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Abstract

Optical properties are central to molecular design for many applications, includ-

ing solar cells and biomedical imaging. A variety of ab initio and statistical methods

have been developed for their prediction, each with a trade-off between accuracy, gen-

erality, and cost. Existing theoretical methods such as time-dependent density func-

tional theory (TD-DFT) are generalizable across chemical space because of their robust

physics-based foundations but still exhibit random and systematic errors with respect

to experiment despite their high computational cost. Statistical methods can achieve

high accuracy at a lower cost, but data sparsity and unoptimized molecule and solvent

representations often limit their ability to generalize. Here, we utilize directed message

passing neural networks (D-MPNNs) to represent both dye molecules and solvents for

predictions of molecular absorption peaks in solution. Additionally, we demonstrate a

multi-fidelity approach based on an auxiliary model trained on over 28,000 TD-DFT

calculations that further improves accuracy and generalizability, as shown through rig-

orous splitting strategies. Combining several openly-available experimental datasets,

we benchmark these methods against a state-of-the-art regression tree algorithm and
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compare the D-MPNN solvent representation to several alternatives. Finally, we ex-

plore the interpretability of the learned representations using dimensionality reduction

and evaluate the use of ensemble variance as an estimator of the epistemic uncertainty

in our predictions of molecular peak absorption in solution. The prediction methods

proposed herein can be integrated with active learning, generative modeling, and ex-

perimental workflows to enable the more rapid design of molecules with targeted optical

properties.

Introduction

Dye molecules are used in many applications ranging from sensitizers for solar cells to biomed-

ical imaging and diagnostics.1,2 The optical properties of dyes, namely their absorption and

emission characteristics, must be known to determine their suitability for particular ap-

plications. Although numerous theoretical and statistical methods exist to predict these

properties, many of these methods are not sufficiently accurate or general, or require signif-

icant computational cost, all of which hinder their application to large and diverse sets of

molecules. Herein, we propose new deep learning methods that use learned dye and solvent

representations and multi-fidelity data to improve prediction accuracy and generalizability

on rigorous splits of several of the largest open-source datasets. Our models are publicly

available for making predictions with corresponding uncertainty estimates.

Many theoretical methods have been developed for predicting molecular optical proper-

ties, including empirical tables, semi-empirical methods, time-dependent density functional

theory (TD-DFT), and wavefunction-based methods.3,4 TD-DFT has been the most widely

used method for at least the past decade because of its favorable accuracy/cost trade-off

and its capacity to be be coupled with continuum solvents approximations,5 and it has been

benchmarked and reviewed extensively.6,7 In parallel to theoretical methods, researchers

have also developed surrogate statistical models that predict UV/Vis spectra from molecular

structure at a lower computational cost than TD-DFT. ML studies for predicting properties
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related to the electronically excited states of molecules have been reviewed recently.8,9

Limitations in previous statistical modeling efforts can be classified into three categories:

data sparsity, molecular representations, and solvent representations.10 Many studies have

focused on a narrow part of chemical space (e.g. a single dye family) because of the limited

availability of large UV/Vis datasets. This data sparsity has been addressed recently with

the publication of several experimental datasets,1,11–18 described in Table 1. There are also

several large computed datasets of excitation energies available (Table 2). However, studies

are still lacking on how the chemical diversity of the training data impacts model perfor-

mance on new, unrelated chemical space. Many prediction methods have created molecular

representations based on generic structure-based fingerprints or human-selected descriptor

features. Most previous studies did not consider solvent effects, but many leveraged descrip-

tors derived from quantum chemical calculations. The issue of data sparsity is related to the

shortcomings of solvent representations in previous models; with relatively few examples of

dyes measured in more than one solvent, it was sometimes easier to train a model only on

data in the most commonly reported solvent to remove this complexity from the model.

Table 1: Existing Datasets of Experimental UV/Vis Spectroscopic Properties. The
properties listed for each dataset are not necessarily present for every measurement. ”Full”
refers to the full absorption/emission spectrum as xy-coordinate pairs, λmax is the peak
wavelength, εmax is the peak molar attenuation coefficient (also called the molar extinction
coefficient or molar absorptivity), σ is the peak FWHM (bandwidth), Φ is the quantum yield,
and τ is the fluorescence lifetime. A subset of the data in the ChemFluor16 set was extracted
from the Fluorophores12 set. The number of entries for the UV/Vis+ dataset includes the
count of the dye entries only, and the entries for NIST do not include ions.

Dataset Entries Dye Solvent Absorption Emission Other

ChemDataExtractor14 8,467 SMILES Name λmax, εmax - -
ChemFluor16 4,386 SMILES Name λmax λmax Φ
Deep4Chem17 20,236 SMILES SMILES λmax, σabs, εmax λmax, σemi Φ, τ

DSSCDB1 5,178 SMILES Name λmax λmax -
Dye Aggregation15 4,043 SMILES Name λmax - -
Fluorophores.org12 955 Name Name Full, λmax Full, λmax Φ, τ

NIST11 2,306 MOL file - Full - -
PhotochemCAD13 552 Name Name λmax, εmax - Φ

UV/Vis+18 112 Name Name Full Full -
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Table 2: Existing Large Datasets of Computed Excitation Energies. Each dataset
contains additional properties beyond excitation energies, such as oscillator strengths, highest
occupied molecular orbital (HOMO), and lowest unoccupied molecular orbital (LUMO), but
the set of reported properties is different for each dataset. Some datasets report results
from multiple levels of theory (ranging from semi-empirical to coupled cluster), but all were
calculated in vacuum. Many smaller datasets and datasets containing only ground-state
properties (e.g. HOMO and LUMO) exist that are not referenced here.

