HTRF) assay. We also tested negative predictions suggesting the utility of the model 

to be used for selecting potent leads as PD-1/PD-L1 inhibitors.  

RESULTS  

Patent Data for Training the EGNN Model 

We used PD-1/PD-L1 small molecule inhibition data for 762 compounds from four patents to 

train our models: WO 2015/034820 A17 and WO 2015/160641 A237 by BMS (674 compounds), 

Figure 2. (A) Upper: Classification of Training Data in BMS and Incyte Patents. Bottom: Left: Main PD-L1 inhibitor 

scaffolds of BMS patents. R group can be CN, Cl, Br, or CH3. Right: Main PD-L1 inhibitor scaffolds of Incyte 

patents. Here A and B denote sub-scaffolds. (B) & (C) Heatmaps of pairwise Tanimoto similarity scores of BMS 

and Incyte compounds, respectively. 
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and WO 2018/119263 A138 and US 2018/0273519 A139 by Incyte Corporation (88 compounds).  

A homogeneous time-resolved fluorescence (HTRF) binding assay was used to show activity 

against PD-1/PD-L1 interaction in the patents. However, the patents did not list individual IC50 

values for all compounds but provided a range of inhibition with different molecules. Therefore, 

we trained a binary classifier with cutoffs for both datasets to treat a molecule as “High potency” 

or “Low potency” (Figure 1). If the reported IC50 of a molecule is less than or equal to 100 nM in 

the patent it was considered as a “High potency” molecule, otherwise it was considered as a “Low 

potency” molecule. This threshold was selected as it is the only common threshold value among 

four patents (Table S4). It should be noted that the actual value of IC50 should not be considered 

here as our experiments with multiple replicates were not able to obtain exactly reported results 

for some molecules in the patents (see IC50 value of compound 4a in Table 2, BMS-1 annotated 

with 6-100 nM in the WO 2015/034820 A1 patent7) since our experimental conditions were 

different from the conditions reported in patents (See HTRF assay part in the experimental 

section). Therefore, we consider positive prediction (high potency) based on our experimental 

IC50 value as compared to the upper limit of a BMS control molecule (compound 4a/BMS-1) in 

WO 2015/034820 A1 patent7. The training dataset of 762 small molecules with the BMS or Incyte 

annotation is shown in Supporting Information File (TrainingData.xlsx). 

We selected BMS and Incyte patents to include chemical diversity of the molecules in the 

training data set. Figure 2A shows the distribution of low and high potency molecules and general 

scaffolds in the BMS and Incyte patents. The BMS patents have 372 high potency compounds and 

302 low potency compounds while the Incyte patents have 47 high potency compounds and 41 

low potency compounds respectively. The BMS patent scaffolds contains 417 derivatives of (2-
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methyl-3-biphenylyl)methanol and 257 derivatives of [3-(2,3-dihydro-1,4-benzodioxin-6-yl)-2-

methylphenyl]methanol shown in Figure 2A (bottom - left) with R groups as CN, Cl, Br, and CH3. 

On the other hand, Incyte patent scaffolds have distinct sub-scaffolds, denoted as A and B in 

Figure 2A (bottom – right). For Incyte scaffolds, X denotes for either N or C—R groups (R: Alkyl 

groups). These scaffolds suggest that the chemical diversity of Incyte compounds is higher than 

that of the BMS compounds because the general structures of the compounds in Incyte patents 

have more structural diversity for sub-scaffolds and atoms. We validated this observation using 

pairwise Tanimoto similarity scores of BMS and Incyte compounds as shown as heatmaps in 

Figure 2B and 2C, respectively. Morgan fingerprints with radius of 2 and bit length of 1024 were 

used to calculate pairwise Tanimoto similarities. High red color areas in the BMS heatmap 

indicates that the molecular pairs are structurally similar to each other. Low red areas in the 

Incyte heatmap suggests it has more chemical diversity in molecular structures. Furthermore, the 

average pairwise Tanimoto40 similarity score of all BMS compounds was found to be 0.4434 and 

0.3920 for all Incyte compounds, confirming higher chemical diversity in Incyte compounds when 

compared to BMS compounds.  

PD-L1 homodimer and PD-1/PD-L1 Crystal Structures Reveals a Binding Site for Docking  

It has been shown previously that BMS compounds inhibit the PD-1/PD-L1 interaction by inducing 

dimerization of PD-L1.8,9 Therefore, a PD-L1 homodimer crystal structure (PDB ID: 5N2F) was 

selected for docking all the compounds in this manuscript. A PD-1/PD-L1 crystal structure (PDB 

ID: 4ZQK) was also used to check whether the binding site location of PD-L1 in the homodimer 
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crystal structure (5N2F) overlapped and aligned with each other using the PyMol software 

package41(Figure 3A). In Figure 3B, the selected binding site of the PD-L1 homodimer on the 

overlapped and aligned crystal structures is shown to indicate that the formation of the 

homodimer of PD-L1 with small molecules blocks the PD-1/PD-L1 interaction. A known inhibitor 

of the PD-1/PD-L1 interaction (ligand ID: 8HW)8 in the selected binding site (Figure 3C) suggests 

that the selected binding site corresponding to PD-L1 homodimers is relevant to develop PD-

1/PD-L1 inhibitors. Therefore, the docking interactions of the PD-L1 homodimer will be relevant 

towards identifying PD-1/PD-L1 inhibitors. Also, direct docking with the PD-1/PD-L1 was not 

carried out since the binding site in between the PD-1 and the PD-L1 is filled with interacting 

amino acid residues from both proteins. Therefore, there is no space to dock a small compound 

with the PD-1/PD-L1 complex. 

Figure 3. The light pink chain represents the PD-1 protein and the pale cyan chain represents the PD-L1 protein in 

the PD-1/PD-L1 complex crystal structure (PDB ID: 4ZQK). The wheat color chain represents the PD-L1 chain A and 

the blue white color represents the PD-L1 chain B in the PD-L1 homodimer crystal structure (PDB ID: 5N2F) (A) 

Overlapped and aligned PD-1/PD-L1 (4ZQK) and PD-L1 dimer (5N2F) crystal structures. (B) Overlapped and aligned 

two crystal structures with the determined binding site (grey color mesh) of the PD-L1 dimer (5N2F). (C) The PD-L1 

dimer (5N2F) crystal structure with the small molecule (ligand ID: 8HW) at its binding site (grey color mesh). 
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 CANDOCK31 was used to generate docking conformations of small molecules with PD-L1 

homodimer (see Experimental Section on Generation of Energy Features with Docking and 

Energy Vector (E) in EGNN for details). Before developing a machine learning method, we also 

assessed the ability of only using the docking scores for compounds in the training set for each 

of the 96 potential energy scoring functions31 in CANDOCK to classify the high potency vs low 

potency molecules. Cohen’s Kappa scores were used to select the best scoring functions to 

differentiate between two classes. (Table S1). The scoring function, radial cumulative complete 

15 (RCC15) acquired the highest Cohen’s kappa score of 0.41447. However, RCC15 scores were 

not able to clearly separate all the high and low potent classified molecules in the training data 

(see Violin plots in Figure S1). Using only one scoring function is not sufficient to capture the 

different states of PD-1/PD-L1 inhibition with small molecules. Therefore, we developed an EGNN 

model using top scoring function of each class which demonstrated a positive Cohen’s kappa 

value (Table S1) to represent the global features (see Experimental Section on Generation of 

