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Abstract

We present Descending from Stochastic Clustering Variance Regression (DiSCoVeR) (https://github
.com/sparks-baird/discover), a Python tool for identifying and assessing high-performing, chemically
unique compositions relative to existing compounds using a combination of a chemical distance metric,
density-aware dimensionality reduction, and clustering. We introduce several new metrics for materials
discovery and validate DiSCoVeR on Materials Project bulk moduli using compound-wise and cluster-
wise validation methods. We visualize these via multi-objective Pareto front plots and assign a weighted
score to each composition where this score encompasses the trade-off between performance and density-
based chemical uniqueness. We explore an additional uniqueness proxy related to property gradients in
chemical space. We demonstrate that DiSCoVeR can successfully screen materials for both performance
and uniqueness in order to extrapolate to new chemical spaces.

Keywords: machine learning, uniform manifold approximation and projection, optimization, earth
mover’s distance, Wasserstein distance

1. Introduction

Guided materials discovery examples have been
increasingly prevalent in the literature. Some of
these are experimental [1–9] and computational [10,
11] adaptive design schemes using high-throughput
experimental [5, 12–19] or computational (e.g. den-
sity functional theory (DFT) [20–29] and finite
element modeling [30, 31]) methods. Extraor-
dinary predictions, or predictions which perform
close to or better than top performers in the train-
ing data are rarer [32–34]. Kauwe et al. [35] de-
scribes how it is even rarer to discover materials
that are fundamentally (as opposed to incremen-
tally) different from existing materials, i.e. dis-
cover new chemistries. A suite of regression models
are available for use as the backbone for a mate-
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rials discovery project. A non-exhaustive list or-
dered from oldest to newest by journal publica-
tion year includes GBM-Locfit [36], CGCNN [37],
MEGNet [38], wren [39], GATGNN [40], iCGCNN
[27], Automatminer [41], Roost [42], DimeNet++
[43], Compositionally-Restricted Attention-Based
Network (CrabNet) [44], and MODNet [45], each
with varying advantages and disadvantages.

Many of the algorithms used for materials discov-
ery in the literature are Euclidean-based Bayesian
optimization schemes which seek a trade-off be-
tween high-performance and high-uncertainty re-
gions [4, 9, 11, 29, 34, 46–51], thereby favoring
robust models and discovery of better candidates,
but not explicitly favoring discovery of novel com-
pounds.

Kim et al. [52] introduced two metrics for ma-
terials discovery: predicted fraction of improved
candidates and cumulative maximum likelihood of
improvement. These metrics are geared at identi-
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fying “discovery-rich” and “discovery-poor” design
spaces in the context of high-performance rather
than chemical distinctiveness.

In this work, we introduce the Descending from
Stochastic Clustering Variance Regression (DiS-
CoVeR) algorithm, which unlike previous meth-
ods, screens candidates that have a high proba-
bility of success while enforcing – through the use
of a novel loss function – that the candidates ex-
ist beyond typical materials landscapes and have
high performance. In other words, DiSCoVeR acts
as a multi-objective screening where the promise
of a compound depends on both having desirable
target properties and existing in sparsely popu-
lated regions of the cluster to which it’s assigned.
This approach then favors discovery of novel, high-
performing chemical families.

2. Methods

DiSCoVeR depends on clusters exhibiting ho-
mogeneity with respect to chemical classes, which
we enforce via a recently introduced distance met-
ric: Element Mover’s Distance (ElMD) [53]. Di-
mensionality reduction algorithms such as Uniform
Manifold Approximation and Projection (UMAP)
[54] or t-distributed stochastic neighbor embed-
dings [55] can then be used to create low-
dimensional embeddings suitable for clustering al-
gorithms such as Hierarchical Density-based Spa-
tial Clustering of Applications with Noise (HDB-
SCAN*) [56] or k-means clustering [57].

Finally, these can be fed into density estima-
tor algorithms such as Density-preserving Uni-
form Manifold Approximation and Projection
(DensMAP) [58] a UMAP variant or kernel den-
sity estimation [59, 60] where density is then used
as a proxy for chemical uniqueness.

Additionally, we describe our data and valida-
tion methods. By combining a materials suggestion
algorithm and DiSCoVeR, it is possible to assess
the likelihood of a new material existing relative to
known materials.

The workflow for creating chemically homoge-
neous clusters is shown in Figure 1.

