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The FlexiBLE embedding method introduced in the preceding companion paper [Z. Shen and W. J. Glover, J.
Chem. Phys. X, X (2021)] is applied to explore the structure and dynamics of the aqueous solvated electron at
an all-electron density functional theory QM/MM level. Compared to a one-electron mixed quantum/classical
description, we find the dynamics of the many-electron model of the hydrated electron exhibits enhanced
coupling to water OH stretch modes. Natural Bond Orbital analysis reveals this coupling is due to significant
population of water OH σ∗ orbitals, reaching 20%. Based on this, we develop a minimal frontier orbital
picture of the hydrated electron involving a cavity orbital and important coupling to 4-5 coordinating OH σ∗

orbitals. Implications for the interpretation of the spectroscopy of this interesting species are discussed.

I. INTRODUCTION

The hydrated electron, e−aq, an excess electron em-
bedded in liquid water, is the quintessential system ex-
hibiting solvent-supported electronic states, and has been
used as an ideal probe of water’s solvation dynamics,
since the electron itself has no internal degrees of free-
dom that might muddy a pump-probe spectrum. Nev-
ertheless, a reasonable question to ask is whether the
excess electron is simply a spectator in water’s solvation
dynamics, or whether it strongly perturbs the electronic
and molecular structure of the surrounding water to an
extent not thermally accessible in the neat liquid.

Much of our understanding of e−aq’s dynamics has
come from one-electron mixed quantum classical (MQC)
simulations, which consider the quantum mechanics
only of the excess electron, while treating the sol-
vent molecules classically.1–10 The low computational
cost of MQC methods has allowed for converged sam-
pling of the equilibrium properties and dynamics of
e−aq, as well as its nonadiabatic dynamics following

photoexcitation.2,3,5,8,10 Nevertheless, an underlying ap-
proximation in all current MQC descriptions of e−aq is
that water’s electronic structure and thus intramolecular
potential energy surface is unchanged from the neat liq-
uid. MQC is thus inherently incapable of addressing the
question of whether the excess electron is a spectator,
since it is assumed to be.

In addition to the assumption of a neat-liquid water
electronic structure, MQC methods rely also on approxi-
mate electron-molecule pseudopotentials to describe the
interaction of the excess electron with the closed-shell
water molecules. While much effort has been devoted
to their development,1,4,6–9 these pseudopotentials intro-
duce large sources of uncertainty in the accuracy of MQC
descriptions of e−aq. Unlike typical atomic pseudopoten-
tials that replace core electrons, the electron-molecule
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pseudopotentials replace valence electrons, which intro-
duces an uncontrolled error. Furthermore, the structural
predictions of MQC simulations of e−aq can depend quite

sensitively on the pseudopotential,8,9,11,12 which one of
us found recently to arise from a competition of entropic
and enthalpic driving forces in the solvation structure of
e−aq.13

A first-principles description of e−aq is thus preferred,
and several ab initio molecular dynamics (AIMD) strate-
gies have emerged recently, including Quantum Mechan-
ics/Molecular Mechanics (QM/MM),14,15 periodic plane-
wave Density Functional Theory (DFT),16,17 periodic
second-order Möller-Plesset theory (MP2),18 and Path
Integral Molecular Dynamics (PIMD) with Machine-
Learned (ML) potentials.19

Given the computational cost of ab initio methods, ex-
plorations of the equilibrium dynamics of e−aq have so far
been limited, although the initial localization dynamics
has received attention.14,16,18,20 An exception is the very
recent PIMD study of e−aq with ML potentials, which af-
forded extensive sampling due to the forcefield-like cost
of ML potentials.19 Of the AIMD methods, QM/MM is
particularly efficient, since most of the solvent molecules
far from the electron can be treated with a cheap MM
forcefield, and only the first few solvent shells around
e−aq need to be treated at a QM level. However, a prob-
lem arises since water is diffusible, and without a special
treatment, the QM and MM water molecules would mix,
leading to a breakdown of QM/MM separation. This
limits the length of trajectory that can be simulated to
a few ps.

The issue of QM/MM mixing by diffusible particles is
precisely addressed by our Flexible Boundary Layer using
Exchange (FlexiBLE) method, introduced in the previ-
ous companion paper.21 FlexiBLE belongs to a class of
constrained QM/MM methods that maintain QM/MM
separation by applying a repulsive potential on parti-
cles near the QM/MM boundary.21–24 We showed in pa-
per I that with a careful choice of boundary potential,
QM/MM separation can be maintained while leaving en-
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semble averages unaffected and allowing for density fluc-
tuations in the QM region. Unlike adaptive QM/MM
approaches,25–33 FlexiBLE prevents QM or MM particles
from traversing the boundary, meaning long-time diffu-
sional dynamics will not be accurately described. How-
ever, we showed in paper I that FlexiBLE preserves equi-
librium dynamics in the inner QM region, at least on
sub-diffusional timescales,21 which is sufficient to simu-
late e−(aq)’s vibrational spectroscopy.

To explore the influence of an excess electron on wa-
ter’s electronic structure and dynamics, we performed
many-electron FlexiBLE-QM/MM AIMD simulations at
the BH&HLYP-D3/6-31++G* level on a model of the
condensed-phase e−(aq). We find that the equilibrium dy-

namics of the electron exhibits enhanced coupling to OH
stretch modes compared to an MQC description. By per-
forming Natural Bond Orbital (NBO) analysis, we show
that this coupling arises from significant occupation of
OH σ∗ antibonding orbitals, in a similar fashion to that
observed in water anion clusters.34 This allows us to de-
velop a minimal frontier orbital description of e−(aq) in-

volving a cavity orbital and strong coupling to 4-5 OH
σ∗ orbitals. e−(aq) can thus be viewed as a strong hydrogen

bond acceptor.
The remainder of the paper is as follows. In section II

we benchmark DFT for electron-water interactions. In
section III we describe the computational details of our
condensed-phase model of e−(aq). Results are presented in

section IV, where we first apply FlexiBLE to a QM/MM
treatment of neat water at the BH&HLYP-D3/6-31+G*
level in section IV A and then to a QM/MM description
of e−(aq) in section IV B. Dynamics of e−(aq) are explored

in section IV C, and the NBO analysis is discussed in
section IV D. Finally, conclusions are drawn in section
V.