Dataset Entries Dye

QM7b19,20 7,211 Coulomb matrix
QM821,22 21,786 XYZ file

QM-symex23 172,736 XYZ file
PubChemQC24 3,411,649 MOL file

Among the previous studies on predicting absorption peak wavelengths or excitation en-

ergies, the work of Ju et al.,16 Kang et al.,25 and Joung et al.26 is particularly noteworthy

because of the size of their training datasets and the accuracies this enabled them to achieve.

Ju et al. trained a gradient boosted regression tree (GBRT) algorithm on composite finger-

prints to predict the maximum absorption and emission wavelengths and photoluminescence

quantum yield (PLQY) using a large set of experimental data they compiled from the lit-

erature. Kang et al. trained a random forest algorithm on a subset of the PubChemQC

database24 to predict B3LYP/6-31G* excitation energies and oscillator strengths in a vac-

uum from molecular fingerprints. Joung et al. used their previously compiled experimental

dataset17 to train a model that uses graph-convolutional networks (GCN) to predict multiple

molecular optical properties, including the absorption and emission peak wavelengths.

Although these recent works achieved impressive accuracies, their reported performance

may be more representative of how they would perform in substituent-selection applications

as opposed to de novo design tasks with unseen chemistries. Recent reviews of ML best

practices in chemistry and materials science have warned against data leakage from the

same compound or composition being present under multiple measurement conditions.27,28

Random splitting into training/test or training/validation/test sets based on dye-solvent

pair may not be sufficient for assessing model generalizability on this task because test error

may be spuriously low if a dye appears in both training and test sets in different solvents or
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even if the molecules in the test set are too chemically similar to the training data. We set

out to explore how these decisions impact model performance.

Additionally, previous work has not attempted to leverage a combination of computed

and experimental data in predictions of optical spectra. This multi-fidelity approach is

desirable because of the lower cost and greater availability of calculations with respect to

experiments. Multi-fidelity methods have been demonstrated in several other applications

for integrating data from multiple levels of theory or from theory and experiments.29–31

Furthermore, theoretical methods do not have a domain of applicability constrained by

a training set, so they are more reliable for making predictions on chemistries with low

similarities to existing data. These factors suggest that a multi-fidelity approach may improve

model accuracy and generalizability on experimental predictions and may be more useful in

active learning.

In this work, we leverage recently-compiled experimental datasets and directed message

passing neural networks (D-MPNN)32 to address previous limitations with molecular and

solvent representations. The D-MPNN approach learns representations for the dye and sol-

vent that are optimized for predicting absorption properties. We compare our optimized

representations to a state-of-the-art fingerprint-based method and to alternative solvent de-

scriptors. Our method produces interpretable representations and estimates the uncertainty

in its predictions. We emphasize the importance of using rigorous splitting techniques for

assessing the ability of a model to generalize to unseen chemistries, and we show that incor-

porating results from physics-based calculations into model training improves performance

across several large datasets. The predictive capability of our techniques will enable more

rapid design of molecules with target optical properties.

5



Methods

Data Sources and Preprocessing

We compiled experimental UV/Vis absorption data from several of the largest openly-

available datasets: Deep4Chem,17 ChemFluor,16 Dye Aggregation (DyeAgg),15 ChemDataEx-

tractor (CDEx),14 and the Dye-Sensitized Solar Cell Database (DSSCDB).1 Among the

datasets listed in Table 1, these were the largest and most easily machine-readable, and they

included solvent information for each measurement. All of these data sources reported the

dyes in the form of SMILES,33 but only the Deep4Chem set reported the solvents in this

form. For the other four sets, we converted the solvent names and abbreviations to SMILES

through a manually-constructed dictionary mapping because automatic tools did not recog-

nize the necessary variety of names and abbreviations for many solvents. We extracted all

measurements that included a valid dye SMILES string, solvent SMILES string, and peak

wavelength of maximum absorption. We determined the validity of the SMILES strings

using RDKit34 and dropped measurements with invalid dye or solvent SMILES (105 mea-

surements) and those containing ”.” to represent clusters of molecules (373 measurements).

The remaining dataset contained 28,734 measurements. We removed any dye-solvent pairs

with duplicate measurements within the same dataset that disagreed by more than 5 nm. For

those that agreed within 5 nm, the mean of the values was used. This resulted in datasets

of size 1,825 (CDEx), 3,840 (ChemFluor), 14,771 (Deep4Chem), 1,720 (DSSCDB), 3,025

(DyeAgg), and 24,580 (a combined set of ChemFluor, Deep4Chem, DSSCDB, and DyeAgg).

TD-DFT Calculations

For each dye molecule in the combined experimental dataset, as well as a set of molecules

with dye-like substructures parsed from USPTO patents and commercial vendors, initial ge-

ometries were generated using RDKit to convert the SMILES strings into Cartesian coordi-

nates.35 These geometries were refined using semi-empirical tight-binding density functional
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theory (GFN2-xTB)36 in the ORCA software,37 followed by geometry optimizations at the

BP8638-D339/def2-SVP40 level of theory. Finally, TD-DFT calculations were performed with

the Tamm-Dancoff approximation (TDA)41 at the ωB97X-D342/def2-SVPD level of theory

in Orca. This pipeline was completed for 28,772 molecules, of which 10,409 had a corre-

sponding experimental measurement in at least one solvent from one of the aforementioned

datasets. The total number of experiments with a corresponding TD-DFT calculation in

vacuum was 19,409 (including measurements of the same molecule taken in more than one

solvent).

For a subset of the complete dataset (only ChemFluor, DyeAgg, CDEx, and DSSCDB),

we began with the optimized geometry calculated with BP86-D3/def2-SVP in ORCA and

performed an additional TD-DFT calculation at the ωB97XD/def2-SVP level with solvent

corrections in Gaussian.43 The solvent calculations were done using the integral equation

formalism polarizable continuum model (IEFPCM) and Gaussian defaults for excited state

solvation. This pipeline was completed for 6,707 dye-solvent pairs.