2.1. Chemically Homogeneous Clusters

How are chemically homogeneous clusters
achieved? The key is in the dissimilarity met-
ric used to compute distances between compounds.
Recently, ElMD [53] was developed based on Earth
Mover’s or Wasserstein Distance; ElMD calculates
distances between compounds in a way that more
closely matches chemical intuition. For exam-
ple, compounds with similar composition templates
(e.g. XY2 as in SiO2, TiO2) and compounds with
similar elements are closer in ElMD space. In other
words, clusters derived from this distance metric
are more likely to exhibit in-cluster homogeneity
with respect to material class which in turn allows
in-cluster density estimation to be used as a proxy
for novelty.

In this work, we use UMAP for dimensionality
reduction and HDBSCAN* for clustering similar to
the work by Hargreaves et al. [53]1 which success-
fully reported clusters of compounds that match
chemical intuition.

2.2. Proxies for Chemical Uniqueness

2.2.1. Density-preserving Uniform Manifold Ap-
proximation And Projection

A multivariate normal probability density func-
tion is assigned to each datapoint embedded in
DensMAP space (Eq. (1)):

e−
1
2
(X−µ)· 1

Σ
·(X−µ) (1)

where X, µ, Σ, and · represent DensMAP embed-
ding position at which to be evaluated, train or val-
idation DensMAP embedding position, covariance
matrix, and tensor product, respectively.

The covariance matrix used in this work is given
by Eq. (2): (

er 0
0 er

)
(2)

where r represents extracted DensMAP radius.
By evaluating the sum of log densities con-

tributed by all of the training points evaluated at

1In Hargreaves et al. [53], Density-based Spatial Clus-
tering of Applications with Noise [61] was used instead of
HDBSCAN*.
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Figure 1: DiSCoVeR workflow to create chemically homogeneous clusters. (a) Training and validation data. (b) ElMD
pairwise distances. (c) DensMAP embeddings and DensMAP densities. (d) Clustering via HDBSCAN*. (e) Pareto plot
and discovery scores. (f) Pareto plot of cluster properties.

each of the validation locations (Eq. (3)):

ntrain∑
i=1

−1

2
(Xv,j − µt,i)·

1

Σt,i

·(Xv,j − µt,i) (3)

where Xv,j, µt,i, Σt,i, ·, and ntrain represent j-th val-
idation DensMAP embedding position at which to
be evaluated, i-th train DensMAP embedding po-
sition, i-th train covariance matrix, tensor prod-
uct, and total number of train points, respectively,
we obtain a proxy for chemical uniqueness rela-
tive to existing materials. By combining high-
fidelity CrabNet predictions of bulk modulus with
DensMAP validation densities, we extract a list of
promising compounds at the Pareto front – the line
or “front” at which the trade-off between perfor-
mance and chemical uniqueness is optimal. Crab-
Net predictions have been shown to be compara-
ble to state-of-the-art composition-based materi-
als regression schemes, and since structure is of-
ten not known during a materials discovery search,
CrabNet is a reasonable model choice. One par-
tial workaround for the limitation of structure be-

ing unknown a-priori has been explored in the
Bayesian Optimization With Symmetry Relaxation
algorithm [62], which may be of interest to incor-
porate into DiSCoVeR in future work.

Additionally, by performing leave-one-cluster-
out cross-validation (LOCO-CV) [63], we accu-
rately sort the list of validation clusters by their
average performance with a scaled sorting error of
approximately 1 %. This proof-of-concept strongly
suggests that DiSCoVeR will successfully identify
the most promising compounds when supplied with
a set of realistic chemical formulae that partly con-
tains out-of-class formulae produced via a sugges-
tion algorithm. To our knowledge, this is a novel
approach that has never been used to encourage
new materials discovery as opposed to incremental
discoveries within known families.

2.2.2. k-Nearest Neighbor Average

An average of the bulk moduli for the k-nearest
neighbors (kNNs) is computed as a poor man’s gra-
dient as one type of proxy for chemical uniqueness.
In this work, we use k = 10 to define the local
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neighborhood of influence, where kNNs are deter-
mined via the ElMD. Compounds which exhibit
high predicted target bulk moduli relative to their
kNNs are considered unique in terms of property
gradient, despite having similar chemical composi-
tion.

