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Abstract

Predicting molecular properties remains a challenging task with numerous poten-
tial applications, notably in drug discovery. Recently, the development of deep
learning, combined with rising amounts of data, has provided powerful tools to
build predictive models. Since molecules can be encoded as graphs, Graph Neural
Networks (GNNs) have emerged as a popular choice of architecture to tackle this
task. Training GNNs to predict molecular properties however faces the challenge
of collecting annotated data which is a costly and time consuming process. On the
other hand, it is easy to access large databases of molecules without annotations.
In this setting, self-supervised learning can efficiently leverage large amounts of
non-annotated data to compensate for the lack of annotated ones. In this work, we
introduce a self-supervised framework for GNNs tailored specifically for molecular
property prediction. Our framework uses multiple pretext tasks focusing on differ-
ent scales of molecules (atoms, fragments and entire molecules). We evaluate our
method on a representative set of GNN architectures and datasets and also consider
the impact of the choice of input features. Our results show that our framework can
successfully improve performance compared to training from scratch, especially
in low data regimes. The improvement varies depending on the dataset, model
architecture and, importantly, on the choice of input feature representation.

1 Introduction

In recent years, deep learning has made considerable progress in fields like computer vision and
natural language processing. Consequently, it gained popularity in a number of other domains,
including drug discovery. Predicting molecular properties is critically important to efficiently screen
large datasets of compounds and select promising candidates to consider for further validation. In
light of their success in processing graph structured data, Graph Neural Networks (GNNs) have
become a popular approach to handle molecules.

Like most deep learning applications, training GNNs requires large amounts of annotated data and is
therefore faced with the challenge of data scarcity. Especially, for molecular properties, collecting
annotations is a costly process as it involves running chemical experiments. On the flip side, many
large datasets of molecules have been made publicly available [12, 5, 16] such that it is easy to access
large quantities of molecules without annotations. In this context, self-supervised learning has been
demonstrated to effectively improve predictive performance [18, 14, 11, 25, 31]. One drawback of
recent methods however is that they rely on pretext tasks that focus mostly on the atom level only.
This is in contrast with molecular properties that are defined on the molecule level. Additionally,
although the choice of input features can vary drastically from one method to another [18, 11], the
impact of this choice has not been examined in previous studies as far as we are aware. Based on
those observations, we introduce in this work a new self-supervised learning framework for GNNs
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tailored specifically for molecular property prediction and analyze how the choice of input features
impacts its performance.

2 Related Work

2.1 Graph Neural Networks

Graph Neural Networks (GNNs) have emerged as a powerful architecture to process graph-structured
data. GNNs can be simply described using the message passing framework [6]. Each node in a graph
sends and receives messages from its neighbors. An update function is used to update each node
vector based on the messages it received.

Let G = {V, E} denote an undirected graph with X the input feature matrix encoding the nodes
vectors and E the input feature matrix encoding the edges vectors, N (v) denoting the neighborhood
of node v and n denoting the layer index. The GNN message passing is formulated as follows:

h0v = Xv (1)
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The choice of of message and update function at each layer Mn, Un depends on the GNN architecture.
After N layers, a permutation invariant readout function R can be applied to obtain a single feature
vector for the whole graph.

g(G) = R({hNv |v ∈ G}) (4)
This graph representation can then be processed by a multi-layer perceptron (MLP) to generate
the desired output. A wide variety of GNNs architectures have been developed [13, 6, 30, 29, 23],
achieving state-of-the-art performance in many applications, including molecular property prediction.

2.2 Molecular Property Prediction

Traditional approaches to molecular property prediction involve the use of Morgan fingerprints
(ECFP) [17] combined with traditional machine learning models like support vector machines [9],
random forest [1] or multi-layer perceptrons [8]. Another line of work makes use of deep architectures
like Recurrent Neural Networks (RNNs) [10] and Transformers [22] applied directly to SMILES
strings [26]. The main drawback of SMILES representation is that it does not explicitly encode
structural information about the molecule. SMILES strings also dot not imply a one to one relation
with molecular structures: different SMILES strings can represent the same molecule while many
SMILES string are invalid and do not have corresponding molecular structures. Additionally, a
minor modification in the string can lead to a large change in said molecular structures. Representing
molecules as graphs where nodes (atoms) are connected by edges (bonds) therefore appears as a
more natural approach. In this setting, GNN architectures can be interpreted as way to generate
learnable molecular fingerprints. These models have been successfully applied to molecular property
prediction, achieving state-of-the-art performance on a wide range of datasets [30, 28, 20].