We extracted the peak vertical excitation energy from each of these calculations according

to the following procedure: (1) if none of the energies were in the range of 1 - 4 eV, choose the

lowest energy; (2) if only one energy is in the visible range, choose that one; (3) if multiple

peaks are in the visible range, choose the one with the highest oscillator strength. While the

vertical excitation energy is not exactly analogous to λmax,abs because it does not account for

nuclear vibronic effects, it is a relatively cheap computational surrogate that should improve

the capability of a model to predict λmax,abs.

Dye and Solvent Representations

We compared three representation methods for the dye molecules and four for solvents. Two

of the dye representations were derived from the open-source Chemprop D-MPNN frame-

work,32 and we compared these representations to the ChemFluor Functionalized Structure

Descriptor (FSD) representation developed by Ju et al.16 The FSD representation is a com-
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posite fingerprint created by concatenating the E-state, CDK extended, and substructure

presence and count fingerprints calculated by the PaDEL software44 through PaDELPy.45

Ju et al. found FSD to be superior in an extensive benchmark against other fixed finger-

print representations for predicting molecular absorption and emission peak energies. One

Chemprop representation uses the D-MPNN framework ”as is” to create a fingerprint em-

bedding that is optimized for predicting absorption peak energies. The second Chemprop

representation (which we call ChempropMultiFidelity) is similar to the first, but it uses a

second Chemprop model trained on TD-DFT results to predict the TD-DFT peak vertical

excitation energy and concatenates this predicted value onto the first Chemprop fingerprint

embedding.

The four solvent representations compared herein are Morgan fingerprints, ChemFluor

Comprehensive General Solvent Descriptors (CGSD), Minnesota solvent descriptors,46 and

Chemprop D-MPNN embeddings (SolventMPNN). We calculated the Morgan fingerprints

with a radius of 4 and 256 bits. The five CGSD descriptors (developed by Ju et al.16 in

conjunction with the FSD dye representation) were extracted from the work of Reichardt47

and Catalán48 and represent the polarity (ET (30)), acidity (SA), basicity (SB), dipolarity

(SdP), and polarizability (SP) of a solvent. We also matched solvents with their seven corre-

sponding descriptors from the Minnesota Solvent Descriptor Database:46 index of refraction

(n), Abraham’s H-bond acidity (α), Abraham’s H-bond basicity (β), surface tension (γ),

dielectric constant (ε), aromaticity (φ), and electronegative halogenicity (ψ). The solvent

D-MPNN embeddings were optimized using a separate D-MPNN alongside that of the dye;

this approach was previously shown to be successful in predicting solvation free energies.49

All dye-solvent pairs for which any of the above features could not be calculated were

dropped from the dataset.
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Models

We compare the performance of three types of models, each corresponding to one of the

dye representations described above. The FSD representation was used with the gradient

boosted regression tree (GBRT) algorithm50 as implemented by Ju et al.16 For both D-

MPNN representations described above, the resulting fingerprint embedding is passed to a

feed-forward neural network (FFNN) to accomplish the regression task. The three types of

models are illustrated in Figure 1. The ChempropMultiFidelity model is a variation of the

hybrid physics-ML models reviewed by Jia et al.51

D-MPNN hyperparameters (including hidden sizes, numbers of layers, dropout, batch

sizes, learning rates, and warm-up epochs) were tuned using SigOpt.52 The GBRT used the

hyperparameters reported by Ju et al., while all D-MPNN models used hyperparameters

that were tuned on the same ChemFluor dataset used by Ju et al. The details of the model

architectures, training, and predictions are given in the Supporting Information.

Train-Validation-Test Splits

The type of splitting strategy used during the development of machine learning models is

a crucial consideration when evaluating the accuracy and generalizability of a model.27,28

We compare three splitting strategies to illustrate this principle and to encourage the use of

rigorous splitting strategies in subsequent work. In our regression task, the dye molecule and

solvent molecule are both inputs to predict the peak wavelength of maximum absorption.

The most naive splitting strategy, therefore, is to split randomly by dye-solvent pairs. If

there are no duplicate measurements in a dataset, this splitting strategy makes it trivial to

ensure that no pair is present in more than one of the training, validation, and test sets.

Although the solvent effect can sometimes cause a substantial shift in the peak wavelength,

the peaks measurements of the same dye in different solvents will be correlated. In other

words, knowing the peak absorption wavelength of a particular dye in one solvent will likely

improve the predictions of that same dye in a different solvent. This suggests a more rigorous
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Figure 1: Model Architectures for Predicting Experimental Absorption Peak in
Solvent. GBRT uses the PaDEL software and a table lookup to arrive at the FSD and
CGSD, which are concatenated and used as input for a gradient boosted regression tree al-
gorithm. Chemprop uses separate D-MPNN networks to obtain fingerprint embeddings for
the dye and solvent, then concatenates these for input to a FFNN. The ChempropMultiFi-
delity model is similar to Chemprop, except with the addition of a secondary D-MPNN and
FFNN that are trained to predict the absorption peak from TD-DFT data. This value is
concatenated with the two fingerprint embeddings before being passed to a FFNN. There is
no weight sharing between any of the D-MPNN networks. The Chemprop and Chemprop-
MultiFidelity models can alternatively use Morgan fingerprints, Minnesota descriptors, or
CGSD to represent the solvent in place of a D-MPNN; GBRT can use Morgan fingerprints
or Minnesota descriptors as alternatives to CGSD.
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splitting strategy where measurements are split by dye molecules rather than by dye-solvent

pairs. This method ensures than any given dye molecule is restricted to either the training,

validation, or test set, regardless of how many different solvent measurements are available.

The final and most rigorous strategy discussed in this work is a scaffold split using the Bemis-

Murcko scaffold53 implemented in RDKit through Chemprop. Scaffold splits ensure that any

dye molecules that possess the same scaffold are restricted to a single set, which makes the

regression task more challenging and provides a better evaluation of model generalizability.