Because it is based on nearest neighbors rather
than a defined radius, compounds which are in rela-
tively sparse UMAP areas may have neighbors from
a chemically distant cluster. In this case, if all
kNNs come from the same cluster, and this cluster
exhibits similar properties, this can skew the mea-
sure to some extent. This artifact can be avoided
by instead using a defined radius and a variable
number of kNNs while ignoring compounds which
have no kNNs within the specified radius.

2.2.3. Cluster Properties

Cluster validation fraction is given by Eq. (4):

fk =
nval,k

nval,k + ntrain,k

(4)

where fk, nval,k, and ntrain,k represent validation
fraction of the k-th cluster, number of validation
points in the k-th cluster, and number of training
points in the k-th cluster, respectively. This in-
dicates to what extent a given cluster consists of
unknown compounds and can be useful in identi-
fying clusters which are chemically distinct from
existing compounds.

Cluster target mean is given by Eq. (5):

Eavg,k =
1

nk

nk∑
i=1

Ek,i (5)

where nk, Eavg,k, and Ek,i represent number of
points in the k-th cluster, mean bulk modulus of
k-th cluster, and bulk modulus of the i-th point in
the k-th cluster, respectively. This is useful for
identifying clusters that exhibit overall high per-
formance.

2.3. Data and Validation

As a proof of concept, we use 10 583 unique chem-
ical formulae and associated bulk moduli from Ma-
terials Project [64, 65] to test whether DiSCoVeR

can find new classes of materials with high per-
formance. In accordance with materials informat-
ics best practices [66], we also sanitize the data.
Materials are filtered to exclude noble gases, Tc-
containing compounds, and compounds with an en-
ergy above hull value greater than 500 meV. The
highest bulk modulus is chosen when considering
identical formulae. We use CrabNet [44] as the
regression model for bulk modulus which depends
only on composition to generate machine learning
features; however, one of the other models men-
tioned in Section 1 could have been used instead.

We split the data into training, validation, and
test sets using a 0.8/0.2 train/val split as well as
via LOCO-CV. We report two types of validation
tests as summarized in Table 1. One of the valida-
tion methods uses a weighted root-mean-square er-
ror (RMSE) of various multi-objective Pareto front
properties (target vs. chemical uniqueness proxy).
The target is weighted against the proxy property
(Eq. (6)):

1

wE + wp

(
wE

√√√√ 1

nval

nval∑
i=1

(Etrue,i − Epred,i) 2

+wp

√√√√ 1

nval

nval∑
i=1

(ptrue,i − ppred,i) 2

) (6)

where wE, wp, nval, Etrue,i, Epred,i, ptrue,i, and ppred,i
represent bulk modulus weight, proxy weight, num-
ber of validation points, DFT-calculated bulk mod-
ulus of the i-th validation point, predicted bulk
modulus of the i-th validation point, true proxy
property of the i-th validation point, and predicted
proxy property of the i-th validation point, respec-
tively. We use wE = 1 and wp = 1.

In the current implementation, however, the
chemical uniqueness proxy is determined a-priori
and simultaneously using the full dataset; thus,
the error contribution from the chemical unique-
ness proxy is zero. This approach is reasonable for
small- to medium-sized datasets (e.g. <20 000), but
can quickly become intractable for large datasets
due to memory constraints. We plan to modify
DiSCoVeR to be compatible with large datasets in
near future work by utilizing the ElMD metric di-
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rectly within DensMAP rather than computing a
pairwise distance matrix in advance.

Likewise, the score for each compound is a
weighted sum of the scaled target and proxy prop-
erties (Eq. (7)):

1

wE + wp
(wEEi + wppi) (7)

where wE, wp, Ei, and pi represent bulk modulus
weight, proxy weight, predicted bulk modulus of
the i-th validation point, and predicted uniqueness
proxy of the i-th validation point, respectively. We
use wE = 1 and wp = 1.

The other validation method is a LOCO-
CV approach using cumulative density func-
tion (CDF) distance (i.e. Earth Mover’s or
Wasserstein distance) as a metric to deter-
mine the sorted similarity of a predicted clus-
ter property vs. a true cluster property us-
ing scipy.stats.wasserstein distance() [67]
as follows2:

import numpy as np

from scipy.stats import (

wasserstein_distance ,

)

# positions of weights

nclust = len(avg_true)

u = np.cumsum(np.linspace(0, 1, nclust))

u = np.flip(u)

v = u.copy()