Energy Features with Docking and Energy Vector (E) in EGNN for details). This included RCR15 

(kappa = 0.37746) and RCC15 (kappa = 0.41447) scoring functions. A model with kappa score 

between 0.21 - 0.40 is considered as a fair agreement model and if the kappa score is between 

0.41 - 0.60, then the model is considered as a moderate agreement model.42 

EGNN Model with Hyperparameter Optimization Outperforms GNN and Other Baseline Models 

A detailed description of the EGNN model including a combination of molecular GNN combined 

with docking is given in the Experimental Section. Figure 1 shows that the EGNN model is a 

combination of local features of the small molecule represented as a GNN (see Graph Neural 

Network for Molecular Graphs in EGNN) along with global features of protein-ligand interaction 
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represented as docking scores (see section Generation of Energy Features with Docking and 

Energy Vector (E) in EGNN).  The EGNN was trained with 88 small molecules with high and low 

potency for PD-1/PD-L1 inhibition extracted from two Incyte patents (see Patent Data for 

Training the EGNN Model). We calculated variation in the average F1 score (over five cross-

validated folds) versus the number of epochs for different hyperparameters (Figure S2). Also, 

model’s performance with different datasets with changing hyperparameters are shown in Table 

S6. Optimal hyperparameters were selected to avoid overfitting and underfitting for EGNN. 

Dimension of the hidden molecular vector (dim) = 10, sub-graph radius = 2, and number of hidden 

layers = 1 were selected as optimum hyperparameters for the EGNN model (see Experimental 

Section on EGNN Training and Hyperparameter Optimization).  

The EGNN and GNN models were trained with different training sets to examine the effect 

of chemical diversity on model performance for classification of high and low potency molecules. 

Two datasets (BMS and Incyte) were used separately and in combination to train the EGNN model 

and determine the best dataset to predict PD-1/PD-L1 inhibitors. Splitting of the dataset into 

training-validation set and test set (4:1) were carried out using two different methods: (1) using 

a random splitter on shuffled data and (2) using a scaffold splitting method by DeepChem 

library.43  Then training was carried out with fivefold cross validation and test sets were used to 

evaluate the models’ prediction ability. Here, Cohen’s kappa, F1 score and Area Under the 

Receiver Operator Characteristic Curves (AUROC) were measured to compare three models 

trained with BMS data only, Incyte data only and BMS-Incyte combined data. Further, as a 

separate experiment, all the measures were obtained for EGNN and GNN models trained only on 

BMS data while predicting for Incyte data, and vice versa as well.  
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Figure 4A shows how data sets were split within the train-validation-test set scheme. 

Initial dataset was split into two sets with the 4:1 ratio based on the scaffold splitting or random 

shuffled splitting. Then the 80% dataset was used as the training and validation dataset while the 

20% dataset was used as the hold out test set to evaluate model performances.  

GNN models with scaffold splitting appeared to generate comparable results with the 

EGNN (Figure S4). However, this was expected since the graph neural network uses the two-

dimensional molecular framework/topology in training. When the framework distributions of the 

compounds are similar in the train-validation and test sets, GNN performs well. However, our 

intension is to develop a model which could be used to screen a large compound library which 

would not be necessary to share the same distribution of scaffolds with training sets (i.e. Incyte 

or BMS). Hence, we selected the random splitter with shuffling to create the test set for 

performance evaluations to develop a more generalized model. 

Cohen’s kappa scores of different test sets (hold out test set is based on random splitting) 

for both models trained with BMS compounds, Incyte compounds, and the union of these sets 

are shown in Figure 4B.  The kappa scores of the EGNN and GNN models trained with Incyte data 

and tested on the hold out test set were 0.8861 and 0.4304, respectively (Figure 4B). This result 

suggests that the EGNN trained model with Incyte data that contains diverse chemical scaffolds 

(Figure 2C) performs much better than the GNN trained with the same data set. However, when 

the same test was done with only BMS compounds with lower chemical diversity than Incyte, the 

Cohen’s kappa score is comparable for both models with 0.6416 for the EGNN model and 0.7164 

for the GNN model. This suggests that the GNN model performs well with smaller chemical 

diversity in the training and test data as compared to larger chemical diversity. Both models show 
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comparable performances with the combined datasets as well. When both BMS and Incyte 

datasets were combined, the kappa score for the hold out test set of the EGNN model was 0.6072 

and 0.6729 for the GNN model. A similar trend is observed for the F1 scores for the three different 

training set comparisons (Figure 4C). These results suggest that the EGNN model outperforms 

the GNN model for chemically diverse data sets such as Incyte data. We believe this to be due to 

the addition of ‘global’ energy features captured by the docking scores of PD-L1 homodimers as 

training data in EGNN compared to only the ‘local’ structural features of small molecules in the 

training data for the GNN model. 

We also investigated the ability of the EGNN and GNN models trained on one compound 

set to predict high and low potency inhibitors of PD-1/PD-L1 in the other compound set. These 

results are represented in Figure 4B and 4C (Kappa scores and F1 scores respectively) with 

different bar patterns to represent different test sets. Tanimoto similarities between Incyte and 

BMS compounds are also shown in the Figure 4D heat map. The average pairwise Tanimoto 

similarity score of 0.3044 shows that compounds in these two datasets are very dissimilar to each 

other. When the EGNN and GNN models are trained on BMS compounds and used to predict 

Incyte compounds, a Cohen’s kappa score of 0.1505 for the EGNN and 0.1200 for the GNN was 

observed and F1 score of 0.3810 and 0.2264 were observed, respectively. On the other hand, 

both F1 and kappa scores for both models improved when they were trained with Incyte data 

and used to predict the BMS compounds (kappa score of EGNN = 0.3852, GNN = 0.3196 and F1 

score of EGNN = 0.7400, GNN = 0.6958). These results show that there is a marked improvement 

in F1 scores and Cohen’s kappa scores for both EGNN and GNN models when trained on Incyte 

data and tested on BMS. However, AUROC score cannot distinguish these models correctly 
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(FigureS3). This was expected as the AUROC is a not good measure to evaluate models trained 

on skewed/unbalanced datasets and it can hinder the poor performance of a model.44  Also, 

these results suggest that the EGNN model outperforms the GNN model in both cases. (see Table 

S2 for details). This highlights the importance of chemical diversity in training data even though 

there is not much compound similarity between the training and test sets. Therefore, it is not 

suitable to use only BMS or combined BMS and Incyte data to train the final model to make 

predictions for unknown molecules. Hence, we selected only the Incyte dataset to train the EGNN 

model which improved the EGNN model performance significantly (Table S2). 
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Figure 4. (A) Training-validation and Test scheme used for models. (B) Cohen’s kappa scores for EGNN and 

GNN with different training-validation and test sets. (C) F1 scores for EGNN and GNN models with different 

training-validation and test sets. (D) Heatmap of pairwise Tanimoto similarity scores between BMS and Incyte 

compounds (E) Precision-recall curves for EGNN, GNN, RF and SVM models trained with Incyte data. 
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Also, we have checked the ability to classify training set compounds into low and high 

potency classes by just comparing the Tanimoto 2D similarities. Violin plots showing the 

distributions of Tanimoto 2D similarity scores for low potency, high potency and all compounds 

are shown in figure S5. This clearly shows that compounds either in the high potency class or the 

low potency class shows a high probability to have a low pairwise similarity score and that is true 

even when all the compounds are considered as well. So, it is not enough to just consider the 

topological similarity to select potent PD-1/PD-L1 inhibitors. 

