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Abstract 
 

Epidemiological studies on the detrimental health impacts of exposure to fine particulate 

matter (PM2.5) from different sources of emission can inform regulatory policy and identify 

vulnerable communities. Though PM2.5 has decreased in the U.S. in the two past decades, the 

increasing frequency and severity of wildfires contribute to episodically impair air quality in 

wildfire-prone regions and beyond.  Monitoring air quality extensively is challenging. Since 

government-operated monitors are sparsely located across California and the U.S., several 

regions and populations remain unmonitored. Current approaches to estimate PM2.5 

concentrations in unmonitored areas often rely on gathering large amounts of data, such as 

satellite-derived aerosol properties and meteorological variables. and direct use of low-cost air 

sensor measurements that may be associated with substantial uncertainty Furthermore, 

modelling wildfire-specific PM2.5 is often based on chemical transport model predictions, which 

results in highly computationally intensive efforts. Our study used an ensemble model that 

integrated multiple machine learning algorithms and a large set of predictor variables to 

estimate daily PM2.5 at the ZIP code level, a relevant spatio-temporal resolution for 

epidemiological and public health studies. Our models achieved comparable results to previous 

machine learning studies for PM2.5 prediction, but avoided processing larger, computationally 



 

 

intensive datasets.  In addition, we use machine learning to estimate the wildfire-specific PM2.5 

concentrations through a novel multiple imputation approach.  

  



 

 

Introduction 

Exposure to fine particulate matter with aerodynamic diameter smaller than 2.5 μm 

(PM2.5) is associated with a range of acute and chronic adverse health effects (Xing et al., 2016; 

Pope et al., 2006), including increased risk of mortality and hospitalization. Wildfire smoke is a 

source of PM2.5 air pollution, with potential differential impacts on respiratory health when 

compared to ambient pollution (Wegesser et al., 2009, Aguilera et al., 2021). PM2.5 in the 

United States has decreased since the early 2000s due to environmental regulations 

(Schwarzman et al., 2021), with the exception of wildfire-prone areas like the western United 

States (McClure & Jaffe, 2018). In this region, wildfires have been increasing in severity and 

frequency (Westerling and Bryant, 2007; Goss et al., 2020) impacting PM2.5 levels (McClure & 

Jaffe, 2018), and this trend is predicted to continue (Ford et al., 2018; Neumann et al., 2021). 

Smoke PM2.5 has been linked to respiratory health impacts and higher hospitalization 

rates (Gan et al., 2017; Liu et al., 2015; Reid et al., 2016; Gan et al., 2017; Liu et al., 2017). 

However, quantifying the extent and variety of health impacts due to wildfire smoke is 

challenging due to the episodic nature of these events, as well as data and methodological 

limitations that hinder the accurate estimation of exposure (Liu et al., 2015). Studies that 

isolate the PM2.5 concentrations attributable to wildfire smoke to study the effects on increased 

respiratory hospitalizations are scarce (Liu et al., 2017; Aguilera et al., 2021).  

Accurate estimation of PM2.5 exposures at a high spatiotemporal resolution is important 

for evaluating its health effects, particularly at small temporal (days to weeks) and spatial 

(neighborhood) scales. Although many countries have a substantial network of regulatory PM2.5 

monitoring stations that are routinely operated by government agencies, their spatial coverage 

is still very limited in terms of accurately representing population exposures, especially in 

regions of the world that have complex spatiotemporal variability in emissions, topography, 

meteorology, land-use and population density, such as the state of California (CA) in the United 

States (US) (Lee, 2019; Liu et al., 2009). Therefore, studies based only on PM2.5 measured from 

the regulatory monitors would inevitably exclude many communities, including those mostly 

exposed to wildfire smoke.  



 

 

One approach to resolving this issue has been developing models to predict local PM2.5 

based on satellite, meteorological, and land use data. This process typically involves developing 

a prediction model that relies on large amounts of input data and it is highly computationally 

intensive to predict air pollution levelsin unmonitored areas. Various approaches have been 

proposed to model PM2.5 in the recent decade, with satellite-derived aerosol optical depth, 

land-use variables, chemical transport model output, and several meteorological variables as 

major predictor variables. In addition, some researchers have combined spatiotemporal data 

sets to perform sophisticated modeling of PM2.5 exposure from wildfire smoke using data-

adaptive machine learning coupled with empirical and deterministic model output (Fadaru et 

al., 2020). Each approach has its strengths and weaknesses, which affect the interpretation of 

study findings and the translation of research to public health practice (Fadaru et al., 2020).  