2.3 Self-supervised learning

Self-supervised learning falls in the realm of unsupervised learning methods. It aims at leveraging
large quantities of unlabeled data to learn general feature representation using pretext tasks. Those
pretext tasks are designed such that the labels can be easily generated from the data and should push
the network to learn meaningful features. After self-supervision, the trained network can be fine
tuned on downstream tasks. This transfer learning setting proves efficient especially in cases where
the number of samples available for the downstream tasks is limited. Self-supervised learning has
been widely successful in computer vision [3] and natural language processing [15]. More recently,
it has been increasingly applied to graph structured data and molecular property prediction. Recent
works on self supervised learning for GNNs include several different approaches. Some work use
techniques borrowed from computer vision like contrastive learning [25, 31–33]. For those methods,
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the main challenge lies in finding graph augmentations that preserve molecular properties. Other
techniques focus on on graph structured data in general and are inspired mostly by graph theory
[11, 21]. Finally some techniques more specifically target molecular graphs and make use of pretext
tasks designed for molecules only [18].

3 Method

In this section, we detail our self-supervised learning framework and the pretext tasks associated with
it.

3.1 Intuition

Our goal was to design a framework specifically tailored for GNNs and molecular property prediction.

Many molecular properties of interest, like ADME properties [2], largely depend on global molecular
level characteristics. However, most of the published self-supervised learning methods focus on node
level pre-training, therefore only consider atom level pretext tasks. This can be explained because
GNNs mainly work on the node level: the core of GNNs is to produce a vector representation for
each node using the message passing scheme. In the context of molecular property prediction
however, it is necessary to also take into account graph level representations and design pretext tasks
associated with them.

Pre-training on the node level is also important as the final graph representation is obtained from the
nodes. Generating meaningful node level representation is a necessary condition to obtain useful
graph representations.

For some molecular properties such as toxicity, the property can be related to the presence or not of
certain specific functional groups and is best understood on the molecular fragment level: it is neither
spread across the entire molecule nor is it related specifically to a single atom. Enforcing the GNN to
learn useful representation for arbitrary sized molecular fragments should therefore also be beneficial
in the context of molecular property prediction.

3.2 Pretext tasks

We introduce the three distinct pretext tasks used in our self-supervised learning framework which
focus each on a different scale of molecules: atom, fragment and entire molecule. A representation of
our framework can be found in Figure 1

3.2.1 Atom level

A useful pretext task should depend on labels that can be generated easily and push the network to
learn useful feature representation about the atom context. In order to comply to those two principles,
we defined the atom level pretext task as a classification problem to recognize which fragment each
atoms belong to.

More precisely, we used the list of fragments introduced for Synthetic Accessibility Score [4]
(SAScore) computation as our available classes. This list of fragments is based on a structural
analysis of roughly 1 million representative molecules from the PubChem database [16]. Each
fragment is associated with its frequency of appearance. Considering that the total number of
resulting fragments is 605,864 and that most fragments are extremely rare (51% appear only once),
we restricted ourselves to only the top 2000 most frequent fragments which covers fragments that
appear at least 1000 times in the database. This leads to a classification problem with 2000 classes.
For each atom, we consider whether it belongs to any of the 2000 fragments. If it does, we assign its
label to be the largest fragment it belongs to. If it belongs to none of the fragment then no loss will be
computed on this atom during training. Considering that we use the most frequent fragments, it is
rare that an atom is not assigned any label. On our pre-training dataset, this only happened for 1.16%
of all atoms. We also considered using more fragments by training on 4000 classes but empirically
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found it had no impact on the framework. This is consistent with the fact that additional classes only
represent very rare fragments from which little useful knowledge can be gained.

The loss to be minimized for this task for each batch can be written as follows:

Latom =
1

|A|
∑

hN
v ,yv∈A

L(yv, fa(hNv )) (5)

Where A denotes the set of atoms in the batch (excluding those that were not assigned any fragment),
hNv denotes the feature representation of node v obtained following equation (3), yv denotes the
fragment label associated to node v, L denotes the cross entropy loss and fa denotes a MLP head
used to obtain the atom classification output.

3.2.2 Fragment level

For the fragment level pretext task, the goal is to decompose each molecules into fragments and teach
the network to determine which fragments originate from the same molecule.

To do so, the molecular graphs are first partitioned into subsets of nodes, each subset corresponding
to a fragment, then the edges between distinct subsets are removed. To allow for more diversity, the
fragment sizes are uniformly distributed between a minimum and maximum size.
The network is trained to predict if two fragments belong to the same molecule. For a given pair
of fragments, the output is obtained by considering the dot product between the fragment feature
vectors. The fragment feature vectors are obtained as the average of all node vectors belonging to the
fragment:

xF =
1

|F|
∑
v∈F

hNv (6)

Where hNv denotes the node feature vector obtained after the last graph convolution of the GNN.