II. BENCHMARKING DFT DESCRIPTIONS OF
ELECTRON-WATER INTERACTIONS

DFT electronic structure has a sufficiently low com-
putational cost that merits its use in AIMD; however,
for weakly-bound electronic states one might be con-
cerned about the accuracy of standard functionals. In
particular, delocalization error is known to be quite se-
vere for cluster models of the hydrated electron.35,36 This
motivates a benchmarking of functionals in describing
electron-water interactions.

One of us previously developed a method for comput-
ing single water-electron interaction energies with vary-
ing average relative displacement.9 The idea is to include
in the electronic Hamiltonian a confining potential of the
form:

V̂ confine =
1

2
k(x̂8 + ŷ8) +

1

2
kz ẑ

8 + Cz ẑ, (1)

where k and kz control the strength of the confinement
in the x, y and z directions respectively. In addition, a

linear term in ẑ is added with strength Cz = −0.015167
Hartree Bohr−1 that serves to localize the excess elec-
tron on one side of the molecule. The +z direction was
always chosen to point from the oxygen atom to the elec-
tron. The high order of the position operators in Eq. 1
introduces a steep repulsive wall surrounding the water
molecule that confines the excess electron. This is needed
since a single water molecule alone does not bind an ex-
cess electron. A value of k = 1 × 10−7 Hartree Bohr−8

confines the excess electron within a few Å of the wa-
ter, while leaving the neutral water’s electronic struc-
ture essentially unperturbed.37 kz is then varied between
1 × 10−7 and 1 × 10−10 Hartree Bohr−8, which has the
effect of moving the minimum in the confining potential,
and therefore the excess electron’s density, to increasing
displacement from the water molecule (see dashed red
curves in Fig. 2 below).

With the confining potential of Eq. 1, electronic struc-
ture calculations were then performed on a water anion.
Since the excess electron localizes up to several Ångstom
from the water, it is important to augment the standard
atom-centered basis functions to describe highly diffuse
orbitals. Following our previous work,9 we achieved this
by adding to the aug-cc-pVTZ basis38 a cubic grid of
floating s type primitive Gaussian functions with expo-
nent 0.16 Bohr−2. The grid contains 7× 7× 13 functions
with a spacing of 2.5 Bohr. The electron-water interac-
tion energy is defined as:

Eint = Eanion − Eneut − E1e, (2)

where Eanion and Eneut are the total energies of the an-
ionic and neutral systems respectively, and E1e is the
ground-state eigenvalue of a single electron in the confin-
ing potential of Eq. 1. We found previously that unre-
stricted MP2 results agreed well with gold-standard Cou-
pled Cluster Singles Doubles and perturbative Triples
(CCSD(T))39 interaction energies,9 so we use MP2 as
the reference in this work. Density functional calcula-
tions were performed in Q-Chem 5.0.2,40 with the SG-1
Exchange-Correlation (XC) integration grid.41 Care had
to be taken due to our use of a floating Gaussian basis
formed with distributed ghost helium atoms that each
contributed to XC integration grid centers. As discussed
in detail in Supplementary Material Section S-I, SG-1’s
use of pruned angular grids in atomic core regions intro-
duces large integration errors if a ghost atom is too close
to a real atom. To avoid this issue, we removed the ghost
atom at the origin, and added its s primitive function to
the oxygen atom’s basis.

We consider first the BLYP functional,42,43 since this
was used in the first planewave DFT study of e−(aq).

16

Fig. 1 plots the electron-water interaction energy for
three different orientations (indicated by the molecular
graphics at the top of the figure). Panel (a) shows the
interaction energies for an electron on the oxygen side of
water. As expected, the interaction energy is positive,
corresponding to a repulsion from the partially negative
oxygen atom. However, BLYP (dashed blue curves) sig-
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nificantly underestimates the magnitude of repulsion by
∼0.2 eV compared to the reference MP2 results (green
circles) at high confinement strengths (small e−-water
distances). Similar behavior is seen in two other orienta-
tions: dipole aligned (panel (b)) and OH bond aligned
(panel (c)), which show attractive interactions as ex-
pected, but with BLYP overestimating the attraction by
∼0.2 eV when the electron is close to the water.

BLYP BH&HLYP MP2

(a) O-side (b) H-side (c) OH-side

FIG. 1. Single water-electron interaction energies (Eq. 2) as a
function of confinement strength, kz for three different orien-
tations: (a) oxygen side, (b) dipole aligned, (c) OH aligned.
Interaction energies from BLYP and BH&HLYP (dashed blue
and solid black curves respectively) are compared to MP2 re-
sults (green circles).

The overestimated attraction between the electron and
water at short range in BLYP is suggestive of the delo-
calization error. Indeed, Johnson and co-workers found
significant convexity error in the energy versus frac-
tional charge of a Kevan model of the hydrated electron
with BLYP, raising the concern that delocalization er-
ror is severe when this functional is applied to solvated
electrons.35,36 We confirm this is the case in Fig. 2, which
plots spin densities for the electron-water system. We in-
deed see that for all orientations and confining strengths,
BLYP (dashed blue curves) underestimates the spin den-
sity of the excess electron in the attractive well region
and overestimates the spin density on the water molecule
compared to MP2 (green circles), with the error most se-
vere at large confining strengths.