Finally, we compared the cross-validated EGNN model with GNN, Support Vector Machine 

(SVM), and Random Forest (RF) baseline models trained with Incyte training data, using their test 

set performances. Both SVM and RF models are trained on local and global features as well. 

Extracted fingerprints from a molecular graph with the radius of 2 using Weisfeiler-Lehman 

algorithm45 were used as ‘local’ features similar to EGNN and GNN models. Here we have padded 

zeros up to the maximum fingerprint length to maintain the same fingerprint dimension. Same 

pre-selected docking scores (RCR15 and RCC15) obtained by CANDOCK were used as ‘global’ 

energy features. Obtained AUROC, AUPRC, Precision, Recall, F1 Score and Cohen’s kappa values 

are tabulated in the Table 1 for all four models. The SVM model was trained using the ‘svm’ 

package in scikit-learn library46 with the "linear" kernel and the RF was trained using the 

‘RandomForestClassifier’ in scikit-learn library46 with 500 trees.  The ‘metrics’ module in scikit-

learn package46 was used for statistics AUROC, precision, recall, F1 score and Cohen’s kappa. 

Precision-recall curves for models and AUPRC values were obtained using the ‘precrec’ library47 

in R programming language. The EGNN model outperforms all the other models with values of 

0.9250, 0.9212, 0.9091, 1.0000, 0.9524, and 0.8861 for AUROC, AUPRC, precision, recall, F1 score, 
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and Cohen’s kappa respectively (Table 1). Comparing precision-recall curves of these four models 

(Figure 4E) also confirmed that the EGNN model outperforms all three other models. Taken 

together, the combined local and global features in EGNN gives the best performance with the 

Incyte dataset. 

Table 1. AUROC, AUPRC, Precision, Recall, F1 Score and Cohen’s kappa of the EGNN for PD-1/PD-L1 

inhibitor predictions compared to other baseline models, such as, Random Forest, SVM, and GNN models. 

All models were trained on the Incyte dataset and evaluated based on the same hold out test set. 

Measure 
Model 

Random Forest SVM GNN EGNN 

AUROC 0.8125 0.7750 0.8625  0.9250 

AUPRC 0.7419 0.8266 0.8688 0.9212 

Precision 0.7692 0.8000 0.7273  0.9091 

Recall 1.0000 0.8000 0.8000 1.0000 

F1 Score 0.8696 0.8000 0.7619  0.9524 

Cohen’s Kappa 0.6494 0.5500 0.4304 0.8861 

 

Synthetic Selection and Validation of EGNN Predictions for PD-1/PD-L1 Inhibition 

The EGNN model trained with optimum hyperparameters and the Incyte dataset was used to get 

predictions for an in-house database of small molecular designs. We developed a bootstrapped 

EGNN model to predict compounds with high and low potency for PD-1/PD-L1 inhibition using 

100 EGNN models (see section Bootstrapping the EGNN model). Bootstrapped EGNN models 

gave a F1 score of 0.91 and Kappa of 0.77 while bootstrapped GNN models gave 0.87 and 0.65 
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F1 score and Kappa respectively (Table S5). Bootstrapping is an essential statistical technique 

that can be used to select confident molecules for synthesis and experimental validation based 

on agreements among multiple models. The bootstrapped EGNN model identified high and low 

potency small molecules as PD-1/PD-L1 inhibitors that were synthesized and then experimentally 

verified with HTRF binding assay (see Table 2 for summary). Specifically, we selected 4 molecules 

predicted to be high or low potent for PD-1/PD-L1 inhibition for testing based on bootstrapped 

EGNN SoftMax average scores and standard deviation (see EGNN SoftMax scores in Table 2). 

Out of EGNN bootstrapped predictions, we have selected 1 molecule as highly potent 

(compound 4b) and 3 low potency molecules with different scaffolds (compound 4c, 4d and 4e) 

for further testing. We have defined a new parameter called ‘counts’, which records the number 

of models out of 100 models which gives a SoftMax score of 0.5 or above for the molecule of 

interest. Specifically, the compound 4b was predicted to be a high potency PD-1/PD-L1 inhibitor 

with 99 counts and an average SoftMax score of 0.7771 (± 0.1193). In contrast, only 69 counts 

and average SoftMax svalue of 0.5786 (±0.1406) were resulted for compound 4c, only 5 counts 

and an average SoftMax value of 0.1821 (±0.1514) were resulted for compound 4d and 62 counts 

and an average SoftMax value of 0.5280 (±0.1259)  were resulted for compound 4e suggesting 

low potency predictions. We also synthesized a BMS scaffold (compound 4a a known PD-1/PD-

L1 inhibitor) for use as a positive control for our HTRF experiments. The compound structures are 

shown in Scheme 1 and 2 (see Experimental Section for procedures and characterization). The 

predicted high potency molecule (compound 4b) is (4-((3-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-

2-methylbenzyl)oxy)-2,6-dimethoxybenzyl)-D-serine, a hybrid of two BMS molecules, 4a (BMS-1) 

and BMS-1002 containing (2-methyl-3-biphenylyl)methanol and [3-(2,3-dihydro-1,4-
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benzodioxin-6-yl)-2-methylphenyl]methanol, respectively (Figure 5A) and suggests the ability of 

EGNN model to do scaffold hopping. 

The EGNN trained with Incyte data only had three [3-(2,3-dihydro-1,4-benzodioxin-6-yl)-

2-methylphenyl]methanol scaffold containing compounds. As a separate experiment, we have 

removed these and predicted for our synthesized library and still the EGNN model was able to 

predict the compound 4b (A compound based on [3-(2,3-dihydro-1,4-benzodioxin-6-yl)-2-

methylphenyl]methanol scaffold) as a high potency compound with a SoftMax score of 0.8285 ± 

0.1396 and 971 counts. This result demonstrates that the EGNN model can identify high potency 

PD-1/PD-L1 inhibitors with [3-(2,3-dihydro-1,4-benzodioxin-6-yl)-2-methylphenyl]methanol 

scaffolds even without being learned on similar scaffolds.  

Scheme 1. Representative Synthesis Schemea 

 

Compound Y R1 R2 R3 

4a (KPGC01S94) Y2 OMe OMe 

 

4b (KPGC01S32) Y1 OMe OMe 
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4c (KPGC01S138) Y2 OMe OMe 

 

4e (KPGC01S42) Y2 OMe OMe 

 

a Reaction conditions: (i) BH3•THF complex (1.0 M in THF), Anhydrous THF, 0 °C to rt, 2 days; (ii) PPh3, DIAD, 

0 °C to rt, 20 h, anhydrous THF; (iii) amine component, NaBH3CN, cat. AcOH, DMF, 80 °C or room 

temperature, 1h or 3 h or overnight.  

