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ABSTRACT: Metal-free arylation of thiols with diaryliodonium salts has been developed. The application of a strong 

organic base enables the C–S bond formation under mild and experimentally simple conditions. The method allows for the 

synthesis of aryl sulfides containing a broad range of aryl groups from an array of thiols, including aryl, heteroaryl, and alkyl 

ones. The mechanism of the reaction was studied by DFT calculations, demonstrating that is follows the inner sphere pathway 

involving the incipient formation of Ar2I(SR) intermediate, followed by the reductive elimination. 

 

 

Aryl sulfide moiety is ubiquitous in natural products and bioactive molecules.1 These include several pharmaceuticals and 

drug candidates, exhibiting for example anti-Alzheimer, antiviral, antiinflammatory, and antidepressant activities (Figure 1).2 

Moreover, aryl sulfides constitute important reagents for organic synthesis3 and building blocks in material chemistry.4 

 

 

Figure 1. Examples of Bioactive Compounds Containing an Aryl Sulfide Moiety. 

 

Among the existing methods for the preparation of aryl sulfides, the most general and widely used is the transition metal-

catalyzed C–S cross-coupling.5 Complexes of a variety of metals, such as palladium, nickel, copper, cobalt, iron, gold, and 

indium, have been used as catalysts in these reactions.6 Apart from the typical couplings of aryl halides with thiols, oxidative 

and reductive variants also exist.7 Despite their high versatility, the inherent drawbacks of the transition metal catalyzed cross-

couplings, especially in the context of pharmaceutical applications, are high price of the catalysts and possible contamination 

of products with trace metal residues. Therefore, the development of metal-free methods for the synthesis of aryl sulfides is an 

outstanding challenge and a number of such processes, for instance organocatalytic or photoinduced, has been recently re-

ported.8 
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Scheme 1. Transition Metal-Free Synthesis of Aryl Sulfides Using Diaryliodonium Salts 

 

One possible approach to eliminate the need of transition metal catalysis in Ar–S bond formation is the application of aryl 

transfer reagents based on hypervalent iodine. The steep downhill thermodynamics of I(III) to I(I) reduction has allowed for 

the arylation of various carbon and heteroatom nucleophiles (e.g., N-, O-, and P-centered) under metal-free conditions, how-

ever, the reports of aryl transfers to sulfur are scarce.9 In particular, as far as the synthesis of aryl sulfides from thiols is 

concerned, there exist only three such methods, employing diaryliodonium salts. Two of them, developed by Zheng and Chen, 

have the advantage of not requiring any extra reagents, but their scope is strictly limited to 2-mercaptobenzazole substrates 

(Scheme 1a).10 A more general procedure reported by Sanford utilizes an acid activation (Scheme 1b).11 Albeit it constituted a 

considerable advancement, that protocol is still restricted to simple thiols, mainly due to relatively harsh reaction conditions 

and long reaction times. Herein, we describe our work on an efficient metal-free arylation thiols with diaryliodonium salts 

(Scheme 1c). We hypothesized that the activation of the nucleophile by a base, commonly applied in other reactions employing 

hypervalent iodine group transfer reagents,9,12 may lead to a facile formation of aryl sulfides under mild conditions, allowing 

for the synthesis of complex products, relevant to pharmaceutical applications. 

 

Table 1. Effect of Reaction Parameters 

 

Entry Change from the standard conditions Yield (%)a 

1 none 95 
2 TMG, instead of DBU 99 
3 Et3N, instead DBU 87 

4 t-BuOK, instead of DBU 84 

5 AcONa, instead of DBU 91 
6 Cs2CO3, instead of DBU 97 

7 K3PO4, instead of DBU 98 

 

 

8 NaHCO3, instead of DBU 34 

9 pyridine, instead of DBU 27 

10 DABCO, instead of DBU 56 
11 toluene, instead of MeCN 82 

12 DCE, instead of MeCN 85 
13 CPME, instead of MeCN 72 

14 DMSO, instead  of MeCN 72 
15 cyclohexane, instead of MeCN 57 

16 X = BF4 (2b), instead of X = OTf 100 

17 X = OOCCF3 (2c), instead of X = OTf 97 
18 X = Cl (2d), instead of X = OTf 100 

19 X = OTs (2e), instead of X = OTf 95 
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20 X = AsF6 (2f), instead of X = OTf 91 

21 phenylbenziodoxolone (2g), instead of 2a 0 
22 rt, instead of 80 °C 46 

23 under air, instead of N2 80 

 a Yields are average of two experiments and were determined by 1H NMR spectroscopy; CPME = cyclopentyl methyl ether, 

DABCO = 1,4-diazabicyclo[2.2.2]octane, DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene, DCE = 1,2-dichloroethane, TMG = 

N,N,N′,N′-tetramethylguanidine.  

 

Using 2-mercaptobenzothiazole (1a) and diphenyliodonium triflate (2a) as model substrates, we were able to establish a 

set of conditions for the S-arylation in quantitative yield (Table 1, entry 1). In particular, the reaction is carried out in the 

presence of DBU in acetonitrile at 80 °C, under the atmosphere of nitrogen. The arylation also proceeds well with a range of 

other bases, both organic and inorganic (entries 2-7), however, these were later found to provide lower yields than DBU, when 

other starting materials were used. As far as solvents are concerned, application of toluene and DCE led to slightly decreased 

yields (entries 11-12), while further decline was observed for the other tested solvents (entries 13-15). We have also evaluated 

diphenyliodonium salts bearing various counter-anions, all of which delivered the product in excellent yields (entries 16-20). 