Johnson and co-workers found that using a hybrid
functional with an increasing fraction of exact exchange
reduced delocalization error.35,36 Herbert and co-workers
found similar behavior, with the SOMO energy of e−(aq)

from MQC snapshots increasing with fraction of exact ex-
change from PBE to PBE0 to HF.44,45 To test whether
increasing the amount of exact exchange reduces delocal-
ization errors and overbinding in our benchmark electron-
water system, we plot interaction energies for the half-
and-half hybrid, BH&HLYP,46 as solid black curves in
Fig. 1. We see much improved agreement to MP2 with
this functional, with errors in the interaction energy not
exceeding 0.06 eV, although a small amount of delocal-
ization error remains, as seen in the solid black curves of
Fig. 2, and noted also by Johnson and co-workers.35,36

BLYP BH&HLYP MP2

FIG. 2. Spin densities for a single water-electron system in
the confining potential of Eq. 1. Three different orientations
are considered, corresponding to the three columns and indi-
cated by the molecular graphic at the top. Three values of
confinement in the z direction (electron-water direction) are
shown as the three rows. BLYP and BH&HLYP spin den-
sities (dashed blue and solid black curves respectively) are
compared to MP2 results (green circles). Also shown are the
confining potentials (red dotted curve, right axis labels).

However, the good agreement between BH&HLYP and
MP2 interaction energies in Fig. 1, in addition to Her-
bert and Head-Gordon’s previous observation that this
functional well reproduces vertical detachment energies
of water cluster anions,47,48 suggests that the remaining
delocalization error is not too severe, and this functional
is useful in describing e−(aq).

III. COMPUTATIONAL DETAILS

We built a spherical nanodroplet model of the
condensed-phase e−(aq) following a similar protocol to the

companion paper.21 A cavity for the excess electron was
carved out by placing a chloride ion at the origin of
a 25-Å radius droplet of 2017 water molecules created
using the SolvateCap command of tleap in the Amber
2018 package.49 The water forcefield was described by
the SPC/Fw model,50 and chloride Lennard-Jones pa-
rameters were taken from Ref. 51. A half-harmonic cap
potential with a force constant of 10 kcal/mol/Å2 pre-
vented evaporation of water at the droplet/vacuum in-
terface, and the chloride ion was restrained to the origin
using a harmonic potential with a force constant of 1000
kcal/mol/Å2. Following minimization, heating, and equi-
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libration, a 100-ps NVT production run was performed
to generate ten independent snapshots separated by 10
ps, from which the chloride ion was then removed to gen-
erate initial conditions for the e−(aq) simulations.

To model e−(aq), 32 water molecules nearest the ori-

gin of the droplet were treated at a QM level, with
the remaining 1985 water molecules treated at an MM
level. Since the switch from MM to QM introduced
large forces on the QM water molecules, we quenched
the largest components of their forces by performing 5
steps of minimization using the L-BFGS algorithm,52 im-
plemented in DL-FIND.53 During dynamics, QM/MM
separation was maintained with FlexiBLE implemented
in a development version of Terachem,54–56 and inter-
faced with OpenMM 7.3.57 We used a FlexiBLE expo-
nent parameter of α = 15 Å−1 and a convergence pa-
rameter of γ = 10−3 kBT . The QM region was described
at the BH&HLYP-D3/6-31++G* level of theory, where
D3 represents dispersion corrections with Becke-Johnson
damping.58 The QM and MM subsystems were coupled
with the standard approach of elecrostatically embedding
the QM particles in the field of the MM point charges.
Mechanical embedding forces were also included via
Lennard-Jones pair potentials between the QM and MM
particles according to the SPC/Fw forcefield.50 AIMD
was propagated with the velocity Verlet algorithm59 us-
ing the Niklasson time-reversible Born-Oppenheimer in-
tegrator with a 0.5-fs timestep.60 Temperature was main-
tained at 298 K with the Bussi-Parrinello thermostat.61

We generated ten trajectories of 7 ps in length. The first
2 ps of data of each trajectory was discarded as an equi-
libration period.

We note that one challenge arising in the simulation of
e−(aq) is the occasional rapid diffusion of the electron to

the QM/MM boundary. This issue was noted previously
by Holden et al,15 and we followed their solution of dis-
carding trajectories that had the electron diffuse to the
boundary, based on monitoring the outermost extent of
the electron, defined as the sum of the electron’s centroid
distance:

r0(t) =
∣∣〈ψSOMO(t)| r̂ |ψSOMO(t)〉

∣∣ , (3)

and its radius of gyration:

rgyr(t) = 〈ψSOMO(t)| (r̂ − r0(t))2 |ψSOMO(t)〉
1
2 , (4)

where ψSOMO is the singly-occupied molecular orbital,
occupied by the excess electron. If the sum of these values
exceeded 6.0 Å, corresponding to the QM/MM boundary
region, the trajectory was discarded. Fig. 3 shows an ex-
ample of an accepted trajectory (black curve), in which
the radial extent of the electron avoids the QM/MM in-
terface. An example of a rejected trajectory (red curve)
is also shown, in which the radial extent exceeded 6 Å at
∼200 fs. Discarding trajectories this way would likely
lead to an underestimate of the diffusion constant of
e−(aq) and also limits the length of our simulations to no

more than several ps; however, this is sufficiently long
to study representative equilibrium dynamics of e−(aq) on

sub-picosecond timescales, which governs its vibrational
spectroscopy.
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FIG. 3. Radial extent of the excess electron (sum of elec-
tron centroid, r0, and radius of gyration rgyr) shown for an
accepted trajectory and a rejected trajectory (black and red
curves respectively).

IV. RESULTS AND DISCUSSION

A. Liquid water structure

Before considering e−(aq), we first verified our simulation

setup by performing AIMD on pure liquid water at the
BH&HLYP-D3/6-31+G* level. To our knowledge, the
structure of water at the BH&HLYP level has not been
previously published. Using the same protocol discussed
above, but without a chloride ion, we generated a spher-
ical nanodroplet of 2028 waters. We fixed the oxygen
atom of one QM water molecule at the origin, and allowed
the other 31 QM and 1996 MM water molecules to move
freely. FlexiBLE was used to maintain QM/MM separa-
tion, and 110-ps of NVT dynamics was propagated.