Most of these studies estimate PM2.5 at a resolution of 1 km x 1 km grid cell resolution 

to provide fine spatial granularity (Di et al., 2019; Lee, 2019; Li et al., 2020). One of the main 

challenges of this approach is the differing spatial resolution of available datasets, making 

necessitating the implementation of downscaling methods and similar steps to prepare 

predictor datasets at a comparable spatial scale. In addition, working with datasets of 1 km2 

cells comprising large areas, such as California, translates into issues with big data handling, 

storage, and computing capabilities. Since these issues can run into system limits, research on 

methods of air pollutants like PM2.5 must consider the technical limitations in the existing 

methodologies. Furthermore, most of previous studies focused on estimating overall PM2.5 

concentrations, without distinguishing among sources of emission such as wildfire smoke and 

non-smoke sources. In addition to implementing approaches based on physical processes (e.g., 

chemical transport models), statistical approaches can also be employed to isolate wildfire-

specific PM2.5. In this paper, we propose using multiple imputation to estimate wildfire-specific 

PM2.5 based on a counterfactual approach.  

Our study used an ensemble model that integrated multiple machine learning 

algorithms and predictor variables to first estimate daily PM2.5 at a ZIP code level, a relevant 

spatial resolution for public health and epidemiological studies. We then apply the multiple 

imputation approach, which uses machine learning to impute non-smoke PM2.5 concentrations 



 

 

for ZIP code days categorized as exposed to wildfire smoke. Our study design allows for 

environmental health researchers to construct and train machine learning models capable of 

predicting PM2.5 at specific locations, such as ZIP code population-weighted centroids, thus 

avoiding highly computationally intensive efforts of predicting into unmonitored gridded space 

in large regions where no people live. Furthermore, we expanded this approach to isolate 

wildfire-specific PM2.5 in California for the 2006-2020 period.  

 

Materials and Methods 

 

The data used in the estimation of daily, ZIP code level PM2.5 using machine learning 

techniques covered the period 2006-2019 and are described below. A brief summary of 

continuous variables used is included in Table 1. Satellite-derived data were pre-processed 

using the Google Earth Engine (GEE) API (Google Earth Engine Team, 2015). GEE makes it 

possible to rapidly process vast amounts of satellite imagery at large scale with the power of 

cloud computing (Gorelick et al., 2017).  In addition, we utilize H2O (Cook, 2016), an open-

source big data platform, to achieve higher performance and reduce processing time in our 

analysis using R (version 4.0.3; R Core Team, 2020). Specifically, training and data processing is 

done in the high-performance H2O cluster rather than in R memory on a local computer. 

 

PM2.5 measurements 

We used in situ daily PM2.5 measurements (2006–2019) from the United States 

Environmental Protection Agency (EPA) Air Quality System (AQS) (https://www.epa.gov/aqs) 

that were collected by state, local, and tribal air pollution control agencies. The AQS PM2.5 

network includes both continuous monitoring and 24-hour sampling on a 1-in-6 day, 1-in-3 day 

and everyday schedule. Measurements were taken from sites using the federal reference 

method (FRM) (EPA parameter code 88101) and acceptable non‐FRM methods (EPA parameter 

code 88502) in California monitoring sites (n = 219; location shown in Figure S1 in Sup. Info) and 

we used 24 hr averaged data. 

 

Aerosol Optical Depth 



 

 

Aerosol Optical Depth (AOD) is a satellite-derived parameter measuring the degree to 

which suspended particles affect the transmission of light by absorption or scattering. 

Therefore, it is an indirect measure of the particles present in the column of air on a given time. 