# sort by same indices

sorter = np.flip(avg_true.argsort ())

u_weights = avg_true[sorter]

v_weights = avg_pred[sorter]

error = wasserstein_distance(

u,

v,

u_weights=u_weights ,

v_weights=v_weights ,

)

where avg_true and avg_pred represent the 1D
array of DFT-calculated average bulk moduli for
each cluster and the 1D array of predicted aver-

2The code was formatted in Black code style via an online
formatter: https://black.vercel.app/.

age bulk moduli for each cluster, respectively, given
by Eq. (5). The use of a cumulative sum causes
the positions of high cluster bulk modulus averages
to be further spaced apart and therefore is more
costly to “move earth” between the two distribu-
tions. In other words, inaccuracies associated with
high-performing clusters are weighted more heav-
ily than inaccuracies for low-performing clusters.
This weighted error is then scaled by dividing by
a “dummy” error, where v_weights is replaced by
the average bulk modulus of the training data for
each of the training splits (as opposed to the predic-
tions on the validation data) during computation of
the Wasserstein distance.

3. Results and Discussion

We present characteristics of the DensMAP em-
bedding and clustering scheme (Section 3.1), fol-
lowed by compound-wise (Section 3.2) and cluster-
wise (Section 3.3) Pareto front results. Finally, we
discuss results of the LOCO-CV scheme.

3.1. Density-preserving Uniform Manifold Approx-
imation And Projection Characteristics

We present a DensMAP clustering of ElMD dis-
tances between all pairs of compounds (Figure 2a)
and plot the cluster count histogram (Figure 2b).
We then sum densities at equally spaced loca-
tions across DensMAP space (Figure 3a) and color
the points according to bulk modulus values (Fig-
ure 3b).

We obtain a total of 27 clusters, plus a non-
cluster of unclassified points comprising a small
percentage of the data (∼4 %). The number of
clusters gives an estimation of the number of dis-
tinct chemical classes present in the dataset and
is also affected by DensMAP and HDBSCAN*
model parameters such as local density regulariza-
tion strength (dens_lambda) and minimum cluster
size (min_cluster_size). The unclassified points
are typically isolated points in DensMAP space. In
other words, unclassified points will likely exhibit
high chemical contrast relative to other composi-
tions via a low density proxy. We discuss this fur-
ther in Section 3.2.
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Table 1: Validation methods, splits, notion of best fit, and property used to calculate notion of best fit. ∗This density is
the sum of all training densities evaluated at the validation location in the embedded DensMAP space. For the k-neighbors
data, the average of the 10 nearest neighbor properties were used as a proxy. †cluster validation fraction refers to the ratio
of number of validation points within a cluster (as opposed to training points) to the total number of points in the cluster.
DensMAP densities and cluster fractions are determined simultaneously for both validation and training sets during the
DensMAP embedding resulting in computational throughput restrictions. In other words, “predicted” and “true” are
identical due to implementation of DiSCoVeR at the time of writing. We plan to address this in future work.

Method Splits Notion of best fit Property

train/val 0.8/0.2 Weighted RMSE target vs. density∗

train/val 0.8/0.2 Weighted RMSE target vs. k-neighbors average
train/val 0.8/0.2 Weighted RMSE target vs. cluster validation fraction†

LOCO-CV 27 clusters Weighted CDF Distance cluster target mean

(a) (b)

Figure 2: Summary of cluster properties. (a) DensMAP embeddings based on ElMD distances between compounds colored
by cluster. Equal aspect ratio scaling was used. (b) Histogram of number of compounds vs. cluster ID, colored by cluster.
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(a) (b)

Figure 3: Density and bulk modulus. (a) DensMAP densities of both training and validation points summed at gridded
locations in DensMAP space. (b) 10 583 bulk moduli of training and validation points embedded in DensMAP space.
Equal aspect ratio scaling was used for both (a) and (b).

A summary of the computational runtimes of the
various methods is given in Table 2. Computation
of the full pairwise distance matrix takes ∼18 s,
which is quite fast due to use of a CUDA/Numba
[68] version of the Wasserstein distance that we de-
veloped for this work. An NVIDIA GeForce RTX
2060 is used for GPU computations, and an In-
tel® Core™ i7-10750H CPU @ 2.60GHz is used for
CPU computations. All non-GPU calculations are
single-threaded.

3.2. Compound Pareto Fronts

We present compound-wise Pareto fronts—
a common technique used in multi-objective
optimization—with predicted bulk modulus as the
ordinate and one of two compound-wise proxies as
the abscissa: train contribution to validation log
density (Figure 4a) and k-nearest neighbor average
(Figure 4a) as described in Section 2.2.