The Radial Distribution Functions (RDF) for liquid
water relative to the central QM oxygen atom are shown
in Fig. 4. Compared to the experimental data of Ref. 62,
we see that the overall solvent structure of liquid wa-
ter is well reproduced, albeit with some noticeable over-
structuring in the first solvent shell compared to exper-
iment. It is well known that such overstructuring arises
from the neglect of Nuclear Quantum Effects (NQE),63–65

and thus we view the RDFs in Fig. 4 as indicating that
BH&HLYP-D3/6-31+G* provides a faithful representa-
tion of liquid water’s potential energy surface. Further-
more, we see that FlexiBLE has correctly maintained
QM/MM separation (indicated by solid red and blue
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filled areas), without introducing artefacts in the total
RDF.
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FIG. 4. RDF of liquid water at the FlexiBLE-QM/MM
BH&HLYP-D3/6-31+G* level. (a) Oxygen-oxygen distribu-
tion, (b) oxygen-hydrogen distribution. The breakdowns of
the total RDFs (solid black curves) into QM and MM regions
are shown by the shaded areas (red and blue respectively).

B. Hydrated electron structure

Having verified that our simulation protocol gives a
good description of liquid water’s structure, we turn next
to the simulated properties of e−(aq). Fig. 5 shows the

RDF for e−(aq) based on e−-oxygen and e−-hydrogen dis-

tances (panels (a) and (b) respectively). Encouragingly,
QM/MM separation is maintained as shown by the red
and blue filled regions of Fig. 5. Comparing to Fig. 4, we
note that there appears to be more overlap in the distri-
butions of QM e−-O and MM e−-O distances compared
to the respective QM and MM distributions of O-O dis-
tances relative to a central fixed oxygen atom in the pure
water simulations. This arises from diffusion of the ex-
cess electron’s centroid position away from the center of
the QM region (discussed above in Section III), rather
than a breakdown of QM/MM separation.
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FIG. 5. RDF of e−(aq) at the FlexiBLE-QM/MM BH&HLYP-

D3/6-31++G* level. (a) e−(aq)-oxygen, (b) e−(aq)-hydrogen dis-

tributions. The breakdowns of the total RDFs (solid black
curves) into QM and MM regions are shown by the shaded
areas (red and blue respectively).

In Fig. 5 we see the presence of a clear cavity in which
the electron resides, with an e−-O turn-on distance of
1.7 Å, and two strong peaks in the e−-O RDF at 2.5
Å and 4.3 Å, indicating the first and second solvation
shells. The e−-H RDF displays a single strong peak at
1.5 Å, consistent with a predominantly O-H bond aligned
solvation of the excess electron. Integrating to the first
minimum of the e−-O RDF at 3.3 Å provides a coor-
dination number of 4.0, which can be compared to the
same procedure for the first minimum of the e−H RDF
at 2.4 Å which yields a coordination number of 3.9. The
structure of e−(aq) is thus essentially the same as found

in previous QM/MM simulations at the self-interaction
corrected BLYP-D level,14 and consistent with the overall
picture provided by cavity-forming MQC simulations,4,7

and recent PIMD simulations with ML potentials,19 al-
though the latter’s prediction of quasi-stable dual cavity
structures is not observed here, perhaps due to the ne-
glect of NQE.
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C. Hydrated electron dynamics

We turn next to the equilibrium dynamics of e−(aq),

which we measure through the time autocorrelation func-
tion of its band gap fluctuations:

CEE(t) =
〈δ∆E(0)δ∆E(t)〉
〈δ∆E2(0)〉

, (5)

where the angled brackets indicate a classical ensemble
average and the fluctuations in the band gap are defined
as:

δ∆E(t) = E1(t)− E0(t)− 〈E1 − E0〉, (6)

and Ei is the energy of state i. For our DFT simula-
tions, we take the band gap to be the SOMO-SOMO+1
gap. For the MQC simulations, the band gap is the exci-
tation energy between the lowest two eigenvalues of the
one-electron Hamiltonian using the Turi-Borgis electron-
water pseudopotential,4 as described in paper I.21

Representative orbital plots of the SOMO and
SOMO+1 are shown in Fig. 6(a) and (b) respectively,
and are consistent with the s-like and p-like states of the
particle-in-a-spherical-box model of e−(aq) originally put

forward from MQC simulations,1 and later confirmed by
numerous many-electron calculations.16,17,66,67 The den-
sity of states of the SOMO and SOMO+1 are shown in
Fig. 6(c). The average BH&HLYP SOMO energy of -
2.6 eV is compatible with the experimental binding en-
ergy of 3.7 eV,68,69 given the limitations of Koopman’s
theorem. A slightly lower average SOMO energy of -3
eV was observed in HF QM/MM simulations;15,45 how-
ever, we caution against a direct comparison of absolute
SOMO energies between different studies, due to differ-
ences in solvation structures, QM region sizes, basis sets,
MM models, and treatments of long-range interactions.
From Fig. 6, the SOMO to SOMO+1 gap is seen to be
∼3 eV. This overestimates the experimental absorption
peak of 1.7 eV,70,71 likely as a result of the 50% fraction
of exact exchange in the BH&HLYP functional. Time-
dependent density functional theory would provide a bet-
ter description of electronic excitation energies of e−(aq),

67

however at significant additional computational expense.
For the purposes of revealing the influence of the excess
electron on water’s vibrational frequencies, our interest
is in the dynamic fluctuations of the band gap, rather
than the absolute magnitude of the gap, supporting our
use of the orbital energy gap.