This splitting strategy is most reflective of performance on de novo design tasks with unseen

chemistries. We used 80-10-10 training-validation-test proportions for all splits.

Results and Discussion

We performed our analysis on a combination of five data sources, which comprised a total

of 28,734 measurements (of which 26,623 were unique dye-solvent pairs). Of these 28,734,

there were 1,870 included in more than one data source. The combined dataset contained

15,157 unique dyes and 364 unique solvents. Ten of the solvents were used in 1,000 or more

measurements. The breakdown of our data by source and by solvent is represented in Tables

3 and S1.

Table 3: Dataset Composition by Data Source. The numbers for dye-solvent pairs
correspond to the number of measurements after filtering. These numbers do not account
for the aggregation of duplicate measurements either within or across datasets. There were
1,870 measurements present in more than one data source.

Dataset Measurements
Deep4Chem 16,585
ChemFluor 4,170

DyeAgg 3,626
CDEx 1,915

DSSCDB 2,438
Total 28,734

The maximum absorption wavelengths of the dyes represented in our dataset cover the en-
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tire visible spectrum and extend into the ultraviolet and near-infrared regions. The molecules

in the dataset include many of the common dye substructures and families. Figure 2 illus-

trates the distribution of wavelengths and the prevalence of each substructure. The peak

wavelength distributions of the individual datasets are different from that of the combined

dataset and from each other, as shown in Figure S1.

Figure 2: Dataset Composition: Peak Location and Common Scaffold Matches.
(Left) The experimental peak wavelengths of maximum absorption from the combined
dataset span the entire visible spectrum and extend into the infrared and ultraviolet, (Right)
The combined dataset covers a wide variety of common dye scaffolds/families, as determined
by SMARTS pattern matching.

The five datasets differ in their coverage of chemical dye space, as shown in Figure 3. The

largest single data source (Deep4Chem) also has the most dense coverage of the chemical

space. The smaller data sources, while covering a relatively large area of space, display more

outliers that have few or zero close neighbors.
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Figure 3: UMAP of Morgan Fingerprints by Data Source. A UMAP dimensionality
reduction on the Morgan fingerprints shows a difference in the coverage and density of each
dataset in chemical space.

We used TD-DFT to calculate the vertical excitation energies for 10,947 molecules in

vacuum and 6,707 molecules with solvent corrections corresponding to the solvent measure-

ments available in the experimental dataset. Since some molecules were measured in multiple

solvents experimentally, the total number of experimental measurements with a correspond-

ing vacuum TD-DFT calculation was 19,409. The results of these calculations are compared

to experiments in Figure 4. Solvent corrections applied to TD-DFT yield results that have a

smaller error than vacuum calculations with respect to the experimental ground truth. How-

ever, after fitting a linear regression to both sets of calculations, the error for the vacuum

calculations is lower. Therefore, this systematic error of the vacuum calculations makes it

suitable to use the results of the vacuum calculations as features for building our models.
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Figure 4: TD-DFT Calculations in Vacuum and Solvent vs. Experiments. (Left)
Vertical excitation energy with maximum oscillator strength from solvent-corrected TD-
DFT versus peak wavelength of maximum absorption from experiment, (Center) Vertical
excitation energy with maximum oscillator strength from vacuum TD-DFT versus peak
wavelength of maximum absorption from experiment, (Right) Vertical excitation energy
with maximum oscillator strength from solvent-corrected TD-DFT versus Vertical excitation
energy with maximum oscillator strength from vacuum TD-DFT. In each plot, MAEreg refers
to the adjusted MAE value after performing a simple linear regression. The linear regression
equations for each plot above are as follows: (Left) λexpt,solv = 1.69λtddft,solv−238.24, (Center)
λexpt,solv = 1.82λtddft,vac − 226.82, and (Right) λtddft,solv = 1.18λtddft,vac − 32.86.

Although the combination of vacuum TD-DFT and a simple linear model performs well

with respect to the experimental ground truth (MAE = 24.9 nm), the computational cost

of TD-DFT may limit its applicability on large datasets. Nevertheless, this sets a baseline

for the accuracy of computational methods in general when predicting this property.

We trained a D-MPNN and FFNN on 80-10-10 random splits of 28,772 vertical excitation

energies from our full set of vacuum TD-DFT calculations. This model achieved a test MAE

of 0.12 eV (14.99 nm), and the predictions are shown in Figure S9. This model became the

auxiliary model used in the ChempropMultiFidelity approach for the remainder of this work.

The three ML methods we benchmarked are all able to match or exceed the accuracy

of the linear regression on the vacuum TD-DFT result, but their ability to do so is heav-

ily influenced by the strategy used to split the data into training, validation, and test sets

(Figure 5). All three methods achieve a MAE under 10 nm when splitting by dye-solvent

pair. For GBRT, this is similar to what Ju et al. observed in their predictions on the Chem-

Fluor dataset (test set MAE of 10.46 nm). Performance worsens to MAEs of 13-21 nm when
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splitting by dye molecule and to 18-27 nm when splitting by dye scaffold. ChempropMultiFi-

delity achieved a test RMSE of 27.47 nm using the SolventMPNN representation and scaffold

splits. This outperforms the graph-convolutional networks (GCN) approach of Joung et al.,

who reported a test RMSE of 31.6 nm on random splits. Across all three splitting strategies,

ChempropMultiFidelity and Chemprop perform better than GBRT. ChempropMultiFidelity

performs better than Chemprop on the two more rigorous splitting strategies. This indicates

that the Chemprop and ChempropMultiFidelity methods have generalizability superior to

that of GBRT.