AOD can be used to fill spatial gaps but does not distinguish surface‐level aerosols. The Multi-

Angle Implementation of Atmospheric Correction (MAIAC) algorithm has been recently 

developed to retrieve AOD measurements from raw Moderate Resolution Imaging 

Spectroradiometer (MODIS) data at 1 km×1 km resolution (Lyapustin et al., 2018). As an 

advanced algorithm, MAIAC leverages a spatial and temporal algorithms to simultaneously 

retrieve atmospheric aerosols and bidirectional reflectance from MODIS data. MAIAC further 

detects clouds and corrects atmospheric effects over both dark vegetated surfaces and bright 

desert targets to obtain better daily AOD values at a higher spatial resolution (1 km × 1 km) 

(Lyapustin et al., 2018). The algorithm is also tuned to reduce masking of wildfire smoke as 

clouds (Lyapustin et al., 2012). Since absorption optical depth of aerosol species varies with 

wavelength (Bergstrom et al., 2007), AOD measurements at different wavelengths can account 

for representing different chemical compositions of PM2.5 and thus be potentially helpful to 

achieve accurate modeling. We therefore included AOD measurements at 470 nm and 550 nm 

from both the Aqua and Terra satellites.  

 

Plume Height 

The recently developed MAIAC algorithm (Lyapustin et al., 2018) offers a unique tool for 

smoke detection and characterization. Plume height is reported near detected fire hot spots 

when the smoke plume is optically thick and exhibits a brightness temperature contrast with an 

unobscured neighboring land surface. Plume height observations may provide constraints on 

the vertical distribution of smoke and its impact on surface concentrations (Cheeseman et al., 

2020). MAIAC retrieval only provides a single plume height altitude, regardless of the plume 

vertical depth (Lyapustin et al., 2019).  

 

Meteorological Variables 



 

 

Meteorological conditions such as precipitation, minimum and maximum temperature, 

surface shortwave radiation, specific humidity,  and wind speed and wind direction were 

extracted from the high-resolution Gridded Surface Meteorological dataset (gridMET; 

Abatzoglou, 2013). The gridMET dataset blends the high resolution spatial data from PRISM 

with the high temporal resolution data from the National Land Data Assimilation System 

(NLDAS) to produce spatially and temporally continuous, complete, high-resolution (1/24th 

degree ~4-km) gridded dataset of surface meteorological variables across the contiguous 

United States. 

 
Land-use variables 

Land-use variables are proxies for local emissions and air pollution levels. Land-use 

variables approximate emission of air pollutants, often at kilometer or sub-kilometer scale. We 

prepared (1) land-use coverage types, (2) distance to nearest highway, (3) distance to coastline, 

(4) elevation, and (5) NDVI (normalized difference vegetation index), to capture the impact of 

emissions from neighboring areas.  

Land cover variables, including forest cover and impervious surfaces, were retrieved 

from the National Land Cover Database (NLCD, https://catalog.data.gov/dataset/usgs-2011-

nationallandcover). The spatial resolution of the NLCD coverage is 30 × 30 m2 and data are 

available roughly every 3-5 years (2001, 2004, 2006, 2008, 2011, 2016). Since land-surface 

characteristics can be assumed to change gradually, we use simple linear interpolation to fill in 

missing values in gap years. 

Distance to the nearest highway was computed using Caltrans - State Highway Network 

using geographic information system (GIS).  Similarly, we estimated the distance from the 

California coastline with respect to the location of monitoring points and population-weighted 

ZIP code centroids. Elevation was derived from the 3-arc-second (90-meter) Shuttle Radar 

Topography Mission (SRTM) dataset distributed by USGS Earth Resources Observation and 

Science (EROS) Data Center (https://www.usgs.gov/centers/eros).  

The NOAA Climate Data Record (CDR) of AVHRR Normalized Difference Vegetation Index 

(NDVI; Vermote et al., 2014) contains gridded daily NDVI derived from the NOAA AVHRR 

https://catalog.data.gov/dataset/usgs-2011-nationallandcover
https://catalog.data.gov/dataset/usgs-2011-nationallandcover
https://www.usgs.gov/centers/eros


 

 

Surface Reflectance product. It provides a measurement of surface vegetation coverage 

activity, gridded at a resolution of 0.05° and computed globally over land surfaces. 