As discussed in paper I, CEE reports couplings be-
tween solvent motions and the energy levels of the excess
electron, and FlexiBLE was seen to reproduce CEE from
full-system calculations at the MQC level, indicating the
bias potential did not measurably influence solvent mo-
tions that couple to the excess electron.21 To directly
reveal the electron-coupled solvent motions, we take the
Fourier transform of CEE(t), and display the result in
Fig. 7(a). We focus on the frequency range of 1000-4000

E (eV)
-4 -3 -2 -1 0 1 2 30

0.1

0.2

0.3

0.4

D
O

S 
(a

.u
.)

SOMO
SOMO+1

(a) SOMO (b) SOMO+1

(c) Density of states 

FIG. 6. Electronic structure of e−(aq) at the FlexiBLE-

QM/MM BH&HLYP-D3/6-31++G* level. Panels (a) and
(b) show orbital plots of the SOMO and SOMO+1 respec-
tively, which represent the ground- and first-excited states of
e−(aq). The isosurfaces enclose 0.667e integrated charge density

and only QM water molecules are shown. Panel (c) shows the
density of states for the SOMO and SOMO+1 orbitals.

cm−1, which reports couplings to the intramolecular vi-
brations of water, and allows comparison to experimental
Resonance Raman (RR) spectroscopy.72

As Fig. 7(a) shows, the energy gap fluctuations of e−(aq)

at the FlexiBLE QM/MM level (solid black curve) are
dominated by two features: a broad peak centered at
3530 cm−1, and a pair of peaks at 1500 and 1750 cm−1.
The 3530 cm−1 peak is assigned to water’s OH stretch,
while the 1750 cm−1 peak corresponds to water’s bend.
These numbers are somewhat higher than the experi-
mental e−(aq) RR peak frequencies of 1610 and ∼3200

cm−1;72 however, applying the recommended vibrational
frequency scaling factor of 0.9374 for BH&HLYP73 brings
the theoretical frequencies into better agreement with ex-
periment. We will address the 1500 cm−1 peak further
below.

Comparing QM/MM to MQC results (solid black and
dashed red curves of Fig. 7(a) respectively) we see the
QM/MM peaks are red shifted and broadened compared
to MQC. As expected, the MQC peaks align with the
frequencies of the underlying SPC/Flex water model74

(dashed red curve in panel (b) which shows the Fourier
transform of pure water’s velocity autocorrelation func-
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FIG. 7. Fourier transforms of (a) e−(aq)’s band gap autocorre-

lation function, and (b) pure water’s velocity autocorrelation
function.

tion); in particular, agreement is seen with the bend
and asymmetric stretch at 1865 and 3665 cm−1 respec-
tively. On the other hand, the e−(aq) QM/MM peaks

are red shifted compared to the corresponding pure wa-
ter frequencies at the FlexiBLE BH&HLYP-D3/6-31+G*
QM/MM level (solid curve in panel (b)). The magnitudes
of these excess electron-induced red shifts match very
well with those seen in the experimental RR of e−(aq):

72

50(∼30) cm−1 for the bend and 190(200) cm−1 for the
stretch, with experimental numbers in brackets. The RR
vibrational red shifts have been previously assigned to
occupation of water’s OH antibonding orbitals (σ∗

OH) by
the excess electron,44 which we confirm below.

The spectral density of pure water with the SPC/Fw
forcefield, shown as the dot dashed blue curve in
Fig. 7(b), reveals the origin of the peak at 1500 cm−1

seen in the gap correlation function of e−(aq) at the Flexi-

BLE QM/MM level (solid black curve in Fig. 7(a)): this
peak arises from coupling between the excess electron and
the MM SPC/Fw water molecules’ bend. SPC/Fw was
parameterized to reproduce structural, thermodynamic,
and kinetic, rather than vibrational, properties of liquid
water,75 and the bend frequency is evidently underesti-

mated in this model. Although our use of the SPC/Fw
model results in a spurious secondary water bend peak in
e−(aq)’s energy gap fluctuations, we view this as serendipi-

tous, as it allows us to easily separate the coupling of the
excess electron to QM and MM water bend vibrations,
which we see to be dominated by the former.

In addition to the redshifts between QM/MM and
MQC results, another difference is that the total ampli-
tude of coupling to the OH stretch at the QM/MM level
is significantly increased compared to MQC. Integrating
the modulus squared of the Fourier transform between
2500 and 4000 cm−1 reveals that the coupling to the OH
stretch is 8.6 times stronger in the QM/MM model com-
pared to MQC. On the other hand, the coupling to the
bend is comparable: between 1616 and 2500 cm−1, the
MQC integral is 1.9 times larger than QM/MM. The ra-
tio of MQC:QM/MM bend intensity reduces to 1.1 if the
second QM/MM peak is included by extending the lower
integration limit to 1350 cm−1.

The observation of electron induced vibrational red-
shifts and a significant enhancement of coupling to wa-
ter’s OH stretch compared to MQC results suggests
that the excess electron interacts with water much
more intimately than simple electrostatics would suggest.
The vibrational redshifts arise from occupation of σ∗

OH
orbitals,44 the energy of which is strongly modulated by
the OH stretch mode. It is thus reasonable to expect that
σ∗

OH occupation also explains the enhanced coupling be-
tween the electron and stretch modes. To explore this
further, in the next section we seek to quantify the occu-
pation of σ∗

OH orbitals, using NBO analysis.

D. NBO analysis

We performed NBO analysis at the BH&HLYP/6-
311++G** level on e−(aq) snapshots separated by 100

fs extracted from our BH&HLYP-D3 QM/MM trajecto-
ries using NBO 7.0.8,76 interfaced with Q-Chem 5.0.2.40

Special care is needed in the NBO analysis of solvent-
supported states, such as e−(aq), since the default approach

is to optimize spin NBOs to each have approximately unit
occupation. For e−(aq), this resulted in a single water close

to the electron having a Lewis structure of H OH–; i.e.,
with a broken OH bond, and with the excess charge as-
signed to the resulting hydroxide ion. Since we do not
observe OH bond breaking in our AIMD simulations, we
view this Lewis structure as unphysical. This behavior
was avoided by specifying in the input a Lewis structure
that leaves water molecules intact.