Ju et al. report that when they partitioned their data into training and test sets based

on dye molecules rather than dye-solvent pairs, their test MAE in emission peak wavelength

increased only slightly from 14.09 nm to 15.25 nm, but they did not report similar numbers

for absorption predictions. Joung et al. do not report results for splitting by dye molecules,

and neither report results when splitting by dye scaffold. Splitting more rigorously results in

a wider error and ensemble variance distributions (Figure S6), but this is a better assessment

of the ability of the model to generalize and is thus more reflective of performance for de

novo design tasks. When using the random splitting strategy, dye molecules that appear in

both the train and test set in different solvents have narrower error and ensemble variance

distributions than those that only appear in the test set (Figure S7). As shown in Figure S8,

we can also compare the splitting strategies by calculating the similarity (based on Morgan

fingerprints or latent space coordinate) of each molecule in the test set to its nearest neighbor

in the training set and plotting the test set error as a function of this similarity. When the

similarity scores (which range from 0 to 1) are grouped into bins of size 0.1, this illustrates

the error distributions as a function of similarity. The maximum prediction error should be

lowest for the bin of test molecules that are most similar to the training set, but this was

not true for the random splitting strategy. This indicates that the model may be relying

too much on the training data and failing to learn the solvent effect. In contrast, the more

rigorous splitting strategies exhibited the expected behavior.
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The improved generalizability of the two D-MPNN approaches over the GBRT method

may be the result of the automatically-learned dye representations. ChempropMultiFidelity

outperforms Chemprop because in addition to this automatically-learned representation, it

also incorporates additional physical knowledge through the inclusion of a predicted TD-

DFT value in the learned embedding. It should be emphasized that this predicted TD-

DFT value comes from an additional Chemprop model rather than an actual TD-DFT

calculation, so there is no need to perform an additional calculation to predict on an unseen

dye molecule. The ChempropMultiFidelity method achives a MAE of 18.3 nm on scaffold

splits, an improvement over the TD-DFT plus linear regression approach at a fraction of the

cost.

We compared our ChempropMultiFidelity approach of incorporating a TD-DFT feature

predicted by an auxiliary model to using true TD-DFT values. As shown in Figure S10,

the detrimental effect of the noise introduced using the D-MPNN TD-DFT feature may be

outweighed by the dramatic savings in computational cost and time from no longer needing

to perform anew TD-DFT calculation for an unseen molecule.
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Figure 5: Dye and Solvent Representations. (Left) Comparison of three different molec-
ular representations (GBRT, Chemprop, and ChempropMultiFidelity) across different meth-
ods for splitting into training, validation, and test sets on the Deep4Chem dataset. The
CGSD is used to represent the solvent for all molecule representations. The ChempropMul-
tiFidelity and Chemprop methods perform better than GBRT on all split types, and the
difference in performance is more pronounced for the more rigorous split types. Chemprop-
MultiFidelity performs best on the two more rigorous splits. (Right) Comparison of four dif-
ferent solvent representations (CGSD, Minnesota Solvent Descriptors, Morgan Fingerprint,
and SolventMPNN) using scaffold splits of the Deep4Chem dataset. Regardless of which
molecular representation is used, the CGSD and SolventMPNN representations outperform
the others, albeit only slightly.

In our comparison of four different solvent representations, we found that none substan-

tially and consistently outperform the others. It is necessary to represent the solvent in

some way to achieve good predictions, but the CGSD, Minnesota descriptors, Morgan fin-

gerprints, and SolventMPNN approaches all achieve similar results. The Morgan fingerprint

and SolventMPNN approaches do, however, have the advantage that they are computable for

any solvent since they are not restricted to look-up tables as are the CGSD and Minnesota

methods.
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Figure 6: Performance of Dye Representations Across Datasets. Performance of
three different molecular representations (GBRT, Chemprop, ChempropMultiFidelity) on
several large, public datasets using scaffold splits and the CGSD solvent representation.
Chemprop outperforms GBRT across all datasets. ChempropMultiFidelity is the best per-
former on all datasets except CDEx, for which all methods show substantially worse perfor-
mance compared to the other datasets.

We used several additional datasets to further evaluate the performance of the three dye

representations. ChempropMultiFidelity and Chemprop outperform GBRT on the Chem-

Fluor, DSSCDB, and DyeAgg datasets and achieve MAEs of 17-23 nm, as shown in Figure 6.

All models perform substantially worse (55 - 62 nm) on the CDEx dataset, and the inclusion

of the TD-DFT feature degrades performance. This may be a result of errors introduced by

the automatic extraction method used to construct this dataset.

We explored the effect of combining datasets together and performed 5-fold cross-validation

to draw more rigorous conclusions. After observing the exceptionally poor performance of

all models on the CDEx dataset, we excluded it from the combined dataset. The GBRT

method was excluded from this analysis to compare the Chemprop and ChempropMultiFi-

delity models using the D-MPNN solvent representation (which cannot be integrated into

the GBRT method). ChempropMultiFidelity achieved a mean MAE, RMSE, and R2 of 27.78

nm, 47.13 nm, and 0.80, respectively. These scores outperformed Chemprop in all metrics,

but there was overlap in the standard errors of all three scores. The complete results are

shown in Table 4. The prediction errors on this larger, combined dataset are larger than
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those on the smaller datasets because of the different coverage of chemical space represented

within each dataset. This is illustrated in Figures S11 - S15, which show the results of train-

ing and predicting on different datasets. These results indicate that the ChemFluor and

Deep4Chem datasets are relatively similar to one another, as are the DSSCDB and DyeAgg.

Combining all four datasets together results in an inhomogeneous chemical space and thus

lowers performance.

Table 4: Comparison of Dye Representations on a Combined Dataset. 5-fold cross-
validation on a dataset comprised of the union of the ChemFluor, Deep4Chem, DSSCDB,
and DyeAgg dataset using scaffold splits and the D-MPNN solvent representation. The
values represent the mean of the five cross-validation folds, while the error bars indicate the
standard error.

