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ABSTRACT  
Multi-parameter optimization, the heart of drug design, is still an open challenge. Thus, improved methods for automated compounds 
design with multiple controlled properties are desired. Here, we present a significant extension to our previously described fragment-
based reinforcement learning method (DeepFMPO) for the generation of novel molecules with optimal properties. As before, the 
generative process outputs optimized molecules similar to the input structures, now with the improved feature of replacing parts of 
these molecules with fragments of similar 3D-shape and electrostatics. By performing comparisons of 3D-fragments, we can simulate 
3D properties while overcoming the notoriously difficult step of accurately describing bioactive conformations. The comparison of 
electrostatic potential and molecular shape is performed using the new ESP-Sim python package, allowing the calculation of state-of-
the-art partial charges (e.g., RESP with B3LYP/6-31G**) obtained using the quantum chemistry program Psi4. The new improved 
method is demonstrated with a scaffold-hopping exercise identifying CDK2 bioisosteres. All code is open-source and freely available.  

 
 

INTRODUCTION  

A crucial task in all drug discovery projects is designing molecules 
against multiple, often contradictory objectives [1]. Much of 
today’s drug hunters’ time is therefore spent on attempting to 
find an optimal compromise where all desirable properties are 
satisfied in a single molecule. The use of sophisticated 
computational methods, leveraging high-quality datasets to help 
solve this task, is thus conceptually very attractive.   

Recent advances in artificial intelligence (AI) and 
machine learning (ML) have given rise to an immense popularity 
of inverse design [2], and the field shows little signs of slowing 
down [3]. In inverse design, desired properties are specified a 
priori, and such methods generate novel compounds fitting that 
description [4]. Significant progress has been made in this area 
and a plethora of approaches for deep learning in molecular 
design has been published the last few years [2]. Many methods 
include reinforcement learning [5-7] to generate molecules, most 
often in the form of SMILES strings [8]. Other popular methods 
include generative methods such as recursive neural networks, 
generative adversarial networks or variational autoencoders, 
which are sometimes steered with reinforcement learning to 
control the molecular properties. The SMILES format in itself is 
nothing but amazing [9]. It is also convenient for the AI 
algorithm, since a string is trivial to manipulate and transform. 
In addition, there are success stories of using SMILES in the area 
of generative design [10]. However, all molecules are 3D objects 

and a conservative modification to a SMILES string may cause a 
large effect in their 3D structure. Examples include the removal 
of brackets denoting substitution, such that a Y-shaped 
compound becomes linear, or the removal or changing of ring-
closing locants. Therefore, optimization of molecular structures 
cannot be smooth in the space of 3D properties even though the 
SMILES strings change by only small amounts from iteration to 
iteration of the AI algorithm. We have previously presented a 
fragment-based generative approach (DeepFMPO) that addressed 
these modifications to the structure issue, albeit as 2D 
descriptions [11]. Here, we introduce a significant extension to 
DeepFMPO, using detailed descriptions of 3D-properties to 
represent molecules more accurately.  

Shape and electrostatic properties of molecules are 
primary determinants of molecular recognition and should 
consequently be the method of choice when comparing the 
similarity of molecules encountered at various stages in drug 
design. Even though these methods have been used to achieve 
major impacts in related areas (e.g., virtual screening leading to 
the discovery of novel and unexpected chemotypes [12-14]), they 
have been largely unexplored in the context of de novo generative 
methods, although promising attempts have been made [15,16]. 
One reason for the reluctance of using 3D methods is the 
challenge of obtaining accurate descriptions of molecules 
bioactive conformations. In this work, we reduce this notoriously 
difficult step by using 3D-fragments of the complete target 
compounds. 
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Moreover, much of the work in the generative de novo 
design area has been focused on the development of maximally 
expressive methods whose purpose is to explore the entire 
chemical space. Our approach is different in this regard, since it 
specifically rewards the generation of molecules that are similar 
to known lead compounds. A related method is the recently 
published MolDQN method, which maximizes a “drug-likeness” 
(QED) score while also maintaining similarity to the original 
molecule [17]. To showcase the value of using shape and 
electrostatic similarities in deep generative methods, a case study 
highlighting its use in a scaffold-hopping exercise identifying 
bioisosteres for a set of CDK2 kinase inhibitors [18] is described.  

