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ABSTRACT: The recently reported Rh(II)-

catalyzed direct C-H bond activation and 

lactonization of 2-arylphenols uncovers an 

attractive strategy to prepare coumarin 

derivatives with high site-selectivity. Motivated 

by the mechanistic ambiguity (on the origin of the 

site-selectivity and the details for lactonization 

etc.), we conducted a detailed mechanistic study 

of the rhodium-catalyzed lactonization of 2-arylphenols with density functional theory (DFT) calculations. The 

results suggest that the reaction occurs via the coordination exchange, C-H bond activation, carboxylation, 

protonation and lactonization steps. The rate-determining step is the carboxylation step, in which CO2 favorably 

inserts into the Rh-C bond (instead of the more nucleophilic Rh-O bond). The protonation step after carboxylation 

is critical, which makes the subsequent CO2-assisted lactonization feasible. Interestingly, the corresponding pKa 

value of the base can reasonably predict the reaction energy barrier of the C-H bond activation step. The calculations 

will provide insights and suggestions for the development and advancement of the subsequent C-H bond activation 

carboxylation reaction. 
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INTRODUCTION 

The C1 building block of CO2 has recently become a highly attractive synthon for its 

abundance, nontoxicity and renewability.1 Among the various CO2-transformation strategies, the 

synthesis of valuable carboxyl derivatives via direct activation of the C-H bond with a subsequent 

carboxylation represents one of the most practical one.2 Specifically, such strategy has been 

successfully utilized to prepare aromatic carboxylic acids, which are essential building blocks in 

pharmaceuticals of nonsteroidal anti-inflammatory drugs.3 Nevertheless, due to the relatively low 

reactivity of CO2, the transformation of aryl C-H bonds into highly strong nucleophiles, such as 

organozinc compounds, organoboronic esters, and allylstannanes are always necessary (Scheme 

1a).4 The requisite of the stoichiometric organometallic reagents greatly limited the functional group 

tolerate. In this context, the direct aryl C-H bond activation-carboxylation (with CO2) could be more 



 

appealing with respect to the atomic economy and applicability, but is still challenging in these years. 

Besides, the base-promoted Kolbe-Schmitt reaction of phenol derivatives (Scheme 1b)5 and the 

aluminium-promoted Friedel-Crafts type of carboxylation (Scheme 1c)6 occur dominantly on the 

most nucleophilic site of the arene substrates, while the carboxylation on the less-nucleophilic sites 

is yet to be developed. An interesting progress was recently accomplished by Li and co-workers, in 

which carboxylation occurs exclusively on the less nucleophilic site of the inactivated phenyl ring, 

instead of the more nucleophilic site of the phenol ring (Scheme 1d).7 

Scheme 1. Selected examples for C-H carboxylation of 2-(hetero)arylphenols with CO2. 

 

 

Li and co-workers suggested a mechanism for the reaction in Scheme 1d.7 As shown in Scheme 

2, the potassium alkoxide substrate (1aK) enters the catalytic cycle through ligand exchange to 

generate the intermediate II. Then the alkali-assisted C-H bond activation step occurs to obtain the 

metallacycle species III. Insertion of CO2 into the Rh-C bond then generates the intermediate IV. 

Subsequently, lactonization is achieved through a comprehensive ligand exchange and C-O bond 

formation steps, associating with the regeneration of I. In the context of the proposed mechanism, one 

of the most intriguing mechanistic question is the origin of the preferential CO2 insertion into the less 

nucleophilic Rh-C bond, instead of the more nucleophilic Rh-O bond. Meanwhile, the complexity 

of the lactonization step promotes us to explore the details of the elementary steps (such as the effect 

of base), and the driving force.  

Herein, density functional theory (DFT) calculations were conducted to explore the mechanism 

of the C-H carboxylation shown in Scheme 1d. The calculations corroborates Li's mechanistic 

proposal on the prior ligand exchange, C-H bond cleavage and nucleophilic steps. Nevertheless, 

instead of 1aK mediated C-H activation, potassium hemicarbonate (tBuOCO2K, generated by the 

carboxylation of tBuOK) could remarkably accelerate the C-H activation via a concerted metalation-

deprotonation (CMD) mode. Meanwhile, the Rh-O carboxylation is competitive with the Rh-C 

carboxylation. The former is kinetically favored, but thermodynamically disfavored (i.e. reversible 

elementary step). Therefore, the Rh-C carboxylation occurs preferentially to form the metallacycle 

intermediate (type IV') due to the thermodynamic advantages. After that, lactonization occurs via a 

cascade protonation, cyclization and ligand exchange steps. Finally, the carboxylation and a 

subsequent dissociation of KHCO3 occurs to regenerate the intermediate type II. To this end, except 



 

for the first catalytic cycle (starts with type I), all the subsequent catalytic cycle start with the type 

II. The base tBuOK plays two pivotal roles: facilitate the C-H metalation (in the form of potassium 

hemicarbonate); and mediate the catalyst regeneration (in the form of 1aK). 