Smoke plumes  

Smoke plumes were obtained from the NOAA Hazard Mapping System (HMS), available 

from September 2005 onward. The HMS product uses visible satellite imagery and trained 

satellite analyst skills to estimate the spatial extent of smoke, though it cannot discern whether 

a given plume is at ground level or higher in the atmosphere (Rolph et al., 2009). In addition, 

the HMS smoke-plume extent data has not been validated and could thus have systematic 

biases because discrimination of smoke can vary by region, season, and weather conditions 

(Brey et al., 2018). However, HMS smoke plumes remain a common binary metric used to 

determine if smoke is present in the atmospheric column on a given day (Lipner et al., 2019). 

The HMS smoke products are stored as polygon shapefiles representing the spatial extent of 

daily smoke plumes (ftp://satepsanone.nesdis.noaa.gov/volcano/FIRE/HMS_ARCHIVE/). A 

smoke binary variable was created by intersecting zip code polygons with smoke polygons, 

which was then used as an indication of daily exposure to wildfire PM2.5.  

  

Missing values 

Missing values occur among predictor variables. To predict PM2.5 concentration for the 

entire study area and during the entire study period, it is essential to fill in the missing values. 

We identified variables with no missing values, namely land-use types and meteorological 

variables, and used these as predictors in a random forest model to impute missing values for 

other variables such as AOD. We used the R Package missRanger (Mayer, 2019) to do fast 

missing value imputation by trained random forest. Using this method, each variable is imputed 

by predictions from a random forest using all other variables as covariates. The algorithm 

iterates multiple times over all variables until the average out-of-bag prediction error of the 

models stops to improve (Mayer, 2019). 

 

Machine Learning for PM2.5 estimation 



 

 

We assembled daily values for response (measured PM2.5) and explanatory variables for 

each of the air quality monitoring points (n = 219) available in California. Of the 1,766,053 

resulting observations available, 60% (n = 1,059,965) was used for training our machine 

learning models and 20% (n = 353,043) for validation and prediction testing, each.  

 

Table 1: Summary statistics of daily values for the response (PM2.5) and explanatory variables at 
air quality monitoring locations 

 
Units Minimum Maximum Mean Median 

PM2.5 µg m-3 0.1 557 10.7 8.6 

Wind Speed m s-1 0.3 21.1 3.27 2.92 

Maximum Temperature K 261 325 297 297 

Minimum Temperature K 247 313 283 283 

Precipitation mm 0 271 1.07 0 

Specific Humidity kg kg-1 0.00015 0.0247 0.00644 0.00630 

Shortwave Radiation W m-2 1.90 391 229 235 

Wind Direction Degrees 
clockwise 

from North 

0 360 167 240 

NDVI - -1,000 9,603 2,292 2,249 

AOD 470nm - 0 4,000 174 153 

AOD 550nm - 6 2,960 129 113 

Plume Height m 0.0282 4,110 809 658 

 

 

Base Learners  

We used four base learners available within the H2O framework for machine learning: 

generalized linear models, deep learning, distributed random forest, and gradient boosting 

(Cook, 2016). Generalized Linear Models (GLM) estimate regression models for outcomes 

following exponential distributions; in our case, Gaussian (i.e. normal) distribution. H2O’s Deep 

Learning is based on a multi-layer feedforward artificial neural network that can contain a large 

number of hidden layers of neurons. Distributed Random Forest (DRF) generates a forest of 

regression trees, rather than a single one. The regression algorithm takes the average 

prediction over all of their trees (more trees will reduce the variance) to make a final 

https://en.wikipedia.org/wiki/Feedforward_neural_network


 

 

prediction. Gradient Boosting Machine (GBM) is a forward learning ensemble method. Within 

the H2O framework, GBM sequentially builds regression trees on all the features of the dataset 

in a fully distributed way - each tree is built in parallel. We trained these base learner models 

individually on all response (PM2.5) and explanatory variables, with parameters of each machine 

learning algorithm selected manually. To avoid overfitting, we validated our models with 10-

fold cross-validation.   