 

 METHODS  

The DeepFMPO method is based on an actor−critic model for 
reinforcement learning [11]. It is a fragment-based generative 
method that learns how to modify compounds and improve 
them. That is, molecules are split into fragments, and these 
fragments are replaced with other similar fragments in the (deep) 
learning process of generating novel molecules with optimal 
properties. Technically, the fragments are encoded into binary 
strings, and similar fragments are assigned similar encodings. This 
is achieved by constructing a balanced binary tree. In the process 
of assembling the tree, similarities between all fragments are 
calculated. Fragments are paired in a greedy bottom-up manner, 
where the two most similar fragments are paired first. The joining 
procedure is repeated until all fragments are put together in a 
single tree. Subsequently this information is used to generate 
encodings for all fragments. The paths from the root to the leaves 
defines the encoding for each fragment. For every branch in the 
tree a one (“1”) is added to the encoding when going to the left 
and a zero (“0”) is added when going to the right, see Figure 1. 
The rightmost character in the encoding corresponds to the 
branching closest to the fragment. In this process, the pairwise 
similarity between all fragments is calculated. There are many 
ways to calculate chemical similarities, and the most used 
approaches currently employ 2D fingerprints.  

 

 
Figure 1. A snippet of the balance binary tree used in DeepFMPO. Fragments 
that are similar are placed close to each other. The encoding of a fragment is 
determined by the path from the root to the leaf. Every branching to the left 
adds a “1” to the end of the encoding and a branching to the right adds a “0”. 

  Here we present a new implementation of a 3D-based 
molecular alignment method, where the Electrostatic Shape 
Potential (ESP) similarity [19] between pairs of fragments is 
calculated. The ESP-Sim method calculates the overlap integrals 
of the electrostatic potentials (generated from Coulomb 
potentials) for the two fragments being compared [19]. The entire 
process can be broken down into six steps for each fragment pair 
(see Figure 2a) and is described in more detail below. It is worth 
noting that this fragment alignment approach eliminates the 
challenging step of generating bioactive conformations for 
complete molecules, as well as alleviates the issue of aligning them 
correctly.  

 

 

 
Figure 2. a) An example of the stepwise procedure to obtain the electrostatic 
shape potential similarity values for pairs of fragments. b) the corresponding 
procedure in graphics.  
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The Molecular Alignment of Fragments 

All single bonds in a molecule that extend from a ring atom are 
broken in the DeepFMPO process, creating the molecular 
fragments. The attachment atoms (previously connected with a 
single bond) are labeled in this step. To calculate ESP similarities 
[19] the fragments must be aligned in 3D. Here, a conformational 
search is conducted generating an ensemble of low-energy 
conformers for all fragments containing rotatable bonds, using 
the ETKDG method [20] as implemented in RDKit [21]. As 
default a maximum of ten conformations of each fragment is 
generated. An anchor group is connected to the fragments’ 
attachment atom and serves as a template in the alignment 
procedure. The coordinates of the anchor group are fixed in 3D 
space. The rationale for this step is that ligands containing related 
fragments typically bind in a similar orientation [22, 23], and 
these fragments will frequently make similar ligand-protein 
interactions. Consequently, to ensure that the fragments are 
aligned as accurately as possible, an anchor group is attached to 
the fragments and used in the molecular alignment step. The 
anchor group was arbitrarily chosen to be a hexazine ring with a 
methylene linker subunit. This group is of reasonable size for a 
template and highly unique (i.e., hexazines are never present in 
drug-like molecules) for easy identification and removal 
downstream in the process. A few experiments were conducted 
with other types of structural fragments as anchors to gauge 
possible conformational effects. For each pair of fragments, the 
pair of conformations with the best shape overlay in terms of the 
highest shape Tanimoto value are stored [21]. The anchor is then 
replaced with a hydrogen (see Figure 2). In cases where fragments 
include several labeled atoms, these are replaced with a methyl 
group. In this manner, all labelled atoms are replaced by a methyl 
which may be considered neutral in terms of electrostatic 
similarities. Finally, the ESP Tanimoto value is calculated 
between the pair of conformers with the best shape alignment (see 
the “Electrostatic Similarity Calculations” section below).  