The fragment features are then projected onto a lower dimensional space by a simple two layers MLP.
This is done to facilitate the pairwise dot product computation and allow decoupling with the other
pretext tasks. Additionally, using a projection head can ensure a richer feature representation [3].
This is because the pretext task can force the representation to be invariant to features that could still
be useful for certain downstream tasks. By adding the projection head we ensure only the vectors
obtained after the projection head will get rid of those extra features while the feature representation
generated by the GNN can still preserve them.

Once all fragment features have been generated, the pairwise dot products are computed and the
model is trained with a binary classification loss where positive pairs consist of fragments from the
same molecules while negative pairs consist of fragments from different molecules. Considering that
the batch size is usually relatively large (128,256,512...) the problem is very imbalanced with much
more negative than positive pairs. To overcome that issue, we enforce equal proportions between
positive and negative pairs at each batch by considering all positive pairs and randomly sampling an
equal number of negative pairs from the much larger number of them. The loss is then computed
only on those selected positive and negative pairs to prevent imbalance.

The loss to be minimized for this task for each batch can be written as follows:

Lfragment =
1

|N |+ |P |
(

∑
F,F ′∈P

F,F ′∈N

L(1, σ(fp(xF ) · fp(xF ′))) + L(0, σ(fp(xF ) · fp(xF ′))) (7)

Where P and N denote respectively the set of positive and selected negative pairs in the batch, σ
denotes the sigmoïd activation function, fp denotes the fragment projection head, · denotes the dot
product operation and L denotes the binary cross entropy loss.
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3.2.3 Molecule level

For the molecule level task, we want to push the network to learn feature representations that encode
global properties of the graph. To achieve this, we use a multi label classification task where we use
the same fragments introduced for the atom level task 3.2.1 and predict for each molecule which
fragments it contains.

The loss to be minimized for this task for each batch can be written as follows:

Lmolecule =
1

|B|
∑

G,y∈B

L(y, f(g(G))) (8)

Where B denotes the batch, g denotes the GNN function detailed in equation (4), f denotes a MLP
head to generate the multi-label classification output and L denotes the binary cross entropy loss
function.

The three losses are then combined such that the final loss minimized at each batch is:
Lfinal = λatom ∗ Latom + λfragment ∗ Lfragment + λmolecule ∗ Lmolecule (9)

Figure 1: Illustration of our framework. (a) For the atom and molecule level tasks, the molecular
graph is processed to return atom and molecule features each passed to parallel heads to provide
classification outputs. The molecule task is a multi-label classification problem (one molecule
can contain multiple fragments) while the atom task is multi-class one (one atom assigned to only
one fragment). (b) For the fragment task, the molecular graph is decomposed into sub-graphs and
processed by the GNN. A fragment head produces fragment features that are then compared to each
other via dot product.

4 Experiments

We evaluate our framework on several standard molecular property benchmark datasets using different
popular GNN architectures.

4.1 Datasets

The self-supervised learning framework implies having both an unlabeled dataset to perform pre-
training and a target dataset, containing labels, to fine tune the pre-trained network and evaluate its
performance.

4.1.1 Pre-training dataset

We used a subset [7] of ZINC database [12] containing 250,000 samples as the pre-training dataset.
This subset covers a wide range of LogP and molecular weight values to ensure diversity.
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4.1.2 Target datasets

For the target datasets, we used a subset of the MoleculeNet [27] benchmark datasets. Namely we
used the following 6 classification datasets:

• BACE: This dataset contains 1,522 samples with binary labels on binding results with
human β-secretase 1 (BACE-1).

• BBBP: This dataset contains 2,053 samples with binary labels about permeability of the
compounds with the blood-brain barrier. Blood-brain barrier penetration is relevant for the
design of drugs impacting central nervous system.

• ClinTox: This dataset contains 1,491 samples with two distinct binary labels associated.
The first label refers to clinical trial toxicity and the second one to the FDA approval status.

• SIDER: This dataset contains 1,427 samples with binary labels for 27 different drug side-
effects categories.

• ToxCast: This dataset contains 8,615 samples with 617 binary labels based on the results of
in vitro toxicology experiments.

• Tox21: This dataset contains 8,014 samples with 12 binary labels based on toxicity mea-
surements.

MoleculeNet contains more datasets but we chose to focus mainly on datasets with a lower number of
samples since this better reflects practical applications of self-supervised learning for drug discovery.

4.2 Model architectures

To ensure that our framework generalizes to multiple GNN architectures, we selected 3 representative
GNN architectures that are standardly used: Graph Convolution Network (GCN) [13], Graph
Isomorphism Network (GIN) [29] and Directed Message Passing Neural Network (DMPNN) [30].

For GCN, we used 3 graph layers with a feature dimension of 512 and concatenation of max and
sum as readout function. For GIN we used 5 graph layers with a feature dimension of 512 and
concatenation of max and sum as readout function. For DMPNN we used a single graph layer with 4
steps with a feature dimension of 512 and set2set [24] as readout function. All architectures used a 2
layers MLP head on top of the obtained graph feature representations to produce the final output.