Ensemble model 

Stacking involves training a learning algorithm to combine the predictions of several 

other learning algorithms. First, all of the base learners are trained using the available data, 

then a combiner algorithm, the metalearner, is trained to make a final prediction using all the 

predictions of the other algorithms as additional inputs. Stacking typically yields a better 

performance than any single one of the trained models in the ensemble (Yang, 2017). We used 

stacking to ensemble the base learners described above to generate PM2.5 predictions. We used 

the ensemble model to estimate daily PM2.5 at the ZIP code level within 2006-2020 in California.  

Once PM2.5 estimates were obtained, we compared our estimates with those obtained 

by Di et al. (2019). We extracted the estimated concentrations at California ZIP code locations 

from the 1km x 1km dataset available online for years 2000-2016 (Di et al., 2019). The resulting 

effort is presented in Supplementary Information.  

 

Wildfire PM2.5 estimation 

Multiple imputation approach  

We used a multiple imputation approach to estimate PM2.5 concentrations attributable 

to non-smoke sources in ZIP code/days identified as exposed to wildfire smoke by comparing 

observed PM2.5 values to estimated counterfactual values in the absence of wildfire smoke. 

More specifically, we followed these steps:  1) We define the exposure to wildfire for a given 

ZIP code day if the smoke plume polygon intersects with the ZIP code polygon. In addition, we 

used the plume height presence as an indicator of exposure for a given ZIP code-day. 2) Based 

on the above exposure definition, we temporarily remove the ZIP code days exposed to wildfire 

https://en.wikipedia.org/wiki/Ensemble_learning#Stacking


 

 

smoke from our original PM2.5 dataset. 3) Using the multiple imputation approach via fast 

random forest, we impute the values of non-smoke PM2.5 on all ZIP code days categorized as 

exposed to smoke. This step provided estimates of ambient PM2.5 unrelated to wildfire smoke. 

4) We then subtract all non-smoke PM2.5 values from the original daily PM2.5 concentrations to 

obtain the levels of PM2.5 attributable to wildfire smoke in ZIP code days previously categorized 

as exposed. 

 

 

Results 

 

Base and Ensemble Models Fit 

Of the four base learner algorithms, model performance was highest for random forest 

(DRF) and gradient boosting (GBM). Results and model fit metrics are presented in Tables 2 and 

3. In terms of variables and their degree of importance in explaining PM2.5 variation, wind 

velocity appeared to be the most important in both DRF and GBM models (Figures 1 and 2). 

Stacking both base learners produced better results, particularly for the training dataset (R2 = 

0.97, Table 4), with a prediction R2 of 0.86. The ensemble model appears to underpredict PM2.5 

concentrations in some instances, as seen in the comparison between observed and predicted 

PM2.5 in monitoring sites across California (Figure 3).  

Table 2: Model Metrics for Distributed Random Forest 

Distributed Random Forest (DRF) 

Regression Model Metrics Training* Validation Cross-validation** 

MSE 12.22308 13.38268 12.74663 

RMSE 3.496152 3.658234 3.570242 

Mean Absolute Error (MAE) 1.758955 1.849317 1.794321 

Mean Residual Deviance 12.22308 13.38268 12.74663 

R-squared 0.845501 0.8557143 0.8528437 

 

  * Metrics reported on Out-Of-Bag training samples  



 

 

  ** 10-fold cross-validation on training data  

 

Figure 1: Variable Importance for the top 10 explanatory variables in the Distributed Random 
Forest (DRF) model 

 

 

Table 3: Model Metrics for Gradient Boosting 

Gradient Boosting (GBM) 

Regression Model Metrics Training Validation Cross-validation** 

MSE 3.273814 13.56439 14.12381 

RMSE 1.809368 3.682987 3.758166 

MAE 0.8516281 1.905206 1.937965 

Mean Residual Deviance 3.273814 13.56439 14.12381 

R-squared 0.9622047 0.8398809 0.8369445 

 

  ** 10-fold cross-validation on training data  
 
 
 



 

 

 

 

Figure 2: Variable Importance for the top 10 explanatory variables in the Gradient Boosting 
(GBM) model 

 

 

Table 4: Model Metrics for Ensemble Model 

Ensemble Model  

Regression Model Metrics Training Validation Prediction 

MSE 2.651724 11.818 11.8096 

RMSE 1.628411 3.437732 3.43651 

Mean Absolute Error (MAE) 0.7703117 1.762147 1.752857 

Mean Residual Deviance 2.651724 11.818 11.8096 

R-squared 0.9705874 0.8604959 0.8645956 

 

 

 



 

 

 

 

Figure 3: Observed versus Predicted PM2.5 Concentrations at Monitoring Sites (R2 = 0.86). 
Dashed blue line corresponds to the reference (1-to-1) line; red line is the linear model fit. 