Scheme 2. Synthesis of 4d (GCL2) 

 

The top docked pose in PD-L1 homodimer (PDB ID: 5N2F) for compound 4b interacts in a 

similar manner as shown previously for the co-crystal structures8 (Figure 5B). Specifically, for 

compound 4b, the 2,3-Dihydro-1,4-benzodioxine group facilitated the movement of the amino 

acid residue Tyr56 in chain A of the PD-L1 homodimer (ATyr56). It is known that this ATyr56 does 

not close the hydrophobic pocket from one end if this 2,3-Dihydro-1,4-benzodioxine group is 

present8 creating a hydrophobic tunnel (Figure 5B inset) rather than a hydrophobic cleft in the 

docked conformation. Additionally, the aromatic ring of compound 4b (2,3-Dihydro-1,4-

benzodioxine) was stabilized by π-π stacking interactions with the amino acid residue ATyr56 

(Figure 5C). The central methylbenzyl ring (magenta color in 4b in Figure 5A) in the structure is 

rotated by approximately 30o to 2,3-Dihydro-1,4-benzodioxine ring and the methyl group of the 
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methylbenzyl ring point towards chain B of the PD-L1 homodimer. This orientation results in 

hydrophobic interactions with Met115 of both chain A and B of the homodimer and with BAla121. 

The D-serine end of the 4b compound forms hydrogen bonds with AThr20 and AAla121 along with 

a plausible hydrogen bond formation between backbone NH of ATyr123 and the oxygen in one of 

the two methoxy groups of the 4b molecule (Figure 5C). These results suggest favorable 

interactions of compound 4b that could dimerize PD-L1 will result in PD-1/PD-L1 inhibition. 



22 
 

 The HTRF assay confirmed that compound 4b has an IC50 of 339.9 nM (see Experimental 

Section for details) to inhibit PD-1/PD-L1 interaction (Figure 5D). This is comparatively better 

Figure 2. A. EGNN predicted a new PD-1/PD-L1 inhibitor, compound 4b, by scaffold hopping of BMS compounds, 4a 

or BMS-1 and BMS-1002. Blue colored parts of the 4b are added from the BMS-1002 and pink color part was added 

from the 4a (BMS-1). B. Showing location of top docked pose of the compound 4b in PD-L1 homodimer crystal 

structure (PDB ID: 5N2F). Inset showing hydrophobic tunnel for compound 4b.  C. Showing chemical interactions of 

top docked pose interactions of the compound 4b in PD-L1 homodimer. Blue and pink colored parts are shown as 

sticks for 4b. The dotted yellow lines between the compound and the residues AThr20 and AAla121 represent 

hydrogen bonding. The orientation of the aromatic ring of tyrosine, ATyr56, suggests a plausible p- p interaction with 

2,3-dihydro-1,4-benzodioxin blue colored aromatic ring in the compound 4b. D. Comparison of IC50 values of 4a 

(BMS-1 control compound, red color) and new compound 4b (blue color). The DMSO controls for positive (PC-DMSO, 

purple color) and negative controls (NC-DMSO, green color) of the assay are shown for each tested concentration. 
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than the IC50 of 521.5 nM for the BMS compound 4a that was synthesized and tested in our lab 

(BMS-1 molecule in the BMS patent WO 2015/034820 A1). It should be noted that the BMS-1 

molecule was denoted with the IC50 of 6-100 nM with HTRF assay in the BMS patent7 . However, 

multiple replicates of our experiments did not result in the IC50 value less than 100 nM to inhibit 

PD-1/PD-L1 interaction (see Calculation of IC50 values section and Supporting File 

HTRF_IC50_Data.xlsx). As mentioned previously, this result does not affect our machine learning 

method since we have classified molecules based on high and low potency rather than estimating 

the specific IC50 value. A possible explanation of this difference in experimental results between 

our work and the patent could be differences in protocols used to perform the HTRF assay and 

calculation of IC50 values. For this reason, we have included a detailed account of HTRF assay 

protocol, analysis of data for calculation of IC50 and supporting data files to be used by the 

scientific community (see Experimental Section).  In order to test the validity of our bootstrapped 

EGNN model to correctly identify low potency predictions, we also tested compounds 4c, 4d and 

4e resulting in no/poor inhibition to PD-1/PD-L1 interaction (Table 2). The IC50 plots for each 

compound tested (Figure S6) as well as the 13C and 1H NMR spectra are provided as Supporting 

Information. Pairwise Tanimoto similarity scores between these 4a-4e (Table S3) show that the 

EGNN model’s capability of identifying high potency and low potency inhibitors regardless of the 

structural similarity. The compound 4e shows a high similarity with the control BMS compound 

(4e) with a Tanimoto similarity score of 0.8018. However, the model recognized it as a low 

potency molecule and the actual test showed that it is a poor inhibitor for PD1/PD-L1 with an 

IC50 of 1261 nM.  On the other hand, the model recognized compound 4b as a high potency 

PD1/PD-L1 inhibitor and the HTRF assay confirmed it with a very good IC50 of 339.9 nM. However, 
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it’s pairwise Tanimoto similarity score with the control compound (4a) is only 0.5074. Taken 

together, these results suggest that the bootstrapped EGNN model can be used to select 

molecules for synthesis and experimental validation of PD-1/PD-L1 inhibition and it can identify 

low potency molecules which are structurally similar to the control compound 4a. 

Table 2. IC50 values for predicted high and low potency compounds with EGNN SoftMax scores 

Compound IC50 value SoftMax score Prediction 

4a (KPGC01S94) 521.5 nM Control* Control* 

4b(KPGC01S32) 339.9 nM 0.7771 +/- 0.1193 High potency 

4c (KPGC01S138) no inhibition 0.5786 +/- 0.1406 Low potency 

4d (GCL.2) no inhibition 0.1821 +/- 0.1514 Low potency 

4e (KPGC01S42) 1261 nM (poor inhibition) 0.5280 +/- 0.1259 Low potency 

*denotes BMS high potency compound 

DISCUSSION AND CONCLUSION 

Cancer immunotherapy marks a major step in treating cancer and the development of PD-1/PD-

L1 immune checkpoint inhibitors have been an important area of research for treatment of 

several tumors. Currently, six therapeutic antibodies targeting both PD-1 (pembrolizumab, 

nivolumab, and cemiplimab) and PD-L1 (atezolizumab, durvalumab, and avelumab) have been 

approved by U.S. FDA. Recently, several new small molecules PD-1/PD-L1 inhibitors have been 

developed48 along with structure determination of human PD-1/PD-L1 complex and co-crystals 

of inhibitory ligands49–51. Still the field is very active in search for new small molecules to inhibit 

this important checkpoint and we hope to enhance the speed of this search with the use of new 

structure-based ML methods that have been benchmarked extensively and tested prospectively.  
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We have developed a new ML methodology, EGNN, based on combining local features of 

the small molecule topology and global features of the small molecule interacting within the 

binding pocket as energetic scores to select, synthesize and experimentally validate potent 

inhibitors of PD-1/PD-L1 interaction. Specifically, EGNN outperforms traditional ML 

architectures, such as, RF, SVM that include both local and global features, as well as the GNN 

model that uses only local features of small molecular topology. When benchmarked with known 

PD-1/PD-L1 inhibitors from BMS and Incyte patent data, we concluded that topology of the small 

molecule, the structural interaction in the binding pocket, and chemical diversity of the training 

data are all important considerations for enhancing model performance. 