 

Electrostatic Similarity Calculations 

To construct the balanced binary tree (Figure 1), the Electrostatic 
Shape Potential (ESP) similarity [19] between each pre-aligned 
pair of the fragments is calculated. ESP-Sim uses the 
cheminformatics toolkit RDKit [21] and requires input molecules 
with atomic partial charges assigned. Partial charges are calculated 
using the open-source quantum chemistry program Psi4 [24], with 
the option of using the state-of-the-art Restrained Electrostatic 
Potential (RESP) charges [25]. There are a range of different 
methods and basis sets available in Psi4. For example, the often-
recommended combination of using the B3LYP method and the 
6-31G** basis set, although using those can be computational 
demanding. Dask [26], a library for parallel computing in Python, 
is used to speed up the process. If further speed is desired, there 
is the option to use RDKit’s standard partial charges (i.e., 
Gasteiger or MMFF). It should be noted that the RESP/Psi4 
method is not parametrized for atoms beyond the atomic number 
of Argon. To allow for larger atoms (e.g., bromine), their van der 

Waals (vdW) radius needs to be specified separately. In this code 
version, we set the vdW radii for bromo to 1.8 (file: 
resp/vdw_surface.py), following the GAMESS scheme [27] 
derived from the Merz-Kollman-Singh publication [28]. In this 
fashion, the electrostatic Tanimoto similarities are calculated for 
all pairs of fragments, see Figure 2. In addition to the ESP 
similarity Tanimoto score, there is the option to use a score that 
includes both shape fit and electrostatics. Here, the shape 
Tanimoto is added to the ESP Tanimoto, resulting in an ESP-
TanimotoCombo score.  

 

CASE STUDY  

In the following retrospective case study, we aim to demonstrate 
the value of using shape and electrostatic similarities in scaffold-
hopping exercises. Scaffold hopping is a method for identifying 
bioisosteric replacements [30,31] with the intention of retaining 
biological activity of analog compounds but also improving other 
relevant molecular properties. It can also be used as a design 
strategy for intellectual property (IP) reasons. 

 

Assessing Various Molecular Similarity Measures 

A frequently occurring scenario is that a drug hunting team has 
identified a promising compound, from an internal lead 
generation effort or from the literature, that needs optimization. 
For the sake of argument, compound 1 in Figure 2 is such a 
compound [18].  

 
Figure 3. Two equipotent CDK2 kinase inhibitors. CDK2 inhibitors 
containing the related bicyclic heterocycles imidazopyridine (1) and 
pyrazolopyridine (2) were discovered through high-throughput screening by 
Fischmann et al [18] and here used as a scaffold-hopping example. 

 

With compound 1 at hand, the design question is then "which 
compound should we make next?". Frequently occurring problems 
needed to be solved generally include improving molecular 
properties (e.g., permeability, solubility, clearance, selectivity, etc.) 
and perhaps also IP related issues. A common scenario then is for 
the project team, to try to come up with ideas of novel central 
rings to be introduced as scaffold replacements. In this context, it 
should be noted that heterocyclic rings are often considered 
special and typically end up in different patent applications [31]. 
Also, with regards to calculating molecular properties, many 2D-
based methods are not adequately parametrized and have 
difficulties in assessing heterocyclic compounds accurately. So, 
how can break-through ideas for novel central rings be generated 
and which methods can be used to do it? Here, compound 2 
(Figure 3) is one answer to the question “what to make next?”. This 
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because it is equipotent to compound 1 and importantly, contain 
a different but related central scaffold. That is, the bicyclic 
heterocycle in compound 1 (imidazo(1,2-a)pyridine) and 
compound 2 (pyrazolo(1,5-a)pyridine) are both 9-membered ring-
systems with identical substituents.  

To investigate how different methods predict the 
similarity of these kind of central bicyclic heterocyclic scaffolds we 
first generate a dataset of fragments containing the same 
framework and similar substitution pattern. Thus, the ChEMBL 
v28 database [32] was queried for compounds including a 9-
membered bicyclic ring system, with three substituents, using 
SMARTS matching [21]. For comparison reasons, the 
substituents were subsequently removed providing 30 different 
scaffolds, see Figure 4. In this manner we identified an extensive 
list of 9-membered bicyclic heterocyclic scaffolds present in drug-
like molecules that potentially could act as replacements for the 
pyrazolopyrimidine in compound 1.  