Scheme 2. The tentative catalytic cycle. 

 

 

Computational Methods: All calculations were performed with Gaussian 16, Rev. C01 package.8 

The B3LYP9 functional, associated with the Grimme dispersion correction (GD3BJ),10 was used for 

geometry optimization of all structures. This functional has been used in similar Rh-catalyzed 

coupling reaction systems before.11 The basis set SDD12 (including related pseudopotential) was 

employed on rhodium and the 6-31G(d)13 was employed on other elements. Frequency analysis was 

performed at the same level of theory with the geometry optimization to confirm that the optimized 

structures are local minima or transition states, and to gain the thermal correction of Gibbs free 

energy. The consistency of the X-ray single-crystal data of the isolated intermediates with the 

optimized structures verifies the optimization methods (Figure S1).7 In this context, single-point 

energy calculations were conducted on the basis of optimized structures, and with the M0614 

functional, including Grimme dispersion correction (GD3). The combination of SDD (related 

pseudopotential included) and the 6-311+G(d,p) basis set were employed on rhodium and the other 

elements, respectively. The solvent effects were taken into account by employing the SMD15 (N, N-

dimethylformamide) solvation model. The intrinsic reaction coordinate (IRC)16 calculations were 

performed to ensure that the transition state connects the correct reactants and products. All energies 

in this study are Gibbs free energy and given in kcal/mol. The wiberg bond orders17 were calculated 

using the Natural Bond Orbital (NBO)18 software at the level of optimization. The geometries of the 

optimized structures are drawn with CYLview.19 

Model reaction: In accordance with Li's experiments,7 Rh2(OAc)4 catalyzed carboxylation of 2-

phenylphenol (1a) with CO2 in the presence of the tricyclohexylphosphine (PCy3) and additives of 

excessive tBuOK was used as the modelling reaction in the theoretical calculations (Scheme 3). 

Scheme 3. Model reaction in theoretical calculations 

 

 



 

RESULTS AND DISCUSSION 

The base of tBuOK could possibly react with CO2 or phenate substrate (1a) to form potassium 

hemicarbonate (tBuOCO2K)20 and potassium phenol (1aK). Both processes are thermodynamically 

feasible (Figure S2). Meanwhile, as to the initial state of the dimeric rhodium catalyst, Rh2(OAc)4 

could possibly undergo the coordination of phosphine ligands (PCy3), solvent (DMF), CO2 or 1aK. 

The results (Figure S3) demonstrate that the coordination of two equivalent PCy3 is more feasible 

than all other cases, and thus the resultant Rh0 (Figure 1) was chosen as the energy reference. From 

Rh0, ligand exchange of one PCy3 with 1aK occurs favorably via a dissociative pathway, including 

the elementary steps of dissociating one PCy3 (Rh0→Rh1), ligand rearrangement (Rh1→Rh2), 

1aK coordination (Rh2→Rh3), and KOAc dissociation (Rh3→Rh4) steps. Of note, the other 

mechanistic possibility (such as rhodium dimer catalyst dissociation, ligand exchange between 

hemicarbonate and acetate etc.) were also examined, but was excluded due to the relatively higher 

energy demands (see Figure S4-5 for the details). 

 

Figure 1. Gibbs free energy profiles of the ligand exchange steps from Rh0. 