We used a bootstrapped EGNN model (based on 1000 EGNN models) for prediction and 

confident selection of new molecules for chemical synthesis and subsequent testing of inhibition 

using HTRF PD-1/PD-L1 inhibition assay. We believe that bootstrapping is an important statistical 

technique to use with ML methods to confidently select molecules for experimental validation in 

drug design. The predicted high potency molecule, (4-((3-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-

2-methylbenzyl)oxy)-2,6-dimethoxybenzyl)-D-serine, is a hybrid of two BMS high potency 

molecular scaffolds, and has an IC50 value of 339.9 nM for inhibiting PD-1/PD-L1 interaction, 

suggesting  the ability of EGNN model to do scaffold hopping to identify new inhibitors. Accurate 

selection of low potency molecules with different scaffolds suggests practical utility of our 

bootstrapped model for selection of compounds for synthesis, a hard problem in the field of ML 

based drug design.   

Our EGNN methodology can be further developed with the addition of more chemically 

diverse data, and incorporating reinforcement iterative learning with experiments performed in 



26 
 

each step for developing a library of structurally diverse small molecule inhibiting PD-1/PD-L1 

interaction to guide structure-activity relationships. Given the general nature of the machine 

learning model and docking methodology that is readily available for use, this approach can be 

adapted to identify small molecule immunomodulators by targeting other immune checkpoints, 

as well as, generally used to include local and global features for target-based drug design. 

EXPERIMENTAL SECTION 

Homogenous Time-Resolved Fluorescence (HTRF) Assay to Test Inhibition of Predicted 

Compounds 

Inhibition of PD-1/PD-L1 interaction was tested for 4 high and low potent predicted compounds 

using the PD1/PD-L1 HTRF assay kit from Cisbio US, Inc. The assay protocol was used as 

mentioned in the kit for each predicted compound (4b, 4c, 4d and 4e) and the BMS control 

compound (4a). Briefly, 2 µL of the compound, 4 µL from a 25 nM Tag1-PD-L1 protein solution 

and 4 µL from a 250 nM Tag2-PD1 protein were added into a Cisbio’s HTRF 96-well low volume 

white plate. Then, the plate was incubated for 15 minutes at room temperature. Next, 10 µL from 

pre-mixed anti-tag detection reagents (5 µL from 1X anti-Tag1-Eu3+ and 5 µL from 1X anti-Tag2-

XL665) were added and the sealed plate was incubated for 2 hours at room temperature. Finally, 

the plate sealer was removed, and measurements were taken using a HTRF® compatible reader. 

This protocol used 12 different concentrations of each compound where the maximum and 

minimum assay concentrations are 10,000 nM and 0.001 nM respectively. Several replicates at 

different concentration were done for high potent prediction compound 4b (36 data points) and 

positive control compound 4a (48 data points). The fitted curve for normalized signal denoted by 
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∆𝐹/∆𝐹𝑚𝑎𝑥 (calculated using HTRF ratio 665 nm/620 nm) versus log[concentration] was used to 

determine the 50% inhibitory concentrations (IC50) of the compounds (see next section on 

Calculation of IC50 values).  

To calculate ∆𝐹/∆𝐹𝑚𝑎𝑥, first the HTRF ratio is calculated as follows; 

𝐻𝑇𝑅𝐹	𝑟𝑎𝑡𝑖𝑜 = 	
𝑆𝑖𝑔𝑛𝑎𝑙	665	𝑛𝑚
𝑆𝑖𝑔𝑛𝑎𝑙	620	𝑛𝑚 × 10000 

A multiplication factor of 10000 factor was used to not deal with decimal values that improves 

data accuracy during calculation. The ΔR ratio indicating “specific signal” of the compound 

disrupting the PD-1/PD-L1 interaction was calculated by subtracting background HTRF ratio 

(negative DMSO control in our work) from each compound (sample) HTRF ratio as follows; 

∆𝑅 = 𝐻𝑇𝑅𝐹	𝑟𝑎𝑡𝑖𝑜	(𝑠𝑎𝑚𝑝𝑙𝑒) − 𝐻𝑇𝑅𝐹	𝑟𝑎𝑡𝑖𝑜	(𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑) 

Next, data normalization was done to minimize variation in values on different days, different 

plate reader instruments, or if the assay was done by different individuals. The normalization was 

done with respect to the background HTRF ratio and was calculated as follows; 

∆𝐹 =
𝐻𝑇𝑅𝐹	𝑟𝑎𝑡𝑖𝑜	(𝑠𝑎𝑚𝑝𝑙𝑒) − 𝐻𝑇𝑅𝐹	𝑟𝑎𝑡𝑖𝑜	(𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)

𝐻𝑇𝑅𝐹	𝑟𝑎𝑡𝑖𝑜	(𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑) × 100% 

Finally, the ∆𝐹/∆𝐹𝑚𝑎𝑥 ratio was calculated to enable comparison of values between multiple 

experiments. 

∆𝐹/∆𝐹𝑚𝑎𝑥 =
∆𝐹	(𝑠𝑎𝑚𝑝𝑙𝑒)
∆𝐹	𝑚𝑎𝑥  

where ∆𝐹	𝑚𝑎𝑥 is taken as the ∆𝐹 of the positive DMSO control in the assay. 
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Calculation of IC50 values 

The IC50 value for PD-1/PD-L1 inhibition was determined by analyzing the log of the 

concentration−response curves to fit a sigmoid curve with four-parameter logistic (4PL) 

regression using the GraphPad Prism Software version 8.3.0 for Windows, GraphPad Software, 

La Jolla California USA, www.graphpad.com. The IC50 values are provided in Table 2. Following 

equation defines the regression curve. 

𝑌 = 𝐵𝑜𝑡𝑡𝑜𝑚 +
(𝑇𝑜𝑝 − 𝐵𝑜𝑡𝑡𝑜𝑚)

I1 + 10!(#$%&'()*+)×./0010$234J
 

where 𝑋 = Log of concentration, 𝑌 = Response ∆𝐹/∆𝐹𝑚𝑎𝑥, 𝑇𝑜𝑝 and 𝐵𝑜𝑡𝑡𝑜𝑚 = Plateaus in same 

units as Y, 𝐿𝑜𝑔𝐼𝐶50 = Same log units as X, 𝐻𝑖𝑙𝑙𝑆𝑙𝑜𝑝𝑒 = Slope factor or Hill Slope, Unitless. Using 

the above equation,	𝐿𝑜𝑔𝐼𝐶50, is calculated to obtain the IC50 value for each compound. The 

HTRF_IC50_Data.xlsx data file with all replicates is provided as a Supporting File for use in 

GraphPad Prism Software to calculate IC50 values. 

 

Machine Learning Architecture of the EGNN model 

The EGNN model was developed using PyTorch52. All scripts for implementing the machine 

learning model and results are provided on GitHub at https://github.com/chopralab/egnn. The 

Figure 1 shows the overview of the EGNN machine learning architecture. We implemented the 

Graph Neural Networks for the molecular graph by Tsubaki and coworkers.24. Briefly, the 

molecular structures were converted into SMILES strings using ChemAxon MolConverter53 

software. Then RDKit54 software package and the Weisfeiler-Lehman algorithm was used to 
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extract r-radius subgraphs graphs for molecules (Figure 1A). The following sections include 

details of the EGNN architecture. 