All 30 bicyclic systems were subsequently subjected to 
pair-wise comparisons using a range of standard 2D similarity 
measures, together with the new 3D-based similarity measure. A 
summary of the results obtained from each method is reported in 
Table 1. For completeness, the results using four different anchor 
fragments (hexazine, carboxylic acid, piperidine and iodine) are 
shown in Figure 5. The heat-maps are essentially the same 
indicating that the method is not dependent on the choice of 
anchor fragment.  

 

Table 1. Rankings for the 1 vs 2 fragment pair, among pair-wise comparison 
of 30 different heterocyclic rings. The rankings, and Tanimoto value, using a 
range of different 2D similarity methods available through RDKit and the new 
ESP-Sim measure are reported. Hexazine was used as anchor fragment. 

Method Rank (max = 30) Tanimoto 

ESP-Sim (B3LYP/6-31G**) 1 0.88 

Morgan fingerprint (radius 2) 5 0.44 

Morgan fingerprint (radius 3) 5 0.31 

MACCS keys fingerprints 17 0.72 

MCS  Tanimoto 21 0.50 

Topological fingerprints 22 0.23 

 

The 1 vs 2 fragment pair is top-ranked when using the 
ESP-Sim (B3LYP/6-31G**) metric, but not by the 2D-based 
methods. The Morgan fingerprints rank the 1 vs 2 pair among the 
top five (Table 1), which is reasonably high. However, given the 
challenges and resource investments required to establish new 
synthetic routes, our experience is that very few alternative ring 
analogs are explored in real-life projects. Typically, only a couple 
of ring replacements are made and tested, essentially enforcing 
that only top-ranked scaffolds would be followed-up. Two other 
observations provide further support for the use of the ESP-Sim 
method. First, the MACCS keys fingerprint resulted in very 
similar values for many scaffolds (e.g., the Tanimoto similarity 
value for five scaffolds against scaffold of compound 1 show 
identical values – 0.87), suggesting that the MACCS keys 
similarity metric is not sufficient for capturing such subtle 

differences. Second, there are a couple of clearly structurally 
dissimilar fragments in Figure 4 (e.g. 1,4,6-trimethylpyrazolo[5,4-
b]pyridine vs 2,4,7-trimethylimidazo[2,1-f][1,2,4]triazine) that are 
ranked low when using ESP-Sim (as they most probably should), 
but top-ranked when using Morgan 2D-fingerprints.  

As a final observation, deriving ESP-similarities with 
methods of lower theory for calculating the underlying partial 
charges (Gasteiger, MMFF and HF/3-21G) also yielded the 1 vs 2 
pair as top-ranked, suggesting that such partial charges may be 
sufficient and a cost-effective alternative for this purpose. 

 

 
Figure 4. Bicyclic heterocyclic scaffolds in ChEMBL compounds matching 
the SMARTS pattern “[A][cH0]1[c,n][c,n]([A])[c,n]2[c,n][c,n][c,n]([A])[c,n]2[c,n]1". 

 

 

 

Figure 5. All-against-all comparison experiments were conducted with four 
structurally different anchor fragments (top-left: hexazine, top-right: carboxylic 
acid, bottom-left: piperidine, bottom-right: iodine). The different anchors give 
essentially the same results. 

 

Generating “Sweet Spot” Molecules 

Having established the value of using the ESP-Sim measure (Table 
1), the next step was to include it in the generative (DeepFMPO) 
method. An experiment was set-up to mimic a real-world scenario, 
where a set of lead compounds is optimized toward sweet spot 
criteria through a multi-parameter optimization process. Three 
different calculated properties (Molecular Weight, clogP [33], and 
Polar Surface Area), commonly used in the optimization of leads 
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to candidate drugs, were selected for this purpose. It should be 
noted that the choice of molecular properties was also selected for 
practical reasons facilitating reproducibility. Namely, there are 
methods to calculate them using RDKit [21]. The aim of the set-
up was to bias the generation of compounds to fulfill the criteria 
for the three calculated properties, while also maintaining their 
similarity in shape and electrostatics towards a known set of lead 
compounds. The agent in the reinforcement learning method was 
rewarded for producing valid molecules and got a higher reward 
when generating molecules with properties in the targeted ranges. 
Since this was a scaffold-hopping exercise, with the goal of 
identifying a new bioisosteric scaffold, the minimum and 
maximum target values for the three properties were centered 
around the corresponding values for compound 1 (i.e., 
320<MW<420, 2.3<clogP<4.3 and 45<PSA<65).   