 

From Rh4, the C-H metalation step (i.e. C-H bond cleavage in Scheme 2) occurring via 1,2-

addition,21 or concerted metalation-deprotonation (CMD) pathways22 were all taken into account 

(Figure 2, Figure S6-7). The calculation results indicate that the CMD mechanism with external 

base is the most feasible one (Figure 2). This pathway occurs via the coordination of potassium 

hemicarbonate (Rh4→Rh5) and C-H bond cleavage (Rh5→TS1→Rh6) steps, corresponding to 

the external base mediated concerted metalation-deprotonation pathway. In Rh6, the bicarbonate is 

weakly ligated on the Rh-complex via electrostatic interaction, and the dissociation of the 

tBuOCO2H moiety is thermodynamically favored by the entropic effect (Rh6→Rh7). After that, 

dissociation of one acetate group (in the form of KOAc) could possibly occur to generate the type 

III intermediate in Scheme 2 (note: acetate dissociation on earlier intermediates Rh1/Rh2/Rh4 are 

unlikely, see Figure S8 for details). According to the calculation results, the dissociation of trans- 

acetate (refer to the remaining phosphine ligand, in the form of KOAc) is remarkably more favorable 

compared to that of the cis-one (Rh8 vs Rh8'). Herein, it is noteworthy that the 2-phenylphenol 

group in Rh8 undergoes a spontaneous rearrangement after the removal of the KOAc group, and 

the partial optimization and molecular dynamics analysis have confirmed that the rearrangement is 

spontaneously carried out in the reaction system (Figure S9-10). The high energy of Rh8' (39.5 

kcal/mol) excludes its formation under the experimental condition (90-100 oC),7 and thus the 

subsequent transformation on Rh8' is omitted. 

 



 

 

Figure 2. Gibbs free energy profiles of the C-H bond cleavage steps. 

 

From Rh8, the carboxylation (i.e. CO2 insertion) could occur on either Rh-O or Rh-C bond. 

As shown in Figure 3, the Rh-O bond insertion starts with approaching of CO2 to the phenolic 

hydroxyl group, and this process is slightly endergonic by 2.8 kcal/mol. From the formed 

intermediate Rh9, a concerted Rh-O and O-C bond formation occurs via the transition state TS2 to 

form the carboxylate intermediate Rh10. Although the energy barrier of the elementary Rh-O 

insertion step is only 16.3 kcal/mol, the relatively high energy of TS2 compared to the energy 

reference excludes such mechanistic possibility. Meanwhile, the Rh-C insertion is less feasible than 

the Rh-O bond from both kinetic and thermodynamic aspects. To this end, the direct carboxylation 

on the intermediate Rh8 could be rule out, and the main difficulty lies in the highly endergonic 

OAc-dissociating step (Rh7→Rh8). Motivated by this assumption, we examined the possibility for 

carboxylation without removing the OAc- group. Specifically, in view of the nucleophilic 

carboxylation step, removing K+ was also anticipated to be favorable due to the formation of an 

anionic, more nucleophilic Rh2 catalyst (compared to the neutral one).  

 

Figure 3. Gibbs free energy profiles of the acetate dissociation and carboxylation steps. 

 

According to the calculation results, the relative energy of the supposed intermediate Rh11 is 

3.4 kcal/mol lower than that of Rh7 (note: an isodesmic reaction was designed via incorporating of 

another tBuOCO2K molecule). From Rh11, either a direct carboxylation pathway or a dissociation-

carboxylation pathway (via dissociating the Rh1-O1 bond prior to the carboxylation step, Figure 4) 



 

were examined. In view of the coordination environment of the Rh1 center, these two pathways 

formally correspond to the outer-sphere or inner-sphere carboxylation mechanism, respectively. The 

outer-sphere pathway starts with the approaching of CO2 into the Rh-O or Rh-C bond to form the 

intermediate Rh15 or Rh15', from which the occurs then to generate the metallacycle intermediate 

Rh14 or Rh14'. All efforts in locating the Rh-O carboxylation transition state were failed, and the 

partial optimization by fixing C(CO2)-O1 bond at different distances indicated an energy demands 

of ~23.2 kcal/mol (Figure S11). On the other hand, the Rh-C carboxylation occurs via the transition 

state TS4', with an energy barrier of 28.7 kcal/mol. Comparing the two outer-sphere pathways, the 

Rh-O carboxylation is kinetically more feasible, while the Rh-C carboxylation is 

thermodynamically more feasible. Similar to the results on the outer-sphere pathways, the inner-

sphere Rh-O and Rh-C carboxylation are thermodynamically and kinetically favored, respectively. 

But the overall energy barrier is relatively higher than the related outer-sphere one (TS3 vs Scan-

TS4; TS3' vs TS4'), and therefore such mechanistic possibilities could be excluded. In this context, 

both Rh14 and Rh14' are the possible product of the carboxylation step, and therefore we further 

examined the following lactonization mechanism on these two intermediates. 