Model MAE (nm) RMSE (nm) R2

Chemprop 30.23± 5.62 52.08± 12.19 0.75± 0.08
ChempropMultiFidelity 27.78± 5.07 47.13± 11.10 0.80± 0.07

Having demonstrated the effectiveness of the D-MPNN models for modeling the peak

wavelength of maximum absorption, we used dimensionality reduction to examine the in-

terpretability of these models. We extracted the fingerprint embeddings from one of the

Chemprop models and applied the t-SNE algorithm to reduce them to two dimensions.

When these plots are colored by the experimental peak absorption wavelength and by the

dye scaffolds present in the dataset, some patterns and clustering emerge, as shown in Figure

7. The number of dye scaffolds that are known to absorb light at lower visible (green - violet)

and ultraviolet wavelengths is much greater than those known to absorb in the red - yellow

range of the spectrum. This is apparent in the t-SNE plots, as the green points clustered

in the lower right corner of the scaffold plot (corresponding to the BODIPY dye family)

comprise nearly all of the red - yellow points on the wavelength plot.
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Figure 7: MPNN Embedding Interpretability through t-SNE. (Left) t-SNE plot of
molecule D-MPNN embeddings from the scaffold-split test set of the Deep4Chem dataset,
using the Chemprop molecule representation and SolventMPNN solvent representation, col-
ored by the experimental peak wavelength of maximum absorption. Colors outside the visible
spectrum are shown as black. (Right) Same as (Left), but colored by dye family scaffold.

While the accuracy of a model is very important, the ability to quantify uncertainty

in predictions can greatly increase model utility. The level of confidence in a prediction

or set of predictions can be used to motivate the selection of candidates that are most

likely to succeed in experimental validation or to inform the choice of new measurements

that will improve the model through active learning techniques. There are a plethora of

methods available for estimating the uncertainty in NN models, and reviews of these methods

have not found one method that consistently performs others across datasets and evaluation

metrics.54–56 However, one approach that is often used because of its ease of implementation

is the ensemble variance as a measure of epistemic uncertainty. We evaluated the effectiveness

of this method for quantifying the uncertainty in our Chemprop model. The parity plot in

Figure 8 shows that the variance of an ensemble of five models is indeed high for many of the

predictions that fall far away from the parity line. However, closer examination by plotting

the square root of the ensemble variance versus the absolute prediction error gives a much
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more sobering view of the effectiveness of this uncertainty metric. In fact, the Spearman

rank correlation for this set of predictions and uncertainties is only 0.52, suggesting that one

should not necessarily consider the rank order of the prediction uncertainties to be a good

approximation of the rank ordering of the prediction errors.

Figure 8: Uncertainty in D-MPNN Models. (Left) The epistemic uncertainty in test set
predictions of an D-MPNN model estimated from the ensemble variance using an ensemble of
five models. Predictions are for scaffold splits of the Deep4Chem dataset using the Chemprop
molecule representation and SolventMPNN solvent representation. Error bars represent the
square root of the ensemble variance for consistency in units. Many poorly-predicted points
have a high ensemble variance. (Right) Epistemic uncertainty compared to absolute error
between prediction and experiment. The Spearman rank correlation is 0.52.

Conclusions

We have leveraged several recently-published datasets to benchmark models in their predic-

tion of the peak wavelength of maximum absorption for dye molecules. Our results showed

that D-MPNN models outperformed the best known fixed-fingerprint regression tree method,

and the performance gain was more pronounced when we used more rigorous splitting strate-

gies to evaluate the generalizability of the models to unseen chemistries. We also developed

a multi-fidelity method for incorporating data from TD-DFT calculations to improve the
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accuracy of experimental predictions. Vertical excitation energies from gas-phase TD-DFT

calculations have a good linear correlation with the experimental peak positions (MAE =

24 nm) of dyes (measured in various solvents). TD-DFT PCM calculations in the solvents

do not correlate as consistently with the experimental data.

Our best method (ChempropMultiFidelity) included a model trained on the results of

previous TD-DFT calculations, and we used the predictions of this model as inputs to a

second model that accounted for the solvent to predict the experimental peak wavelength.

This multi-fidelity approach improved the model generalizability and improved performance

for more rigorous splitting strategies. Our best model achieved a MAE of less than 7 nm on

a held-out test set from a random split of dye-solvent pairs in the Deep4Chem dataset, and

near 14 nm and 19 nm when splitting by dye molecule and dye scaffold, respectively. This is

substantially better than the predictions of TD-DFT calculations alone, and at much lower

cost. Our multi-fidelity approach has the advantage that the lower-fidelity data can cover

a larger area of chemical space than the higher-fidelity data. Future work should compare

this approach to additional methods for training ML models on multi-fidelity data, such

as transfer learning (e.g. Figure S16), imputation, ∆-ML, and multi-target weighted-loss-

function approaches.

D-MPNN approaches perform well across many of the largest publicly-available datasets

of the peak absorption wavelength. Additionally, the ChempropMultiFidelity model outper-

formed Chemprop on a union of the four largest datasets. It achieved a MAE of 27.78±5.07

nm with 5-fold cross validation on scaffold splits of this combined dataset.

We also compared several solvent representations and found that CGSD, Morgan fin-

gerprints, Minnesota descriptors, and D-MPNN fingerprint representations all performed

similarly. The Morgan fingerprint and D-MPNN approaches may be advantageous, however,

because they can be applied to any solvent because they are not restricted to look-up tables.

Future work could also use nearest-neighbor imputation techniques to estimate CGSD or

Minnesota descriptors that are not present in the look-up tables.
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We demonstrated the qualitative interpretability of our D-MPNN models using dimen-

sionality reduction on their latent space fingerprints, which showed some clustering based on

dye scaffold and observed peak wavelength. We also showed that although ensemble variance

can be used as a measure of the epistemic uncertainty in our D-MPNN model predictions,

and in this case the ensemble errors are comparable in magnitude to the prediction errors,

these uncertainties are not necessarily well-correlated with true prediction error on these

datasets.