On the other hand, k-nearest neighbor average
acts as a poor man’s gradient - in other words, used
in conjunction with target predictions, it empha-
sizes compounds which have much higher predicted

Table 2: Summary of computational runtimes. Procedure,
runtime (time), and whether or not a GPU was used (GPU)
(Y=Yes, N=No) for various steps in DiSCoVeR. Visualiza-
tion DensMAP (Vis. DensMAP) and 100 × 100 gridded
density summation (100 × 100 grid) are unnecessary steps
to produce rankings; however, they are helpful for visual-
izations presented in this work. Non-GPU calculations are
single-threaded. Reported runtimes should be considered
approximate, as they are representative of only a single run.

Procedure Time (s) GPU

CrabNet 91 Y
ElMD 18 Y
Cluster DensMAP 137 N
Vis. DensMAP 47 N
HDBSCAN* 0.14 N
100 × 100 grid 11 N
Density-proxy 2.7 N
Total 296 —
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(a) (b)

Figure 4: Compound-wise Pareto plots. (a) Pareto plot of validation bulk modulus predictions (GPa) vs. train contribution
to validation log density, colored by cluster. The Pareto front is plotted as a dashed line. (b) Pareto plot of training and
validation bulk modulus predictions vs. kNN average bulk modulus (GPa) where k = 10. The Pareto front is given by a
dashed line. A line of parity is given by a solid teal line to emphasize that compounds well above this line are considered
unique.

bulk modulus than that of its neighbors. In addi-
tion to the Pareto front, a parity line is also plotted.
Compounds which are far above the parity line are
high-performing relative to the surrounding neigh-
borhood.

In terms of discovering materials which are chem-
ically distinct from existing materials, train con-
tribution to validation log density is the preferred
proxy. We note that each of the proxies produce
distinct plots. In the case of Figure 4a, clusters
tend to be stratified horizontally, whereas in Fig-
ure 4a, cluster shapes exhibit similar orientations.
As expected (Section 3.1), unclassified points ap-
pear frequently at or near the first Pareto front
owing to the fact that unclassified points are likely
to have a lower density proxy and therefore higher
score. By contrast, unclassified points appear in-
frequently at or near the latter Pareto front. Ad-
ditionally, the unique list of clusters present at the
Pareto front are different for each plot. In other
words, these are two types of chemical uniqueness
– the first emphasizing chemical “distance” from
other compounds and the latter emphasizing per-

formance superiority over chemically similar com-
pounds. We believe that either may be successfully
used in the domain of materials discovery.

Compounds were assigned scaled discovery
scores as described in Section 2.3 for each of the
chemical uniqueness proxies. The top-10 ranked
candidates for the density and peak proxies are
given in Tables 3 and 4, respectively. An outer
merge of these two lists is given in Table 5.

It is interesting to note that only one compound
is shared between the top-10 lists of the two prox-
ies. By contrast, in previous tests, we found that
increasing the weight of Epred (wE=2) led to signif-
icant overlap between the two lists, although with
differing priority (i.e. the order of the rankings was
different). Because the weights used can have a
significant effect on the rankings, it may be worth
probing several values for a given study to elucidate
and assess behaviors. Indeed, as wE grows larger,
it tends towards a classic approach of searching
for high-performance candidates only, yet for very
small values of wE, the performance of the top-
ranked compounds may be too low to be of utility
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Table 3: Top-10 ranked high-performing, density-proxy
candidates. Formula, predicted bulk modulus (Epred)
(GPa), kNN average bulk modulus (Epred,kNN) (GPa), and
weighted, scaled discovery score based on train contribution
to validation log density proxy (sρ).

Formula Epred ρ sρ

Mo2C 321.416 6.640 1.000
UB2Os3 300.542 6.014 0.977
TaMoN 294.608 6.157 0.961
Ta2N 284.319 6.577 0.927
Cr2N 277.928 6.271 0.924
B2W 338.219 13.991 0.887
MoC 353.052 16.959 0.879
LuB2Os3 253.264 6.328 0.873
DyB2Ir3 246.279 6.333 0.858
B2Mo 320.678 13.915 0.853

Table 4: Top-10 ranked high-performing, peak-proxy
candidates. Formula, predicted bulk modulus (Epred)
(GPa), kNN average bulk modulus (Epred,kNN) (GPa), and
weighted, scaled discovery score based on average kNN bulk
modulus proxy (Epred,kNN).