A second issue in the NBO analysis of e−(aq) relates

to the diffuse nature of the excess electron’s orbital
and its occupation of a solvent cavity. Using an exclu-
sively atom-centered basis augmented with diffuse func-
tions (6-311++G**), we found significant mixing in of
Rydberg-like character in the σ∗

OH NBOs of the water
molecules closest to the electron (see Supplementary Ma-
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terial Fig. S2), resulting in artificially high σ∗
OH occupa-

tions of >0.3 e. We found this issue was circumvented
by adding a ghost atom with lithium’s 6-311++G** ba-
sis functions (chosen as the 2nd-row element with the
smallest diffuse exponent) at the centroid position of the
SOMO. We then assigned the excess electron to an NBO
formed largely from the lithium ghost atom’s outer va-
lence and diffuse set, with smaller contributions from Ry-
dberg natural atomic orbitals of the water atoms. We
identify this ghost atom NBO as an s-like cavity orbital,
Cavs. Representative σ∗

OH and Cavs NBOs are shown in
Fig. 8. Convergence of NBO properties with basis set and
QM region size is explored in Section S-II, where we show
that our chosen 6-311++G** basis provides comparable
results to aug-cc-pVQZ, but at significantly lower com-
putational cost, allowing the full QM region of 32 water
molecules to be included.

We start by considering average NBO populations of
the Cavs and σ∗

OH orbitals after ordering α-spin NBOs by
population for each snapshot, with the highest populated
antibonding orbital labelled as σ∗

1 . The result is shown
in Table I. As expected, the Cavs orbital has the highest
population; however, σ∗

OH orbitals contribute an appre-
ciable ∼0.3 e in total. In fact, the Cavs and five σ∗

OH
orbitals sum to a population of 0.97 e, and thus together
describe the excess electron’s SOMO orbital almost in
its entirety. The remaining amplitude of the SOMO is
made up of contributions from lower-populated σ∗

OH or-
bitals and water Rydberg orbitals. This analysis qualita-
tively supports the picture of e−(aq) put forward by Uhlig,

Marsalek, and Jungwirth (UMJ), who, based on a par-
titioning of spin density, assigned 41% of the electron to
the cavity region, 24% assigned to a region overlapping
with the first two solvation shells water molecules, and
35% assigned to a diffuse tail extending beyond the sec-
ond solvation shell14.77 We assign a larger contribution to
a cavity state than UMJ, since the Cavs NBO also con-
tains the diffuse tails that UMJ assigned separately. Our
analysis provides additional quantitative insight into how
the excess electron is able to have appreciable amplitude
in the first two solvation shells, which is by populating
the σ∗

OH orbitals.

NBO Population(Stdev)

Cavs 0.675(0.055)

σ∗
1 0.106(0.029)

σ∗
2 0.074(0.019)

σ∗
3 0.053(0.016)

σ∗
4 0.036(0.012)

σ∗
5 0.026(0.005)

TABLE I. Average populations (in e) of α-spin NBOs in e−(aq).

Numbers in brackets represent standard deviations.

To further explore the magnitudes of σ∗
OH occupations

in e−(aq), we found it revealing to project the distribution

of occupations onto the e−-oxygen distance and e−-O-H

(a) σ
1
*

(b) Cav
s

FIG. 8. Visualization of e−(aq)’s (a) σ∗
OH and (b) s-like cavity

orbitals from NBO analysis. The transparent and solid sur-
faces enclose 75% and 50% respectively of a single electron’s
density. The yellow sphere indicates the centroid position of
the SOMO.

angle, where the excess electron’s position is taken to be
the centroid of the SOMO. This is shown as the false
color map in Fig. 9. Rather surprisingly, we see σ∗

OH oc-
cupations on a single OH bond reach 0.2 e. This high
occupation occurs exclusively when a water molecule is
close to the electron (e−-O distance < 2 Å) and with the
OH bond aligned to the electron (e−-O-H angle < 20°).
The remaining first-solvent shell water molecules (e−-O
distance < 3 Å) exhibit moderately large σ∗

OH occupa-
tions of ∼0.1 e, but again only for the OH bond aligned
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FIG. 9. Distribution of σ∗
OH occupations (in e) per OH bond

projected onto e−-oxygen distance and e−-O-H angle. White
colored regions indicate the absence of a water molecule at
that distance/angle.

to the electron. The other OH bonds of the first-shell
waters do not have appreciable σ∗

OH occupation, nor do
second shell or further water molecules. The high σ∗

OH
occupations are therefore not a result of the diffuse tail
of the electron extending beyond the cavity (contribut-
ing ∼0.5 e), but rather a direct participation of the σ∗

OH
orbitals in the cavity region. This can be understood
by the σ∗

OH orbitals having greatest amplitude on the
hydrogen atom side, which then due to phase matching,
constructively interfere with the cavity orbital when they
point towards the cavity (see Fig. 8). This is further con-
firmed by plotting transition densities between the Cavs

and the closest σ∗
OH orbitals, which are seen to point from

the hydrogen atoms towards the center of the cavity (see
Fig. S4).

Although a relatively rare event (see Fig. S3), σ∗
OH

occupations of 0.2 e are quite surprisingly high, and ex-
ceed values found even in H2O-OH– complexes (0.17)78

and water cluster anion isomers exhibiting the double
acceptor (AA) motif (0.16 e).34 The latter are associ-
ated with water stretch vibrational redshifts of >300
cm−1.79 It stands to reason then that similarly large,
or larger, vibrational redshifts occur in the condensed-
phase e−(aq). The overall 200 cm−1 redshift we observe

in the OH stretch of e−(aq) thus appears to result from

the smaller average σ∗
OH populations of ∼0.05-0.1 e seen

in the first-shell water molecules. However, the spectral
envelope of the OH stretch is seen to extend down to be-
low 3000 cm−1 (see Fig. 7(a)) and we hypothesize that
these strongly red-shifted frequencies are due to the water
molecule closest to the electron when it has a high σ∗

OH
occupation. This idea will be explored in more detail in
a future publication.