This work is a step toward methods to predict full absorption and emission spectra, and

it can enable more rapid design of dye molecules with targeted optical properties.
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Supporting Information

Code and Data Availability

All code to reproduce our workflow and figures and all data including TD-DFT calculation

results is available at https://doi.org/10.5281/zenodo.5500428. To make predictions

using Chemprop and ChempropMultiFidelity models, you can use the UVVisML tool at

https://github.com/learningmatter-mit/uvvisml.

Note on CGSD Solvent Descriptors

We identified two transcription errors by Ju et al. in the CGSD solvent descriptors (available

from https://figshare.com/articles/dataset/ChemFluor/12110619/3) used to train

their GBRT models.16

• In row 22 of Solvent Descriptors.xlsx, the ET (30) value for 1-methyl-2-pyrrolidinone

should be 42.2 rather than 48 according to entry no. 284 of Table 2 of Reichardt’s

work.47

• In row 24 of Solvent Descriptors.xlsx, the SP, SdP, SA, and SB values for N-

methylformamide are taken from entry no. 29 (N,N-dimethylformamide) of Table 2 of

Catalán’s work.48 No entry exists for N-methylformamide.

We corrected these errors in our file data solvents/chemfluor cgsd solvent db.csv. This

file contains more solvents than the original ChemFluor file because we parsed the entirety

of the entries in Reichardt’s and Catalán’s works to have coverage over as many solvents as

possible (rather than restricting ourselves to those in the ChemFluor dataset).
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Dataset Composition

Table S1: Dataset Composition by Solvent. Ten of the 364 unique solvents appeared in
more than 1,000 measurements.

Solvent Name Solvent SMILES Number of Measurements
Other - 5653

Dichloromethane ClCCl 5621
Tetrahydrofuran C1CCOC1 3328

Chloroform ClC(Cl)Cl 2423
Acetonitrile CC#N 2343

Ethanol CCO 1824
Methylbenzene Cc1ccccc1 1793

Methanol CO 1758
DMSO CS(C)=O 1637
Water O 1181

Dimethylformamide CN(C)C=O 1173

32



Datasets Comparison

Figure S1: Dataset Comparison. The five datasets differ in their coverage of chemical
space, which results in different distributions of peak absorption wavelength.
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RMSE Bar Plots

Figure S2

Figure S3
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R2 Bar Plots

Figure S4

Figure S5
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MAE, RMSE, and R2 Tables

Table S2: Molecule Representations - MAE (Deep4Chem Dataset)

GBRT Chemprop ChempropMultiFidelity Solvent Rep. Split Type

8.30 6.95 6.97 CGSD random
8.31 7.32 7.08 Minnesota random
8.98 8.27 7.89 Morgan random
NaN 7.00 6.99 MPNN random

20.55 15.12 13.90 CGSD group by smiles
20.90 14.96 14.17 Minnesota group by smiles
20.79 15.01 13.77 Morgan group by smiles
NaN 14.29 14.16 MPNN group by smiles

26.94 21.35 18.33 CGSD scaffold
25.51 20.47 18.40 Minnesota scaffold
26.05 21.77 18.84 Morgan scaffold
NaN 15.03 18.72 MPNN scaffold

Table S3: Molecule Representations - RMSE (Deep4Chem Dataset)

GBRT Chemprop ChempropMultiFidelity Solvent Rep. Split Type

17.18 12.74 12.49 CGSD random
16.65 12.90 12.54 Minnesota random
17.56 14.24 13.68 Morgan random
NaN 12.93 12.70 MPNN random

34.29 24.60 24.24 CGSD group by smiles
34.36 23.94 25.24 Minnesota group by smiles
34.11 25.31 23.37 Morgan group by smiles
NaN 24.01 25.06 MPNN group by smiles

36.08 31.87 27.57 CGSD scaffold
34.58 30.74 27.70 Minnesota scaffold
35.92 33.77 28.91 Morgan scaffold
NaN 23.60 27.47 MPNN scaffold

36



Table S4: Molecule Representations - R2 (Deep4Chem Dataset)

GBRT Chemprop ChempropMultiFidelity Solvent Rep. Split Type

0.97 0.98 0.98 CGSD random
0.97 0.98 0.98 Minnesota random
0.97 0.98 0.98 Morgan random
NaN 0.98 0.98 MPNN random
0.90 0.95 0.95 CGSD group by smiles
0.90 0.95 0.94 Minnesota group by smiles
0.90 0.94 0.95 Morgan group by smiles
NaN 0.95 0.94 MPNN group by smiles
0.82 0.86 0.90 CGSD scaffold
0.84 0.87 0.90 Minnesota scaffold
0.83 0.85 0.89 Morgan scaffold
NaN 0.92 0.90 MPNN scaffold

Table S5: Solvent Representations - MAE (Deep4Chem Dataset)

CGSD MinnesotaDesc MorganFP SolventMPNN Model Split Type

8.30 8.31 8.98 NaN GBRT random
6.95 7.32 8.27 7.00 Chemprop random
6.97 7.08 7.89 6.99 ChempropMultiFidelity random

20.55 20.90 20.79 NaN GBRT group by smiles
15.12 14.96 15.01 14.29 Chemprop group by smiles
13.90 14.17 13.77 14.16 ChempropMultiFidelity group by smiles
26.94 25.51 26.05 NaN GBRT scaffold
21.35 20.47 21.77 15.03 Chemprop scaffold
18.33 18.40 18.84 18.72 ChempropMultiFidelity scaffold

Table S6: Solvent Representations - RMSE (Deep4Chem Dataset)