However, the use of phenylbenziodoxolone as the aryl transfer reagent had a detrimental effect on the reaction outcome (entry 

21). Finally, it was determined that the efficiency of the arylation drops significantly at lower temperature (entry 22) and that 

the inert atmosphere is compulsory to attain quantitative product formation (entry 23). 

 

 

 

Scheme 2. Scope with Regard to the Thiol 

Having optimized the reactions conditions, we explored the scope and limitations of this transition metal-free S-arylation 

of thiols. With regard to the thiol coupling partner (Scheme 2), good to excellent yields were obtained for five-membered 

heterocyclic thiols. These include thiols derived from pharmaceutically-relevant benzazoles (3a, 3b),13 as well as thiazole (3c), 

2-thiazoline (3d), and 1,3,4-oxadiazole (3e). 2-Mercaptoimidazole furnished the product with moderate efficiency (3f), likely 

due to the presence of a free NH group, although no aryl transfer to the nitrogen could be detected. The method is also appli-

cable to the synthesis of aryl sulfides containing six-membered heterocycles, such as pyridine (3g, 3h) and pyrimidine (3i). 

The arylation of thiophenols is possible for unsubstituted, electron-poor, and electron-rich substrates (3j-3l). As far as the 
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aliphatic thiols are concerned, they undergo the arylation under the developed conditions in somewhat lower, albeit still syn-

thetically useful, overall yields compared to the aromatic counterparts. However, the reaction has proven to be quite general, 

tolerating starting materials ranging from simple alkyl (3m), through benzyl (3n), to functional group-containing (3o) thiols. 

Noteworthy, 1-thio-β-D-glucose derivative could be S-arylated in good yield (3p), demonstrating the usefulness of the method 

for the preparation of complex, biologically-relevant aryl sulfides.  

 

 

Scheme 3. Scope with Regard to the Diaryliodonium Salt. a Synthesized using tetrafluoroborate salt; b Synthesized using 

unsymmetrical (4-nitrophenyl)(phenyl)iodonium triflate; c Synthesized using tosylate salt. 

Next, we examined the scope with respect to diaryliodonium salts (Scheme 3). The reaction works well for 2- and 3-halide 

substituted aryl rings (3q, 3r), however, 4-fluorophenyl is transferred in a low yield (3s). All evaluated trifluoromethyl-con-

taining aryl groups furnished desired sulfides with high efficiency (3t-3v), displaying the applicability of the developed meth-

odology to prepare compounds of potential pharmaceutical interest.14 The presence of other electron-withdrawing substituents, 

such as nitro (3w) and ester (3x), also resulted in excellent yields of the corresponding products. Similarly, moderately electron-

rich aryls are well tolerated, as in the case of mesityl (3y) and 4-(trifluoromethoxy)phenyl (3z) moieties. The former example 

shows additionally that a considerable steric hindrance does not interfere with the C–S bond formation. Only if a strongly 

electron-donating 4-methoxy substituent is present in the aryl ring, the efficiency of the coupling declines appreciably (3aa). 

In order to obtain insight into the mechanism of the developed reaction, we performed DFT calculations (Figure 2). The 

computations show that in the presence of thiolate anion 4a, diphenyliodonium triflate 2a is easily (via intermediate 5) and 

quantitatively transformed into a much more stable (by 7.2 kcal/mol) iodonium thiolate species 6. The latter compound can 

undergo a C–S bond-forming reductive elimination through TS1 with a viable barrier of 21.5 kcal/mol, furnishing sulfide 

product 3a. In TS1, there exists a notable interaction between the nitrogen atom of the heterocyclic ring and iodine, likely 

lowering the barrier and resulting in the superior reactivity displayed by the heterocyclic thiol substrates (Scheme 2). The C–

S bond-formation process, reducing iodine from +III to +I oxidation state and leading to the loss of hypervalency, is highly 

exergonic (by 35.0 kcal/mol relative to 6) providing the driving force for the reaction. We have also examined an alternative 

mechanistic pathway of a direct attack of thiolate nucleophile 4a on the aryl group of iodonium salt 2a. However, the corre-

sponding transition state, TS2, is found to have a prohibitively high energy barrier (28.2 kcal/mol relative to 2a). Therefore, 

the studied reaction follows preferentially the inner sphere pathway, reported for several other reactions employing iodine(III) 

group transfer reagents,15 rather than a less common direct substitution route, wherein iodine constitutes a leaving group.16 
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Figure 2. Calculated Free Energy Profile for the Arylation of Thiolate 4a with Diaryliodonium Salt 2a in Acetonitrile. 

In summary, we have developed an efficient method for the synthesis of aryl sulfides by the arylation of thiols with dia-

ryliodonium salts. The reaction proceeds without the need of metal catalysis, under mild conditions, and it is experimentally 

simple. It delivers a range of products containing various moieties, including pharmacophoric groups, such as heteroaryls and 

a sugar derivative. The performed DFT calculations demonstrate that the process follows an inner-sphere mechanism via C–S 

bond-forming reductive elimination at iodine center. 
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