Graph Neural Network for Molecular Graphs in EGNN 

The following equations and notations with details for molecular GNN have been reproduced 

here from the original work24 with minor modifications for clarification. The lowercase bold face 

letters (e.g.  𝐯 ∈ ℝ5 	) indicate vectors, uppercase bold face letters (e.g.  𝐌 ∈ ℝ6	×	8	) indicate 

matrices, and Italicized non-bold letters (e.g.  𝑆, 𝐺, 𝑣, and	𝑒	) indicate scalars, sets, graphs, 

vertices, and edges. The GNN converts a molecular graph into a low dimensional real valued 

vector 𝐲 ∈ ℝ5  with two neural network-based functions; transition and output.21 In a graph 𝐺, 

each vertex (𝑣) is updated with considering the information of its neighboring vertices and edges 

by the transition function. These vertices have been mapped into a real valued vector 𝐲 ∈ ℝ5  by 

the output function. Both functions are differentiable. All the input features and weights of the 

GNN model are updated using back propagation with the help of the cross-entropy loss function. 

A graph can be defined as 𝐺 = (𝑉, 𝐸), here; 𝑉 and 𝐸 are sets of vertices and edges respectively. 

When applied to chemistry, atoms can be defined as vertices and chemical bonds can be defined 

as edges. First, all the atoms and chemical bonds will be embedded as real valued vectors with 

d-dimensions based on their different types. Since the diversity of atoms (eg: C, N, O, etc.) and 

bonds (eg: single bonds, double bonds, triple bonds, etc.) in a small molecule is limited, the 

number of learning parameters are limited. Therefore, a strategy called r-radius sub-graphs55 was 

used to avoid this limitation. 

r-radius Sub-graphs 
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The set of all atoms within a defined 𝑟 radius an atom 𝑖 can be represented as 𝑁(𝑖, 𝑟). When the 

𝑟 = 0,	   𝑁(𝑖, 𝑟) 	= 	 {𝑖}, which is the set of all atoms in the molecule. The r-radius sub-graph of 

the 𝑖th vertex (𝑣/) is defined as follows; 

𝑣/(9) 	= 	 (𝑉/(9), 𝐸/(9)) 

Here, 

𝑉/(9) 	= 	 {𝑣:	|	𝑗 ∈ 	𝑁(𝑖, 𝑟)} 

𝐸/(9) 	= 	 {𝑒68 ∈ 	𝐸	|	(𝑚, 𝑛) 	∈ 		𝑁(𝑖, 𝑟) 	× 𝑁(𝑖, 𝑟 − 1)} 

The r-radius sub-graph for the edge between 𝑖th and 𝑗th atoms (𝑒/:) was defined as follows; 

𝑒/:(9) 	= 	 (𝑉/(9*;) ∪ 𝑉:(9*;), 𝐸/(9*;) ∩ 𝐸:(9*;)) 

Randomly initialized embeddings (Figure 1) are assigned to each r-radius edge 𝑒/:(9) and vertex 

(𝑣/
(9)) based on the type. Backpropagation has been used to train these random embeddings.  

Vertex Transition Function 

Say 𝐯/
(<) ∈ ℝ5  is the embedded vector for the 𝑖	th vertex of a given molecular graph 𝐺 at time 

step 𝑡. Then the updated 𝐯/
(<=;) ∈ ℝ5  vector can be written as follows; 

𝐯/
(<=;) 	= 	𝜎 d	𝐯/

(<) + e 𝐡/:
(<)

𝒋	∈	@(/)

g 



31 
 

Here,	𝑁(𝑖) is denoting the set of neighboring atoms, 𝜎 is the sigmoid function which is defined 

as 𝜎(𝑥) = ;
;=3!

 , and 𝐡/:
(<) ∈ ℝ5  is the hidden vector which defines the neighborhood and can be 

calculated as follows; 

𝐡/:
(<) 	= 	𝑓 i𝐖83/%AB$9 k

𝐯:
(<)

𝐞/:
(<)m + 𝐛83/%AB$9o 

Here, 𝑓 is the Rectified Linear Units (ReLU), a non-linear activation function such 𝑓(𝑥) =

𝑚𝑎𝑥(0, 𝑥). 𝐖83/%AB$9 ∈ ℝ5×C5  and  𝐛83/%AB$9 ∈ ℝ5×C5  are the weight matrix and the bias vector 

respectively. The vector between the 𝑖th and	𝑗th atoms (vertices) of the molecular graph after 

the time step 𝑡 is defined as 𝐞/:
(<). 

Edge Transition Function 

As mentioned before, edge transition function is used to update each embedded edge vector 𝐞/:
(<)  

during the training process. 

𝐞/:
(<=;) = 𝜎p𝐞/:

(<) + 𝐠/:
(<)r 

𝐠/:
(<) = 𝑓 p𝐖35%3p𝐯/

(<) + 𝐯:
(<)r + 𝐛35%3r 

Here, 𝐖35%3 ∈ ℝ5×5, 𝐛35%3 ∈ ℝ5×; are the weight matrix and the bias vector respectively. 

Moreover, 𝐯/
(<) and 𝐯:

(<) are added, because there is no direction for edges in molecular graphs. 

Molecular Vector Output of Molecular GNN  
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The transition function generates an updated set of atom (vertex) vectors p𝑉 =

s𝐯;
(<), 𝐯C

(<), . . . , 𝐯|E|
(<)ur. Then the output function uses this set of atom vectors to obtain an unique 

molecular vector 𝐲6$03FG03 ∈ ℝ5  (Figure 1A), which is defined as follows; 

𝐲6$03FG03 =
𝟏
|𝑉|e𝐯/

(<)
|E|

/H;

 

Here, the total number of vertices in the full molecular graph is denoted by the |𝑉|. 

Generation of Energy Features with Docking and Energy Vector (E) in EGNN 

First, all the reported molecules were carefully drawn using MarvinSketch56 software. Then, all 

the drawn molecules were cleaned in 3D and converted into a sybyl.mol2 file,  which was used 

for docking with our in-house CANDOCK31 software package (version 0.6.0) using default 

parameters with 20,000 max num possible and 20% top seed percent (Figure 1B).  CANDOCK 

source code is available on GitHub at 

https://github.com/chopralab/candock/releases/tag/v0.6.0. The docking was done with a PD-L1 

homodimer crystal structure (PDB ID: 5N2F). We selected the binding site based on the 

coordinates of the crystal ligand in the protein structure (ligand ID:8HW). Then, radial-mean-

reduced-6 (RMR6)31 was used as “Selector” parameters for docking to select the top pose31. Next, 

the top pose of each docked compound was selected, and its docking score was recalculated 

using all the available 96 different potential energy functions in CANDOCK31 software. All 96 

CANDOCK docking energy scores of each molecule were normalized for each potential energy 

function to use as a vector in the EGNN model; 
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𝑆w/,: = x
𝑆/,: 	− 	𝑚𝑖𝑛(𝑆:)

𝑚𝑎𝑥(𝑆:) 	− 	𝑚𝑖𝑛(𝑆:)
y 

Where, 𝑖:	1 → 𝑛 and 𝑗:	1 → 𝑚. Here, 𝑛 is the number of potential energy scoring functions and 

𝑚 is the number of molecules in the dataset. 𝑆w/,:  is the normalized docking energy value for the 

energy score with 𝑖th potential energy function for the 𝑗th docked molecule. Similarly, 𝑆/,:  is the 

docking energy score before normalization. Also, 𝑚𝑎𝑥(𝑆:) and 𝑚𝑖𝑛(𝑆:) are the maximum and 

minimum energy values within the 𝑗th scoring function for all docked molecules. Then Cohen’s 

Kappa scores were calculated for each scoring function for all the training set data using 

Cohen_kappa_score tool in scikit-learn package46. All the scoring functions which gave a positive 

Cohen’s kappa score were selected and top in each class was selected for the EGNN model. Thus, 

the normalized docking score vector for each molecule in the EGNN model is represented using 

RCR15 and RCC15 normalized potential energy scoring functions as  𝐲3839%J ∈ ℝC (Figure 1B). 