 

Figure 4. Gibbs free energy profiles of the carboxylation without acetate dissociation. 

 

From Rh14 and Rh14', lactonization may occur via different pathways. For clarity reasons, an 

illustrative diagram on the direct cyclization or CO2-assisted cyclization23 is given in Scheme 3. In 

addition, the mechanism with protonation of the anionic intermediates occurring before the 

lactonization may also occur. The calculation results indicate that the direct cyclization pathway 

needs to overcome the high energy barrier of > 36 kcal/mol (Figures S12). Meanwhile, the CO2-

assisted cyclization is relatively more feasible than the direct lactonization pathway, but all these 

pathways need to overcome high total energy demand of > 38 kcal/mol, which is inaccessible in the 

target reaction system (Figure S13-15). 

Scheme 3. Possible strategies for the lactonization process 



 

 

It was noticed that along with the formation of 1aK and the C-H bond activation steps, alcohol 

or bicarbonate will be accumulated. We wondered whether these proton donators could undergo a 

proton transfer pathway with the rhodium anion species, thereby promoting the subsequent 

lactonization process. When experiencing the Rh-O carboxylation, the energy of the subsequent 

transformation step from Rh14 is still too high to carry out (Figure S16). For the Rh-C carboxylation, 

the process from Rh14' to Rh16 via proton transfer is more feasible. Furthermore, Rh16 could 

afford the four-membered metallacycle species Rh17, and the energy barrier of this step is 10.3 

kcal/mol (Figure 5). With the dissociation of O1 atom from Rh1, Rh17 is transformed into Rh17'. 

Then, the Rh18 and Rh18' are obtained with the O3-Rh1 coordination via the anti- and syn-pathway, 

respectively (note: anti- and syn- refer to the orientation of hydroxyl and phosphine ligands moiety). 

The hydroxyl-coordinated intermediates Rh19 (anti-pathway) and Rh19' (syn-pathway) can be 

obtained logically by C-O3 bond cleavage. Obviously, syn-pathway is more advantageous 

dynamically and thermodynamically, so we follow up on the conversion of Rh19'. 

 

 

Figure 5. Gibbs free energy profiles of the lactonization after Rh14' protonation. 

 

Regarding the regeneration of the rhodium catalyst, we proposed the following CO2-assisted 

conversion (Figure 6). After obtained the Rh19', potassium phenolate (1aK) can easily replace the 

lactone (2a) to produce Rh21 accompanied by the exotherm of 16.7 kcal/mol, which is more 

advantageous than directly escaping 2a and generating Rh20. Subsequently, CO2 is inserted into the 

K-O (hydroxyl) bond to provide Rh22 (ΔG≠ = 10.2 kcal/mol), which is superior to the direct 

dehydrogenation (Rh21→Rh4, ΔGr = 24.3 kcal/mol). With the subsequent KHCO3 dissociation of 

Rh22, intermediate Rh4 is regenerated and thus realizing the catalytic cycle. 



 

 

Figure 6. Gibbs free energy profiles of CO2-assisted catalyst regeneration. 

 

In addition to the aforementioned C-H activation-carboxylation mechanism, we also probed 

the plausibility of the carboxylation-C-H bond activation mechanism. As shown in Figure 7, the 

potassium phenate substrate (1aK) complexed with CO2 could achieve the carboxylation species 

(1aK'), and coordinated with Rh2 to form Rh23 subsequently. This scheme is dominated compared 

with the route of CO2 insertion into the Rh4 intermediate (Figure S17). As potassium acetate 

dissociates (Rh23→Rh24), tBuOCO2K mediated concerted metalation-deprotonation can get the 

corresponding metallacycle species Rh26 (ΔG≠ = 23.4 kcal/mol). Unfortunately, the high energy of 

Rh25 made the C-H activation need to overcome a total energy barrier of 41.0 kcal/mol, which 

prevented the implementation of the strategy. 

 

Figure 7. Gibbs free energy profiles of the carboxylation-first path.  