The observed large σ∗
OH occupations of 0.20 e might

seem surprising considering the energy levels involved.
The hydrated electron state has an energy of −3.7 eV rel-
ative to vacuum,68,69 while the σ∗

OH orbitals are several
eV above the vacuum level.80 For the hydrated electron
state to have significant σ∗

OH occupation then suggests a
very large Hamiltonian coupling (several eV) of the ex-
cess electron to the σ∗

OH orbitals. However, significant
populations of σ∗

OH orbitals also observed in halide ion
water clusters,48 which have donor orbitals even lower
in energy than e−(aq), suggesting that large Hamiltonian

couplings between anions and water σ∗
OH orbitals are

not uncommon. NBO analysis allows for a determina-
tion of Hamiltonian couplings by computing matrix ele-
ments of the Fock operator in the NBO basis. We av-
eraged the matrix elements over our FlexiBLE QM/MM
trajectories.81 The results are presented in Table II which
shows matrix elements between the Cavs orbital and the
five most populated σ∗

OH orbitals. For simplicity, ma-
trix elements coupling the σ∗

OH orbitals with each other
are omitted. Since these values are found to be sensi-
tive to the choice of density functional (see Supplemen-
tary Material section S-III), we caution against a quan-
titative physical interpretation of the absolute values of
the model Hamiltonian; however, relative trends are pre-
served across functionals, resulting in σ∗

OH populations
that do not depend sensitively on the functional (see
Fig. S7).

Cavs σ∗
1 σ∗

2 σ∗
3 σ∗

4 σ∗
5

Cavs 2.63 4.49 4.03 3.52 2.50 0.33

σ∗
1 4.49 13.28

σ∗
2 4.03 13.93

σ∗
3 3.52 14.22

σ∗
4 2.50 14.22

σ∗
5 0.33 14.16

TABLE II. Model Hamiltonian of e−(aq) in a basis of an s-like

cavity orbital and the five σ∗ orbitals with largest coupling to
the cavity orbital. All values are in eV.

We consider first the diagonal elements of the model
Hamiltonian in Table II, where we observe that all or-
bitals are above the vacuum level. This makes physical
sense for the σ∗

OH orbitals, but might at first seem sur-
prising for the cavity orbital. However, this cavity orbital
is by construction orthogonal to all water-centered occu-
pied and virtual NBOs and is thus rather confined in the
cavity region and interstitial regions between the water
molecules, raising its kinetic energy.

Considering the off-diagonal elements of the Hamilto-
nian in Table II, we indeed find that the Cavs and σ∗

OH
orbitals are coupled by up to several eV, with the largest
average coupling of 4.49 eV found for σ∗

1 , which is also
the closest OH bond to the electron. Similarly large cou-
plings are seen for σ∗

2 through σ∗
4 , but by σ∗

5 , the coupling
has dropped to 0.33 eV. These values are consistent with
the inner solvent shell of e−(aq) comprising four OH-aligned
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water molecules. The couplings may be viewed rather like
Charge-Transfer (CT) integrals between the donor Cavs

orbital and acceptor σ∗
OH orbitals. In this CT context,

the large magnitude of the couplings can be understood
as resulting from two aspects of e−(aq). First, the dif-

fuse nature of the Cavs orbital provides a high degree
of spatial overlap with the acceptor σ∗

OH of the first sol-
vent shell, which explains why the coupling drops off for
the fifth and further σ∗

OH orbitals. Second, the transition
density connecting the Cavs and σ∗

OH orbitals is localized
near the partially positive H atoms (see Fig. S4), which
results in an attractive Coulombic coupling.

Diagonalizing the Hamiltonian in Table II yields a low-
est eigenvalue of -1.08 eV, which while higher than the
true average SOMO energy of -2.6 eV, shows that our
simple model captures most of the stabilization of the
cavity orbital by strongly coupling to four σ∗

OH orbitals
(see Fig. S5 for convergence of the eigenvalue with num-
ber of included σ∗

OH orbitals and Fig. S6 for its correlation
with the SOMO energy).82

The energy levels of the NBOs and model Hamiltonian
eigenvalues are summarized in the MO diagram presented
in Fig. 10. We notice an interesting stabilization of the
most populated σ∗

1 orbital’s energy of ∼0.9 eV relative
to the other σ∗

OH orbitals, that all have average energies
of ∼14.2 eV. We found this stabilization arises due to
a lengthening of the closest OH bond to the electron,
which had an average length of 0.999±0.002 Å compared
to the remaining QM OH bonds which had an average
length of 0.9761±0.0003 Å. σ∗

2 is stabilized by ∼0.3 eV
in a similar manner, but to a lesser degree. Similar OH
bond-length extensions were observed in the zero-Kelvin
minimal cluster with polarizable continuum model put
forward by Sevilla and co-workers.83 Thus, the partial
occupation of water σ∗

OH orbitals is seen to noticeably
weaken the coordinating OH bonds, which lowers the
σ∗

OH orbital energies and further enhances their coupling
to the excess electron. This physics is missed entirely by
MQC models, and provides an explanation for the sig-
nificant differences in e−(aq)’s dynamics we observe at the

MQC and QM/MM levels.