 

 

Predictions at the ZIP code level in California 

Mean PM2.5 concentrations predicted at the ZIP code level are shown in Figure 4. These 

averages over the 15-year study period (2006-2020) tend to be highest around the Central 

Valley region, as well as in highly populated areas in Southern California coastal ZIP codes. In 

Figure S2 (Sup. Info.), the highest PM2.5 mean concentrations in the Central Valley occurred 

during Fall and Winter months.  Table 5 shows seasonal differences in mean PM2.5, with lowest 

mean (and maximum) concentration observed in Spring.  

Table 5: Summary Statistics for PM2.5 predictions (µg m-3) at ZIP code centroids by season within 
2006-2020 

Season Mean Minimum Maximum Median IQR 

Fall 10.8 <1 328 9.21 5.72 

Winter 11.0 <1 263 9.16 7.39 



 

 

Spring 7.52 <1 86.0 6.86 4.41 

Summer 10.1 <1 167 9.15 5.20 

 

 
Figure 4: Mean PM2.5 concentrations at ZIP codes within the 2006-2020 study period, predicted 

by the ensemble model with predictors at the ZIP code level.  

 

 

Comparing our PM2.5 predictions to those obtained by Di et al. (2019) showed a few 

spatial differences. Figure S4 in Sup. Info. shows an R2 of 0.6 for a linear model between these 

two datasets for a comparison of 2007 PM2.5 concentrations at California ZIP codes. Spatially, 

higher R2 values are observed in the Central Valley region and in more densely populated areas 

in coastal California ZIP codes (Figure S5). Overall mean concentrations appeared to be slightly 

higher in our models when compared to Di et al. (2019) (Figure S6). Perhaps the most 

interesting difference was that of maximum concentrations predicted in 2007, where our 

estimates showed the highest PM2.5 in ZIP codes affected by wildfires, whereas highest values 

for the Di et al. (2019) dataset were observed in Central California (Figure S7). Differences in 



 

 

methodology, predictors used and spatial scales between the two modeling efforts can account 

for the differences observed.  

Wildfire-specific PM2.5 at ZIP code level 

As mentioned above, the ensemble model results tended, for the most part, to 

underpredict PM2.5 concentrations (Figure 3). Figure 5 below shows the 15-year mean 

concentrations of wildfire-specific PM2.5 estimated by the multiple imputation method.  The 

highest mean concentrations are observed in Northern California. Concentrations for other 

wildfire-prone areas like Southern California (SoCal), where major firestorms and wildfire 

events occurred in 2007, 2008 and 2017, are lower than expected. Nonetheless, a closer look at 

the wildfire events in August and September in 2020, when the entire state was practically 

covered by smoke at some point in time, showed that wildfire-specific PM2.5 were well 

represented spatially (Figure S3 in Sup. Info.). Table 6 shows a seasonal summary of wildfire-

specific PM2.5 over the 15-year period, with highest values observed during Fall months 

(September, October, November).  

 

Table 6: Summary statistics for wildfire-specific PM2.5  (µg m-3) at ZIP code centroids by season 
within 2006-2020 

Season Mean Minimum Maximum Median IQR 

Fall 8.84 <1 310 3.07 5.61 

Winter 5.20 <1 254 2.55 3.88 

Spring 1.82 <1 39.1 1.37 1.77 

Summer 5.93 <1 158 2.40 4.12 

 

 

 



 

 

 
 

Figure 5: Mean wildfire-specific PM2.5 concentrations at ZIP codes within the 2006-2020 study 
period, estimated via cubic spline imputation.  