 

We have noticed that the base has played an irreplaceable role in the reaction system (i.e. the 

activation of the C-H bond and the protonation step). Li's report pointed out that tBuOK, tBuOCO2K, 

KOAc, KHCO3 or K2CO3 may all be the existence of potassium salts,7 while the specific types of 

potassium salts that assist the reaction is questionable. To clarify the "vital base" and the inherent 

difference of the various bases, we calculated and compared the auxiliary effects of the bases and 

the corresponding data were shown in Scheme 4. It is obvious that the energy barrier for C-H bond 

activation gradually increases with the alkalinity of the potassium salt decreases. Among them, 

tBuOCO2K is the reasonable state that can take into account the steps of C-H bond activation and 



 

protonation. Meanwhile, we found that there exists a robust linear relevance between the energy 

barrier (ΔG≠) and reaction energy (ΔGr) in the C-H bond activation step (Figure 8A). Therefore, the 

C-H bond acidity (usually measured by pKa) of the corresponding conjugate acid (denoted as H-

Base) may be used as an efficacious parameter to evaluate the reaction energy barrier (ΔG≠). As 

expected, a satisfactory linear correlation exists between pKa and ΔG≠ (Figure 8B), which implies 

that the energy barrier of C-H bond activation can be predicted through the pKa of H-Base. 

 

Scheme 4. Gibbs free energy data of C-H bond activation and protonation with various bases (part). 

 

 

To gain detailed insights into the nature of the C−H activation transition state, especially to 

determine whether the deprotonation has really undergone a fully concerted metalation-

deprotonation (CMD) fashion, or just a base-assisted internal electrophilic substitution-type (BIES) 

mechanism (more recently also abbreviated as eCMD),24 a framework of More O’Ferrall-Jencks 

plot25 was taken out as a reference (see SI for more details).26 The introduction of strong base 

adjuvants resulted in smaller Rh-C bond orders, and all of the transition states located at the left-

hand site of the plot and into the CMD regime (Figure 9), which is consistent with our previous 

conjecture. 
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Figure 8. Comparison of reaction energy (ΔGr) and pKa versus energy barrier (ΔG≠) in the Rh-

catalyzed C-H bond activation steps 

 

Aside from the C-H activation, the H-Base also contributes to the protonation step of the 

carboxylate product, which is pivotal to the lactonization processes (Figure 5). As the acidity of H-



 

Base increases, the reaction energy of the protonation process gradually decreases. Since the 

protonation process is essentially the dissociation process of conjugate acid, thus the phenomenon 

is understandable. According to the previous steps, the alkalinity of the Base should be sufficiently 

strong to promote the C-H bond cleavage of Rh5; simultaneously, the acidity of the H-Base should 

be adequately strong to deliver proton to Rh14'. In other words, the alkalinity of the auxiliary base 

should be moderate. 
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Figure 9. Wiberg bond order analysis of C−H bond activation for distinct rhodium complexes 

 

We also paid attention to the other ligands mentioned by Li et al.,7 for the ligands have played 

a vital role in the system. The energy data of corresponding key intermediates and transition states 

are shown in Figure 10. The C-H bond activation step is relatively easy, and the carboxylation step 

is still the rate-determining step. In particular, the total reaction energy barrier of corresponding 

ligands can correspond well to the reaction temperature and yield given by Li et al.,7 which also 

confirms the rationality of the computational mechanism path. The distortion/interaction model 

analysis27 was carried out to explore the causes of Rh-C carboxylation (Figure S18), and the results 

indicate that the distortion energy dominates the energy barrier of the carboxylation step. 

 

 

Figure 10. The relative energies chart of critical intermediates and transition states with different 

ligands (Rh3-L as the reference point) 
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CONCLUSION 

The rhodium-catalyzed aryl C-H bond carboxylation with CO2 uncovers a truly novel site 

selectivity to generate high value-added chemicals. In this paper, the mechanical details on the C-H 

bond activation, the site selectivity of carboxylation, and lactonization by rhodium dimer catalysis 

were explored through DFT calculations. The role of the base in the C-H bond activation step was 

revealed clearly, and the alkalinity determines the energy barrier of activation. In the carboxylation 

step, CO2 can be inserted into the Rh-O and Rh-C bond kinetically and thermodynamically, 

respectively. In the process of lactonization, the fascinating results hint at the critical role of 

conjugate acid and CO2: to carry out the protonation and regenerate the rhodium catalyst, 

respectively. As for the carboxylation-first pathway, the instability of the carboxylated intermediate 

hinders the subsequent C-H bond activation process. All in all, these discoveries could have great 

guiding significance for developing related types of reactions. 
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