V. CONCLUSIONS

In this paper, we applied the FlexiBLE embedding ap-
proach, developed in the preceding companion paper,21

to perform QM/MM dynamics of the hydrated electron
at the BH&HLYP-D3/6-31++G* level. We found agree-
ment with the structural picture of e−(aq) put forward

by UMJ,14 that the excess electron occupies a cavity,
but has a complex character involving significant over-
lap with first-shell coordinating water molecules. Using
NBO analysis, we provided a quantitative rationale for
this complex behavior: the excess electron has ∼0.3 e
occupation of σ∗

OH orbitals in total brought about by
large electronic couplings of a cavity state and the anti-
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FIG. 10. MO diagram of e−(aq) from the model Hamiltonian

in Table II.

bonding orbitals. This leads to an enhanced dynamical
coupling between the excess electron’s energy levels and
water stretch vibrations compared to a MQC model. Fur-
thermore, the weakening of OH bonds by σ∗

OH occupation
leads to stretch and bend vibrations that are redshifted
compared to pure water, in quantitative agreement with
experiment.72 Somewhat surprisingly, the σ∗

OH occupa-
tion of a single water molecule can reach 0.2 e, which
leads to a noticeable extension of that OH bond and a
reduction of its antibonding orbital energy by ∼1 eV.

To answer the question posed in the introduction, we
conclude that e−(aq) is not a simple spectator species, but

rather is intimately coupled to, and strongly modulates,
the motions of the first solvation shell waters. Previ-
ous MQC dynamics studies, which inherently miss this
physics, emphasized the role of water translations and
librations in the solvation dynamics of e−(aq). Our results

motivate a deeper consideration of intramolecular water
motions in the dynamics of e−(aq). Overall, we believe that

this successful first application demonstrates that Flexi-
BLE opens the door to studying the dynamics of many
other condensed-phase species, for which a QM descrip-
tion of the environment is necessary.

SUPPLEMENTARY MATERIAL

See the supplementary material for an explanation of
DFT grid errors when using floating Gaussian basis func-
tions, and further details on our NBO analysis and model
Hamiltonian.

ACKNOWLEDGMENTS

We thank Profs. Ben Schwartz and Steve Bradforth
for helpful discussions. This work was supported by the
National Natural Science Foundation of China Young



Shen, Peng, and Glover 11

Scientist Fund (Grant No. 21603145), the Science and
Technology Commission of Shanghai Municipality For-
eign Experts Program (Grant No. 21WZ2503600), the
NYU-ECNU Center for Computational Chemistry, and
start-up funds from NYU Shanghai.

DATA AVAILABILITY

The data that support the findings of this study are
available within the article and its supplementary mate-
rial. Molecular coordinates are available from the corre-
sponding author upon reasonable request.

REFERENCES

1P. J. Rossky and J. Schnitker, J. Phys. Chem. 92, 4277 (1988).
2B. J. Schwartz and P. J. Rossky, J. Chem. Phys. 101, 6902 (1994).
3B. J. Schwartz and P. J. Rossky, J. Chem. Phys. 101, 6917 (1994).
4L. Turi and D. Borgis, J. Chem. Phys. 117, 6186 (2002).
5D. Borgis, P. J. Rossky, and L. Turi, J. Chem. Phys. 127, 174508
(2007).

6L. D. Jacobson, C. F. Williams, and J. M. Herbert, J. Chem.
Phys. 130, 124115 (2009).

7L. D. Jacobson and J. M. Herbert, J. Chem. Phys. 133, 154506
(2010).

8R. E. Larsen, W. J. Glover, and B. J. Schwartz, Science 329, 65
(2010).

9W. J. Glover and B. J. Schwartz, J. Chem. Theory Comput. 12,
5117 (2016).

10C.-C. Zho, E. P. Farr, W. J. Glover, and B. J. Schwartz, J.
Chem. Phys. 147, 074503 (2017).

11L. D. Jacobson and J. M. Herbert, Science 331, 1387 (2011).
12R. E. Larsen, W. J. Glover, and B. J. Schwartz, Science 331,

1387 (2011).
13W. J. Glover and B. J. Schwartz, J. Chem. Theory Comput. 16,

1263 (2020).
14F. Uhlig, O. Marsalek, and P. Jungwirth, J. Phys. Chem. Lett.
3, 3071 (2012).

15Z. C. Holden, B. Rana, and J. M. Herbert, J. Chem. Phys. 150,
144115 (2019).

16M. Boero, M. Parrinello, K. Terakura, T. Ikeshoji, and C. C.
Liew, Phys. Rev. Lett. 90, 226403 (2003).

17F. Ambrosio, G. Miceli, and A. Pasquarello, J. Phys. Chem.
Lett. 8, 2055 (2017).

18J. Wilhelm, J. VandeVondele, and V. V. Rybkin, Angew. Chem.
Int. Ed. 58, 3890 (2019).

19J. Lan, V. Kapil, P. Gasparotto, M. Ceriotti, M. Iannuzzi, and
V. V. Rybkin, Nat. Comm. 12, 766 (2021).

20J. Savolainen, F. Uhlig, S. Ahmed, P. Hamm, and P. Jungwirth,
Nat. Chem. 6, 697 (2014).

21Z. Shen and W. J. Glover, J. Chem. Phys. X (2021).
22C. N. Rowley and B. Roux, J. Chem. Theory Comput. 8, 3526

(2012).
23M. Shiga and M. Masia, J. Chem. Phys. 139, 044120 (2013).
24M. Shiga and M. Masia, Mol. Sim. 41, 827 (2015).
25T. Kerdcharoen and K. Morokuma, Chem. Phys. Lett. 355, 257

(2002).
26A. Heyden, H. Lin, and D. G. Truhlar, J. Phys. Chem. B 111,

2231 (2007).
27R. E. Bulo, B. Ensing, J. Sikkema, and L. Visscher, J. Chem.

Theory Comput. 5, 2212 (2009).
28N. Takenaka, Y. Kitamura, Y. Koyano, and M. Nagaoka, Chem.

Phys. Lett. 524, 56 (2012).

29N. Bernstein, C. Várnai, I. Solt, S. A. Winfield, M. C. Payne,
I. Simon, M. Fuxreiter, and G. Csányi, Phys. Chem. Chem.
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