Formula Epred Epred,kNN skNN

NiH 184.759 32.682 1.000
V2O3 222.241 11.011 0.989
Mg(MoO2)2 163.082 13.830 0.942
UB2Os3 300.542 6.014 0.937
FeF2 147.770 28.721 0.922
TiOF 161.783 20.470 0.911
Ge3(BiO3)4 131.005 32.318 0.910
ZrSiO 180.928 12.216 0.910
YWN3 206.880 8.152 0.901
Ta2Ni 213.167 24.140 0.876

Table 5: Outer merge of top-10 ranked high-performing,
density-proxy and peak-proxy candidates. Formula, density
discovery score (sρ), and peak discovery score (skNN).

Formula sρ skNN

Mo2C 1.000 0.649
UB2Os3 0.977 0.937
TaMoN 0.961 0.742
Ta2N 0.927 0.784
Cr2N 0.924 0.595
B2W 0.887 0.732
MoC 0.879 0.692
LuB2Os3 0.873 0.665
DyB2Ir3 0.858 0.668
B2Mo 0.853 0.692
YWN3 0.730 0.901
V2O3 0.702 0.989
ZrSiO 0.598 0.910
Mg(MoO2)2 0.538 0.942
Ta2Ni 0.529 0.876
TiOF 0.458 0.911
NiH 0.413 1.000
FeF2 0.364 0.922
Ge3(BiO3)4 0.307 0.910
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in real-world applications.

The weighted RMSE for the validation data is
26.5 GPa; however, as mentioned in Section 2.3, the
proxy error contribution is zero in this work.

3.3. Cluster Pareto Front and Leave-one-cluster-
out Cross-validation

We also present a Pareto front for cluster-wise
properties. For the ordinate, we use predicted clus-
ter average bulk modulus Figure 5a. For the ab-
scissa, we use cluster validation fraction as a proxy
for chemical distinctiveness of a cluster. In this ex-
ample, the data is clustered tightly in the abscissa
due to a the train/val split being applied randomly
without regard to cluster. In a more realistic sce-
nario with much more validation data than training
data, where the validation encompasses previously
unexplored chemical spaces, there is likely to be a
larger spread. Indeed, such a use-case is the inten-
tion for this visualization tool. There is a much
wider spread in the ordinate, indicating an inter-
esting feature of the clustering results: composi-
tions which are chemically similar to each other also
tend to have, on average, similar bulk moduli. This
is reasonable, especially since the regression model
used is based purely on composition.

In future work, it may be interesting to re-
place average bulk modulus with best-in-cluster
bulk modulus to explore a different type of high-
ranking clusters.

Finally, we perform LOCO-CV to evaluate the
utility of the DiSCoVeR method in identifying clus-
ters with high average cluster bulk modulus. A
LOCO-CV parity plot is given in Figure 5. We ac-
curately sort the list of validation clusters by their
average performance with a weighted scaled sort-
ing error (Section 2.3) of ∼1.4 %. In other words,
the out-of-cluster regression is very accurate. This
suggests that CrabNet can successfully extrapolate
performance predictions for new chemical spaces in
accordance with the goal of DiSCoVeR. In future
work, we plan to also test the out-of-cluster extrap-
olation performance for chemical uniqueness prox-
ies (Section 2.3).

4. Conclusion

We embedded ElMD distances in DensMAP
space and clustered via HDBSCAN* to identify
chemically similar clusters for 10 583 compositions.
We introduced new proxies (i.e. metrics) for
uniqueness-based materials discovery in the form
of train contribution to validation log density,
k-neighbor averages, and cluster validation frac-
tion. By pairing these with the CrabNet regression
model, we visualize Pareto plots of predicted bulk
modulus vs. uniqueness proxy and obtain weighted
uniqueness/performance rankings for each of the
compounds. This reveals a new way to perform
materials discovery with a focus towards identify-
ing new high-performing, chemically distinct com-
positions.
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(a) (b)

Figure 5: LOCO-CV results. (a) Pareto plot of cluster-wise average bulk modulus predictions (GPa) vs. cluster-wise
validation fraction. This emphasizes the trade-off between high-performing clusters and chemically unique clusters relative
to the original data. (b) Parity plot of predicted cluster-wise average bulk modulus (GPa) vs. DFT-calculated average
bulk modulus (GPa).
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//github.com/sparks-baird/discover.
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