 The library of input fragments was generated from a set 
of structurally diverse compounds known to exhibit inhibitory 
effects against kinase targets, including compounds that have 
shown activity against the specific biological target of interest 
(CDK2). The data set was extracted from the ChEMBL database 
(version 28) using simple text searches, resulting in a set of 557 
fragments (including the ones in Figure 4), as obtained from 1059 
compounds. The lead series compounds were obtained by a 
substructure search using the (imidazo(1,2-a)pyridine) central 
scaffold of compound 1 on the surechembl website 
(https://www.surechembl.org/search) and yielded 138 close 
analogs, which is a typical number to what a drug hunting 
program would have access to. The query details and the data sets 
are available as Supporting Information. 

 

RESULTS 

The DeepFMPO method with the ESP-Sim measure had 
generated a total of 6359 unique molecules, when terminated at 
1000 epochs. About two-thirds of those were sweet spot 
compounds. Hence, the agent generated compounds that have 
all three properties within the desired ranges. This number (ca 
4000) is lower than when using a standard generative method 
facilitating the selection process, and a result of intentionally 
biasing using 3D-similarity. The evolution of the percentage of 
generated molecules that demonstrate properties within the 
target ranges during the training process is shown in Figure 6a-c, 
displaying evidence of learning. A significant number of the 
generated compounds include the central scaffold of compound 
2, and a number of those show near identical substitution 
pattern to compound 1. These bioisosteric compounds were 
observed in early epochs. One other nine-membered scaffold (3) 
was also represented among the generated, see Figure 7. When 
performing the same experiment but with simpler standard 
similarity measures (Morgan fingerprints, MACCS keys and 
Topological fingerprints), no compounds with the central 
scaffold of compound 2 (or 3) were generated. This provides an 
incentive for the use of DeepFMPO with ESP-Sim in scaffold-
hopping exercises. 

 

Figure 6a-c. Graphs showing how molecular weight, logP and TPSA values 
change during the epochs, as the mean value of all the compounds for each 
epoch. 

 

Figure 7. A graph showing the frequency of occurrence of compounds 
including the central fragment of compound 1, 2 and 3. The y-axis represents 
the total number of compounds each epoch (normalized).  

 

https://www.surechembl.org/search
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DISCUSSION 

In the current work we set out to explore the use of a new 
sophisticated similarity metric in generative methods. The power 
of rewarding compounds that are similar in 3D aspects, in 
addition to other molecular property constraints, is often 
underappreciated. It is a challenging task, due to the issues 
involved with conformer generation and molecular alignments. 
Nonetheless, this is a design strategy that we believe should be 
given more attention and we discuss why below. 

 

Molecular representations in deep generative methods 

Deep generative models typically use non-3D methods to 
represent molecules. Text-based methods and the use of SMILES 
strings is still the most prevalent representation. The reason for 
this is probably because SMILES can be massively expressive, and 
that it is trivial to manipulate and transform strings. However, 
there are some drawbacks with using SMILES strings [11, 34]. A 
significant problem is that a conservative change can have a huge 
change in the 3D structure of a molecule. This is important since 
all molecules are 3D objects. Here, we have addressed this issue 
by extending the fragment based DeepFMPO method, where 
molecules are built from similar fragments, instead of sequences 
of letters (as is the case for SMILES based methods). Fragment-
based methods are often considered intuitive and mimic the way 
medicinal chemists think and design. The approach was recently 
described by Meyers et al as a method “offer an appealing 
compromise between molecular expressivity and practicality” [34]. 
Hence, a common medicinal chemistry design strategy is to work 
on molecular series, swapping fragments and substituents in one 
part of the molecule, while keeping other parts of the compounds 
unaltered. This is often a challenge for generative methods 
working on SMILES strings [34], leading us to the next topic of 
discussion.  