Output of EGNN 

As represented in Figure 1C, the normalized docking energy score vector (𝐲3839%J) is 

concatenated with the molecular vector output of the GNN (𝐲6$03FG03). Then, the concatenated 

long vector (𝐲6$03FG03 ⊕𝐲3839%J) ∈ ℝ(5=C) was used for the training as follows to obtain an 

output vector 𝐱$G<2G< ∈ ℝC; 

𝐱$G<2G< = 𝐖$G<2G<I𝐲6$03FG03 ⊕𝐲3839%JJ + 𝐛$G<2G< 

Here ⊕ denotes concatenation, 𝐖$G<2G< ∈ ℝC×(5=C) denotes the weight matrix and the 

𝐛$G<2G< ∈ ℝC denotes the bias vector. Then, a SoftMax classifier (Figure 1D) is added on to the 

top of the  𝐱$G<2G< = [𝑦), 𝑦;] vector to get the high or low potency probabilities.  
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𝑝< =
𝑒(J")

∑ 𝑒(J#)/
 

Here, 𝑡 ∈ {0,1}; 0 indicates low potency and 1 indicates high potency, and the 𝑝< is the probability 

of the given 𝑦<. 

Bootstrapping the EGNN model 

Bootstrapping which carried out random sampling with replacement was used with the final 

model to get predictions. One hundred different models with different sampled training data 

(sample size of 60) were trained and predictions were obtained for an in-house molecular designs 

test set. Averaged SoftMax scores were used as the final prediction results of the bootstrapped 

model. Finally, molecules in the synthetic test set were classified as high Potency or low potency 

based on the averaged SoftMax score. If it is greater or equal to 0.5, it was considered as high 

Potency, else low potency (Figure 1). Thus, the EGNN model was trained with back propagation 

with given SMILES strings, the vectors of RCR15 and RCC15 scores generated by CANDOCK31 and 

their high potency or low potency status with the PD-L1 protein. The trained model can be used 

to predict the probability of a given molecule to be a high or low potent molecule towards the 

PD-L1 protein. 

EGNN Training and Hyperparameter Optimization 

The model takes a SMILES string and a docking energy score string for a given molecule as inputs. 

Hyperparameters of the model were optimized before using it for predictions. Dimension of the 

GNN hidden vector (dim), number of hidden layers of the GNN, and sub-graph radius were 

optimized by considering the five-fold cross validated F1 score. Three values were used for the 
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dimension of the GNN hidden molecular vector output (i.e. dim = 5, 10 and 15). Numbers 1, 2, 

and 3 were used to check for the optimum number of hidden layers in the GNN. Finally, the 

optimum sub-graph radius for the model was selected out of radius = 1, 2 and 3. 

Calculation of the F1 Score and the Cohen’s Kappa 

Following terms were used to calculate the Cohen’s Kappa and the F1 score. The number of 

compounds predicted to be high potency that experimentally reported to be high potency was 

considered as true positives (TP). When the number of compounds predicted to be high potency 

but experimentally reported as low potency in patents were taken as false positives (FP). True 

negatives (TN) are defined as the number of compounds predicted to be low potency and 

experimentally reported as low potency as well. Then false negatives (FN) are defined as the 

number of compounds predicted to be low potency but experimentally reported as high potency. 

F1 score is defined as follows. 

𝐹1	𝑆𝑐𝑜𝑟𝑒 = 	
2	. 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	. 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙  

Here the precision and recall are defined as follows. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 

𝑟𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 

Cohen’s Kappa: 

𝐶𝑜ℎ𝑒𝑛K𝑠	𝐾𝑎𝑝𝑝𝑎 = 	
𝑃$ −	𝑃3
1 −	𝑃3
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𝑃$ = Relative observed agreement among raters 

𝑃! =	
𝑇𝑃	 + 	𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝑃3  = Probability of random agreement 

𝑃𝑒 =
[𝑇𝑃 + 𝐹𝑁 𝐹𝑃 + 𝑇𝑁] �𝑇𝑃 + 𝐹𝑃𝐹𝑁 + 𝑇𝑁�

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)2  

 

Synthesis 

Unless noted otherwise, all reagents and solvents were purchased from commercial sources and 

used as received. All reactions were performed in a screw-capped vial. The proton (1H) and 

carbon (13C) NMR spectra were obtained using a 500 MHz using Me4Si as an internal standard 

and are reported in δ units. Coupling constants (J values) are reported in Hz. Column 

chromatography was performed on silica gel using flash chromatography (Teledyne ISCO EZprep). 

High-resolution mass spectra (HRMS) were obtained using the electron spray ionization (ESI) 

technique and as TOF mass analyzer. Organic solvents and starting materials were used as 

received. The BMS compound 4a (BMS-1 or KPGC01S94)7 as well as compounds 4b-c were 

synthesized according to the reported procedures starting from compound 1, 2a-b, 3a-b  and 

spectral data were in accordance with reported data. 6–8 

Compound 4a (BMS-1 or KPGC01S94), (S)-1-(2,6-dimethoxy-4-((2-methyl-[1,1'-biphenyl]-3-

yl)methoxy)benzyl)piperidine-2-carboxylic acid: Compound 3b from scheme 1 (45 mg, 0.125 

mmol), (S)-piperidine-2-carboxylic acid (64.5 mg, 4 equiv, 0.5 mmol), sodium cyanoborohydride 



37 
 

(40.8 mg, 5.2 equiv, 0.65 mmol), were dissolved in DMF (1 mL) and then added acetic acid (2 

drops). The reaction mixture was allowed to stir at 80 oC for 1 hour. The reaction was monitored 

by TLC. The crude was purified by 0-20% MeOH:DCM to afford desire product as an off-white 

solid (31.5 mg, 53% yield). 1H NMR (500 MHz, DMSO-d6): δ 7.49 – 7.41 (m, 3H), 7.39 – 7.34 (m, 

1H), 7.32 – 7.25 (m, 3H), 7.19 (dd, J = 7.7, 1.5 Hz, 1H), 6.41 (s, 2H), 5.17 (s, 2H), 4.08 (s, 2H), 3.78 

(s, 7H), 3.11 (t, J = 5.5, 5.5 Hz, 1H), 3.08 – 2.99 (m, 1H), 2.60 (dd, J = 13.5, 6.7 Hz, 1H), 2.20 (s, 3H), 

1.80 (q, J = 6.0, 5.9, 5.9 Hz, 2H), 1.55 (q, J = 6.7, 6.1, 6.1 Hz, 2H), 1.37 (ddt, J = 18.4, 12.8, 6.5, 6.5 

Hz, 3H); 13C NMR (126 MHz, DMSO-d6): δ 172.0, 161.47, 160.32, 142.70, 141.85, 135.83, 134.59, 

130.25, 129.63, 128.86, 128.72, 127.44, 126.04, 92.05, 69.23, 64.35, 56.42, 48.70, 46.21, 31.16, 

26.11, 22.13, 21.27, 16.41. 