 

Discussion 

Our final ensemble model incorporates PM2.5 predictions from two machine learning 

algorithms, random forest and gradient boosting, achieving excellent predictive performance ( 

R2 of 0.86 and RMSE of 3.44 µg m-3). The two machine learning algorithms used approximately 

50 predictor variables, ranging from satellite-derived aerosol properties, land-use and 

meteorological data, with cross-validation controlling for overfitting. With the trained model, 

we predicted daily PM2.5 within a 15-year period (2006-2020) at ZIP code population-weighted 

centroids in California. Daily, ZIP code level predictions indicated that our model was successful 

in capturing the spatial distribution and temporal peaks in wildfire-related PM2.5.  

Our ensemble model metrics above compare with previous efforts of PM2.5 estimation in 

California (e.g., Li et al., 2020) and the US (Di et al., 2019) using a 1km x 1km grid for prediction. 



 

 

For instance, Li et al., 2020 reported a prediction R2 of 0.87 (RMSE = 2.29 µg m-3) for weekly 

PM2.5 concentrations in California within 2008-2017.  Stowell et al., (2020), who focused on 

Southern California, demonstrated the usefulness of remote sensing products such as MAIAC 

AOD to achieve better exposure data in unmonitored regions. In fact, in our models, AOD was 

among the most important variables in explaining PM2.5 variability.  

Except for a few recent studies (Liu et al., 2017; Lipner et al., 2019; Aguilera et al., 2021; 

Sorensen et al., 2021; Heft-Neal et al., 2021), isolating wildfire-specific PM2.5 is still an 

uncommon practice when estimating PM2.5 exposure datasets. For instance, Li et al., 2020 

looked at wildfire-related weekly concentrations of PM2.5 in California and assessed their 

spatiotemporal patterns within their 10-year span study. These weekly concentrations included 

other sources of PM2.5, in addition to wildfire smoke.  However, since different sources of PM2.5 

might have differential impacts on human health (Wegesser et al., 2009; Ostro et al., 2016; 

Aguilera et al., 2021), it is important to isolate wildfire-specific concentrations from e.g., other 

sources of PM2.5.  

For the estimation of wildfire-specific concentrations, authors like Liu et al., (2017) 

relied on chemical transport models (CTM), which can be data and computationally intensive. 

Most studies mentioned above (i.e, Lipner et al., 2019; Aguilera et al., 2021; Sorensen et al., 

2021; Heft-Neal et al., 2021) have relied on using HMS smoke plumes and seasonal background 

PM2.5 to estimate wildfire-specific concentrations, among other similar methods. In our current 

study, which also uses HMS smoke plumes as an initial binary classification for exposure, we 

implemented a fast random forest algorithm for the imputation of background PM2.5 on ZIP 

code days classified as exposed to wildfire smoke. In addition to PM2.5 from all sources, our 

current efforts provide daily wildfire-specific PM2.5 estimates for the entire region of California 

within a 15-year span, directly estimated at the location of population-weighted centroids of 

individual ZIP codes.  

We acknowledge that our approach has limitations. For instance, the number and 

extent of smoke plumes used to categorize exposed ZIP code days represent a conservative 

estimate due to the limitations of visible satellite data. In addition to all the above, our 



 

 

definition of smoke exposure may have also misclassified some of the smoke PM2.5 as non-

smoke PM2.5 and vice versa. Regarding our implementation of machine learning algorithms, we 

note that a limited number of these is currently implemented within the H2O framework. Thus, 

the reliance on H2O is also a limitation. Other non-supported algorithms such as extreme 

gradient boosting (XGBoost) would also be worth considering as it has demonstrating high 

predicting capabilities in other studies estimating PM2.5 concentrations (e.g., Just et al., 2020). 

We also note that we did not differentiate other specific sources of PM2.5 (e.g., traffic emissions, 

agricultural burns, prescribed fires, etc.) besides wildfire-specific concentrations. Moreover, 

though relevant in the study of impacts on public and environmental health, we do not consider 

the chemical speciation of PM2.5, as data is scarce and it is also beyond the scope of this work.   

Our statistical method can be generalized to other large heterogenous regions with high 

variability in emission sources, land-use, topography, meteorology and population growth. 

Using multisource data integrated into an ensemble machine learning framework allowed us to 

capture temporal and spatial trends over our study region, including days where wildfires were 

present, and isolating the wildfire-specific contribution as a source of PM2.5 pollution in 

California ZIP codes.  
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