   

Deep generative methods can generate many compounds 

Most generative AI methods produce tens of thousands of 
unique and diverse high-scoring compounds when used without 
stringent filters. This is related to Brenner’s underdetermined 
inverse problem stating that available data does not uniquely 
specify systems [35]. Also, although there may be nothing 
chemically wrong with AI generated molecules (i.e., all atoms in 
common valences and charge states), some can be exotic, and an 
experienced medicinal chemist would reject them upfront [36]. 
The issue of such unwanted molecules is manageable from a 
technical perspective. For example, one can enforce substructure 
rules and penalize the existence of undesired moieties (e.g., 
radicals, peroxides, anhydrides, strained and chemically unstable 
systems) in the reward functions, or as post-filters.  

A more difficult problem to address is how to prune 
down the very many generated compounds to the few worth 
making. In reinforcement learning, a scoring function is used for 
this purpose. A complicating factor here is that drug discovery is 
complex and not all factors used in decision-making are easy to 

capture and thus not readily converted into rules that the AI 
methods can use in their rewards system. For example, a 
compound with several stereocenters is usually difficult to make 
(and resolve) and should consequently get a low reward score 
unless its building blocks are already available on the shelf. Also, 
absorption is a critical parameter for the optimization of oral 
drugs. Permeability over Caco-2 cells is often used as a surrogate 
when assessing absorption. A complicating factor here is that the 
uptake over the Caco-2 cells can be hampered by efflux, and in 
the case of high cell permeation the efflux is less relevant. A 
reward function handling such scenarios would require several 
“if-then-else” statements. These can be included in reward scores 
but are not always trivial to define and set-up for edge-cases. In 
addition, multiparameter optimization becomes increasingly 
challenging when there are many constraints to fulfill [37]. In 
brief, the biggest challenge of deep generative methods is to 
define relevant reward scores, and this is unfortunately less 
studied. 

Simple drug-likeness rules, multivariate methods for 
DMPK (solubility, permeability, clearance, etc.) and safety, as well 
as docking scores are typically included in reward scores as filters. 
However, several thousands of compounds will inevitably still 
pass those filters. This is related to the common lack of sufficient 
high-quality data, and the fact that we still often struggle with 
making predictions to the required accuracy. Prediction of 
biological activity is an extremely hard problem since many 
phenomena involved are difficult to quantify precisely. Standard 
docking scores are most often not sufficient. Although, at times, 
methods such as Free Energy Perturbation (FEP) can improve the 
scoring accuracy for small perturbations of one structure into 
another, but not for major structural changes [38]. The use of 
FEP combined with active learning is gaining traction and is 
showing promise [39, 40]. Nonetheless, when the output 
contains many structurally diverse molecules, as frequently is the 
case for expressive SMILES-based generative methods, current 
methods’ accuracy is not sufficient to filter down many 
compounds to a selected few. Despite the increasing prevalence 
of physics-based models in generative modelling, bioaffinity 
prediction remains very challenging.  

Here, we propose shape and electrostatic potential 
matching as a strategy to bias generative models to propose 
compounds with different fragments (that are likely bioisosteres) 
of known lead compounds. 

 

Using similarity as a design strategy   

As mentioned above, current generative AI methods generally 
suffer from the lack of prediction accuracy. Thus, learning from 
past drug hunting experiences, we deliberately bias the AI 
method to generate compounds that are similar to active 
molecules already discovered. We approach this problem by 
taking comfort in the similarity principle [41], which states that 
similar molecules tend to have similar properties [42]. Some 
advantages to this approach are discussed below. First, by 
generating molecules similar to the initial set available in the 
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project, confidence in the predictions can be high because they 
remain in the applicability domain of the model. This is contrary 
to expressive methods that are designed to fully explore chemical 
space and generate structurally diverse compounds, which are 
consequently also the most uncertain to predict. Second, for 
similar compounds, the same chemical intermediates and 
established synthetic routes can often be re-used, facilitating 
speedy progress. Third, sometimes certain structural fragments 
(e.g., “privileged structures” [43]) are difficult to replace without 
severe drops in potency due to specific ligand-protein 
interactions.  