CGSD MinnesotaDesc MorganFP SolventMPNN Model Split Type

17.18 16.65 17.56 NaN GBRT random
12.74 12.90 14.24 12.93 Chemprop random
12.49 12.54 13.68 12.70 ChempropMultiFidelity random
34.29 34.36 34.11 NaN GBRT group by smiles
24.60 23.94 25.31 24.01 Chemprop group by smiles
24.24 25.24 23.37 25.06 ChempropMultiFidelity group by smiles
36.08 34.58 35.92 NaN GBRT scaffold
31.87 30.74 33.77 23.60 Chemprop scaffold
27.57 27.70 28.91 27.47 ChempropMultiFidelity scaffold
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Table S7: Solvent Representations - R2 (Deep4Chem Dataset)

CGSD MinnesotaDesc MorganFP SolventMPNN Model Split Type

0.97 0.97 0.97 NaN GBRT random
0.98 0.98 0.98 0.98 Chemprop random
0.98 0.98 0.98 0.98 ChempropMultiFidelity random
0.90 0.90 0.90 NaN GBRT group by smiles
0.95 0.95 0.94 0.95 Chemprop group by smiles
0.95 0.94 0.95 0.94 ChempropMultiFidelity group by smiles
0.82 0.84 0.83 NaN GBRT scaffold
0.86 0.87 0.85 0.92 Chemprop scaffold
0.90 0.90 0.89 0.90 ChempropMultiFidelity scaffold

Table S8: Datasets - MAE (CGSD Solvent Representation)

GBRT Chemprop ChempropMultiFidelity Dataset Split Type

61.10 56.40 55.04 CDEx scaffold
22.08 18.48 17.10 ChemFluor scaffold
26.94 21.35 18.33 Deep4Chem scaffold
23.27 20.08 19.69 DSSCDB scaffold
24.36 21.18 22.14 DyeAgg scaffold

Table S9: Datasets - RMSE (CGSD Solvent Representation)

GBRT Chemprop ChempropMultiFidelity Dataset Split Type

96.70 99.16 98.27 CDEx scaffold
36.36 30.39 26.82 ChemFluor scaffold
36.08 31.87 27.57 Deep4Chem scaffold
36.07 32.59 32.79 DSSCDB scaffold
36.93 33.01 32.11 DyeAgg scaffold

Table S10: Datasets - R2 (CGSD Solvent Representation)

GBRT Chemprop ChempropMultiFidelity Dataset Split Type

0.37 0.34 0.35 CDEx scaffold
0.80 0.86 0.89 ChemFluor scaffold
0.82 0.86 0.90 Deep4Chem scaffold
0.74 0.79 0.78 DSSCDB scaffold
0.78 0.83 0.83 DyeAgg scaffold
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Error and Uncertainty Distribution Plots

Figure S6: Error and Uncertainty Distributions for 3 Split Types. The error and
uncertainty distributions both spread out as the splits become more rigorous from random
to group by SMILES to scaffold.

Figure S7: Error and Uncertainty Distributions of Random Splits. Using random
splits, many dye molecules appear in both the train and test sets because they were measured
in different solvents. For such molecules (”overlap”), the error and uncertainty distributions
are tighter than for those molecules without overlap in train and test sets.
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Figure S8: Error distributions as a function of similarity to training set. (Top)
random splits; (Middle) group by SMILES splits; (Bottom) scaffold splits. As similarity
to the nearest neighbor in the training set increases, we expect that the maximum of the
prediction errors will decrease. This is mostly true for the more rigorous split types, but
nearly the opposite is true for random splits.
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TD-DFT Model Performance

Figure S9: Parity plot of Chemprop TD-DFT Predictions vs. True TD-DFT
Results. (Left) Units of eV; (Right) Units of nm. Both plots represent the exact same data
(predictions of a model trained on data in eV). The TD-DFT model (a Chemprop D-MPNN
and FFNN) used an ensemble size of 1 and was trained on 80-10-10 random splits of 28,772
vertical excitation energies from our full set of vacuum TD-DFT calculations. The large
RMSE and low R2 in nanometers is a result of the few outliers with very low true TD-DFT
values (these values are visible on the left-most part of the eV plot with true TD-DFT values
less than 1 eV, but they exceed the upper limit on the x-axis in the nm plot).
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TD-DFT as a Feature

Figure S10: Trade-Off Between True TD-DFT and Chemprop-Predicted TD-DFT
as a Feature. Prediction using (Left) no additional features, (Center) the TD-DFT value
predicted by an auxiliary Chemprop D-MPNN model as a feature, or (Right) the true TD-
DFT value as a feature. All models used a D-MPNN solvent representation, scaffold splits
of the Deep4Chem dataset, and an ensemble size of 1. Using true TD-DFT values results
in better performance (MAE = 18.86 nm) than using TD-DFT values predicted by the
Chemprop D-MPNN (MAE = 19.25 nm), but the D-MPNN method retains most of the
benefit over using no TD-DFT feature at all (23.13 nm).

Comparing Predictions Across Data Sources

All models in this section used the CGSD solvent representation. Each data source (CDEx,

ChemFluor, Deep4Chem, DSSCDB, and DyeAgg) was split by scaffolds, but the training set

from one data source may have scaffolds that overlap with those in the test set of another

data source

42



Figure S11: Predictions on all datasets after training on CDEx dataset.
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Figure S12: Predictions on all datasets after training on ChemFluor dataset.
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Figure S13: Predictions on all datasets after training on Deep4Chem dataset.

45



Figure S14: Predictions on all datasets after training on DSSCDB dataset.
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Figure S15: Predictions on all datasets after training on DyeAgg dataset.
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Transfer Learning Baseline

Figure S16: Predicted Peak Wavelength vs. True Peak Wavelength Using Transfer
Learning. A model was pretrained on TD-DFT data and the D-MPNN parameters were
frozen while training on experimental data. CGSD were used to represent the solvent for the
experiments. This transfer learning approach performs much worse than our multi-fidelity
approach.
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