Compound 4b (KPGC01S32), (4-((3-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-2-methylbenzyl)oxy)-

2,6-dimethoxybenzyl)-D-serine: Compound 3a from scheme 1 (35.6 mg, 0.104 mmol), D-serine 

(32.8 mg, 3 equiv), sodium cyanoborohydride (19.6 mg, 3 equiv), were dissolved in DMF (1 mL) 

and then added acetic acid (0.104 mmol, 1 equiv, 2 drops). The reaction mixture was allowed to 

stir overnight at room temperature. The reaction was monitored by TLC. The crude was purified 

by 0-20% DCM: MeOH to afford desire product as an off-white solid (42% yield). 1H NMR (500 

MHz, DMSO-d6): δ 7.42 (dd, J = 7.6, 1.5 Hz, 1H), 7.22 (t, J = 7.6, 7.6 Hz, 1H), 7.15 (dd, J = 7.6, 1.5 

Hz, 1H), 6.90 (d, J = 8.2 Hz, 1H), 6.76 (d, J = 2.1 Hz, 1H), 6.73 (dd, J = 8.2, 2.1 Hz, 1H), 6.37 (s, 2H), 

5.13 (s, 2H), 4.26 (s, 4H), 3.86 (s, 2H), 3.77 (s, 6H), 3.58 (dt, J = 8.5, 3.4, 3.4 Hz, 2H), 2.94 (t, J = 6.0, 

6.0 Hz, 1H, NH), 2.20 (s, 3H); 13C NMR (126 MHz, DMSO-d6): δ 172.85, 160.75, 159.69, 159.53, 

143.42, 142.96, 142.12, 135.85, 134.96, 134.65, 130.20, 128.56, 125.93, 122.59, 118.17, 117.26, 
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104.65, 92.06, 69.18, 64.57, 62.51, 61.34, 56.43, 56.32, 16.41; HRMS (ESI): for C28H32NO8 [M + H]+ 

found, 510.2132 m/z; calculated mass, 510.2128. 

Compound 4c (KPGC01S138), N-(2,6-dimethoxy-4-((2-methyl-[1,1'-biphenyl]-3-yl)methoxy) 

benzyl)-3,3,3-trifluoro-1-phenylpropan-1-amine: Compound 3b from scheme 1 (8 mg, 0.022 

mmol), 3,3,3-trifluoro-1-phenylpropan-1-amine (16.7 mg, 0.088 mmol, 4 equiv), sodium 

cyanoborohydride (7.2 mg, 0.114 mmol, 5.2 equiv), were dissolved in DMF (0.5 mL) and then 

added acetic acid (1 drop). The reaction mixture was allowed to stir at 80 oC for 3 hours. The 

reaction was monitored by TLC. The crude was purified by 0-20% MeOH:DCM to afford desire 

product as oily product (68% yield). 1H NMR (500 MHz, CDCl3): δ 7.45 – 7.38 (m, 5H), 7.38 – 7.30 

(m, 6H), 7.30 – 7.27 (m, 1H), 7.26 (d, J = 5.4 Hz, 1H), 6.22 (s, 2H), 5.08 (s, 2H), 3.96 (t, J = 6.5, 6.5 

Hz, 1H), 3.75 (s, 6H), 3.73 (d, J = 6.5 Hz, 2H), 2.46 (s, 1H), 2.27 (s, 3H), 1.29 – 1.24 (m, 1H); 13C NMR 

(126 MHz, CDCl3): δ 160.23, 159.41, 143.06, 141.94, 135.1, 134.49, 132.81, 130.34, 129.40, 

128.49, 128.32, 128.11, 127.91, 127.62, 127.18, 126.90, 125.65, 91.17, 69.34, 56.21, 55.53, 39.11, 

16.23; HRMS (ESI): for C32H33F3NO3[M + H]+ found, 536.2419 m/z; calcd mass, 536.2413. 

Compound 4d (GCL.2), (7R,8R,9S,13S,14S,17R)-17-ethynyl-17-hydroxy-7,13-dimethyl-

1,2,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-3H-cyclopenta[a]phenanthren-3-one: 

Tibolone (156 mg, 0.5 mmol) was taken in a round bottom flask containing 10 mL of THF and 100 

µL of water was added. Next, p-toluene sulfonic acid (85 mg, 0.5 mmol) was added to it and the 

mixture was refluxed at 80 oC for 48 hours and the progress of the reaction was monitored by 

TLC. The organic solvent was then evaporated to dryness to get the crude product, which was 

purified by flash column chromatography using 20% ethyl acetate in pet-ether solvent mixture 

as eluent to give off-white solid pure compound GCL2 (53% yield). 1H NMR (500 MHz, MeOD): δ 
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5.80 (t, J = 2.1, 2.1 Hz, 1H), 2.88 (s, 1H), 2.56 (ddt, J = 14.1, 5.4, 1.6, 1.6 Hz, 1H), 2.42 – 2.28 (m, 

4H), 2.27 – 2.19 (m, 1H), 2.18 – 2.13 (m, 1H), 2.06 – 1.90 (m, 3H), 1.77 – 1.53 (m, 6H), 1.44 – 1.25 

(m, 2H), 1.14 (qd, J = 11.0, 11.0, 10.9, 4.2 Hz, 1H), 0.91 (d, J = 0.7 Hz, 3H), 0.79 (d, J = 7.1 Hz, 3H); 

13C NMR (126 MHz, MeOD): δ 201.06, 167.84, 125.32, 87.28, 78.82, 73.45, 48.12, 47.95, 47.78, 

47.61, 47.44, 47.27, 47.10, 46.67, 45.82, 43.05, 42.76, 42.18, 38.28, 36.02, 32.25, 30.66, 26.44, 

26.41, 21.71, 11.79, 11.77.  

Compound 4e (KPGC01S42), (S)-1-(2,6-dimethoxy-4-((2-methyl-[1,1'-biphenyl]-3-

yl)methoxy)benzyl)piperidine-3-carboxylic acid: 3b from scheme 1 (24 mg, 0.0066 mmol), (D)-

Nipecotic acid (34.2 mg, 0.0265 mmol, 4 equiv), sodium cyanoborohydride (5.2 mg, 0.0343 mmol, 

5.2 equiv), were dissolved in DMF (1 mL) and then added acetic acid (1 drop). The reaction 

mixture was allowed to stir at room temperature for 14 hours. The reaction was monitored by 

TLC (Silica, 5% DCM:MeOH. The crude was purified by flash chromatography using 0-20% DCM: 

MeOH to afford desire product as oily product (43% yield). 1H NMR (500 MHz, DMSO): δ 7.49 – 

7.41 (m, 3H), 7.39 – 7.34 (m, 1H), 7.32 – 7.25 (m, 3H), 7.19 (d, J = 7.7 Hz, 1H), 6.37 (s, 2H), 5.15 (s, 

2H), 3.75 (s, 6H), 3.53 (s, 2H), 2.38 – 2.30 (m, 2H), 2.20 (s, 3H), 1.97 (s, 4H), 1.16 (s, 2H); 13C NMR 

(126 MHz, DMSO): δ 170.81, 160.50, 160.06, 142.67, 141.87, 135.99, 134.56, 130.18, 129.63, 

128.81, 128.71, 127.42, 126.01, 92.00, 69.09, 60.22, 56.27, 55.37, 55.04, 52.65, 49.05, 31.14, 

26.68, 21.21, 16.40, 14.54; LCMS/MS (ESI): for C29H33NO5 [M + H]+ found, 476.3 m/z; calcd mass, 

476.24 
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