As a related example, the strategy of molecular 
optimization using similarity was recently applied by 
Zhavoronkov and coworkers. They reported that deep learning 
enabled rapid identification of potent DDR1 kinase inhibitors 
[45]. Walters and Murcko analyzed the Zhavoronkov et al. study 
and reported that the AI-generated compound 4 (Figure 8) 
shared a common substructure with an already marketed multi-
kinase inhibitor (ponatinib, Figure 8), which was indeed 
included in the training set [46]. In some more detail, they ring-
closed a benzamide carbonyl into an isoxazole moiety to yield an 
equipotent and unique compound [45]. These two compounds 
are very similar with regards to shape and electrostatics, see 
Figure 8. Thus, Zhavoronkov’s AI method successfully mimicked 
typical medicinal chemistry behavior, keeping certain parts fixed 
and making minor modifications to other.  

 

  
Figure 8. Designing similar compounds can be a good tactic in drug 
discovery. Here illustrated with two potent DDR1 kinase inhibitors. The AI-
generated compound 1 by Zhavoronkov et al. and ponatinib, a marketed 
multi-kinase inhibitor [45]. The compounds share a rather large common 
substructure. The hydrogen-bond acceptor and donor functionalities are 
visualized with electrostatic contours (red: negative, blue: positive). The ESP-
Sim Tanimoto value is 0.81 for this pair. 

 

It is sometimes believed that computer-aided design 
(CAD) methods need to provide radically “non-intuitive” 
different compounds to merit its use. However, believing that 
CAD approaches should surprise us and produce results that we 
would not have expected is a tall order. In this context, the 
scoring functions used in generative methods for reinforcement 
learning are not designed to extrapolate, and do not account for 
all aspects involved in designing drugs. Thus, the power of 
current AI’s lies more in pattern recognition than in creative 
discovery. Over 100 different deep generative methods have been 
published the last couple of years. The methods are innovative 

and perform well in benchmark studies that measure models’ 
ability to, for example, reproduce property distributions, and 
generate valid, diverse, and novel molecules [47]. One may thus 
conclude that generative modelling is essentially a solved 
problem – given a reward function, we now have the methods to 
generate molecules that satisfy it. That is great. However, biology 
and drug discovery are immensely complex, and it is our 
viewpoint that current generative methods best serve to augment 
drug design. To take the next step (fully autonomy), calculated 
predictions need ultra-high accuracy and for that we need to 
develop a broader understanding of human biology. The state of 
AI in drug design may be seen as analogous to the automotive 
industry. While the future of autonomous vehicles is promising 
and exciting, we are not near fully autonomous cars. Candidate 
drugs, as well as cars, still require human attention, given the 
complexity involved and the vast amount of edge cases that are 
non-trivial to code up efficiently. Thus, humans (with domain 
knowledge) are still very much needed in the process: to steer the 
tools and triage the output. In this context, we would like to 
highlight the Gruenif.ai tool where the user can provide feedback 
interactively while molecules are generated [48]. Such “human-
in-the-loop” methods can be very effective. Future versions of 
DeepFMPO will include such functionalities.  

 

CONCLUSIONS 

The use of sophisticated computational methods for de novo 
design is attractive and deep generative methods have gained a 
lot of attention. Significant progress has been made when it 
comes to generating molecules. However, scoring them accurately 
remains a major challenge. Real-life project experience informs 
us that in silico predictions (e.g., synthesis, potency, properties) 
are constantly improving, but they are generally not accurate 
enough to prioritize a handful compounds for synthesis from a 
long list of high-scoring AI generated molecules. Thus, what 
really needs solving is being able to do ultra-accurate predictions 
to advance the field to the next level. Until then, the approach 
of biasing molecular design towards compounds similar to 
known actives will remain as one pragmatic and fruitful way to 
success.  

Here we present a 3D fragment-based reinforcement 
learning approach for the generation of novel molecules with 
optimized properties. We make use of the new ESP-Sim method 
for calculating molecular shape and electrostatics, focusing on 
generating compounds similar to existing lead molecules, 
towards desirable sweet spot properties. The proposed method 
allows the calculation of state-of-the-art partial charges (e.g., 
RESP with B3LYP/6-31G**) obtained using the quantum 
chemistry program Psi4. In a scaffold-hopping case-study we 
show that our approach of using shape and electrostatics 
similarities performs well. The methods rank known equipotent 
scaffolds higher and generates them earlier (i.e., speedier).  

The way the 3D method is implemented makes the 
approach essentially alignment-independent (on a molecular 
level) and does not require knowing the bioactive conformation. 
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We call the method “DeepFMPO v3D, and the code is freely 
available online. 
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