For the featurization of the graphs, we used 74 dimensional vectors for the atom features and 12
dimensional vectors for the bond features. The breakdown of these input features is detailed in Table
1.

Category Property Dimension
One hot encoding of atom type 43

One hot encoding of atom degree 11
One hot encoding of atom valence 7

atom Atom formal charge 1
Number of radical electrons 1

One hot encoding of atom hybridization 5
Binary encoding is atom aromatic 1

One hot encoding of total number of hydrogens 5
One hot encoding of bond type 4

bond Binary encoding is bond conjugated 1
Binary encoding is bond in ring 1

One hot encoding of bond stereochemistry 6
Table 1: Summary of all properties encoded in the atom and bond features used as input features for
the graphs.
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Dataset BACE BBBP ClinTox SIDER Toxcast Tox21 Average Average
(1522) (2053) (1491) (1427) (8615) (8014) Gain

GCN 0.831(0.027) 0.898(0.033) 0.909(0.038) 0.605(0.027) 0.651(0.014) 0.769(0.013) 0.777(0.025)

GCN (SSL) 0.858(0.023) 0.904(0.035) 0.927(0.026) 0.615(0.017) 0.653(0.012) 0.761(0.024) 0.786(0.023) +0.009
GIN 0.844(0.028) 0.885(0.038) 0.902(0.045) 0.602(0.023) 0.625(0.013) 0.773(0.012) 0.772(0.027)

GIN (SSL) 0.854(0.025) 0.891(0.032) 0.904(0.033) 0.614(0.017) 0.630(0.013) 0.773(0.018) 0.778(0.023) +0.006
DMPNN 0.800(0.034) 0.894(0.038) 0.908(0.029) 0.620(0.021) 0.637(0.012) 0.762(0.018) 0.770(0.025)

DMPNN (SSL) 0.855(0.027) 0.898(0.034) 0.910(0.040) 0.605(0.025) 0.618(0.013) 0.757(0.020) 0.774(0.026) + 0.004
GROVER [18] 0.894(0.028) 0.940(0.019) 0.944(0.021) 0.658(0.023) 0.737(0.010) 0.831(0.025) 0.834(0.021)

GROVER-GIN [18] 0.862(0.020) 0.925(0.036) 0.648(0.015)

Hu et al. [11] 0.851(0.027) 0.915(0.040) 0.762(0.058) 0.614(0.006) 0.714(0.019) 0.811(0.015) 0.778(0.028)

Table 2: Comparison of standard training and our self-supervised framework along with two SOTA
methods on MoleculeNet benchmark datasets. For GCN, GIN and DMPNN results are reported, both
for standard training and with our self-supervised training framework denoted as (SSL). Shaded cells
indicate best results between baseline (training from scratch) and SSL while bold results indicates
best performance overall. For GROVER, GROVER-GIN and Hu et al. results were taken from [18].

4.3 Training and evaluation

During pre-training, we used the loss defined in equation (9) with λatom, λfragment, λmolecule all
set to 1. Each model was trained for 40 epochs with a batch size of 512 using AdaBelief optimizer
[34] with OneCycle learning rate policy [19] with a learning rate and weight decay of 1e-4 and
1e-5 respectively. On the target datasets, regardless of using self-supervised weights or not, each
model was trained for 40 epochs with a batch size of 128 using AdaBelief and OneCycle policy. The
learning rate and weight decay were set to 1e-3 and 1e-5 for all target datasets except BACE and
BBBP which used a learning rate of 3e-4 and 5e-4 respectively.

Once the model were pre-trained, they were fine tuned and evaluated on each of the 6 MoleculeNet
benchmark datasets. As done in other studies [18, 14], and standardly used in chemistry applications,
we used scaffold splitting to generate the train, validation and test splits containing respectively 80%,
10% and 10% of the data. Scaffold splitting ensures that different scaffolds appear in the training
validation and test split and is therefore more challenging than a random split. This is to better reflect
the practical use case where predictive models are expected to generalize on new domains of the
chemical space. Recent studies [18, 14] average the results across 3 runs using different random
seeds. We still observed important variance based on the seeds therefore we increased the number of
runs to 10 to improve the robustness of the results.

For each dataset and model architecture, the model was trained using binary cross entropy loss and
saved after each epoch. The best checkpoint was selected using the validation set and finally evaluated
on the test set. We compared two different settings: training from scratch from randomly initialized
weights or fine tuning the weights obtained from self-supervision. In both settings we used the same
training hyper parameters as we found little to no benefits in fine tuning them for each setting.

4.4 Results

To evaluate the models, we measured the ROC-AUC on the test set and report both the mean
value and standard deviation measured across 10 runs. The results obtained for each dataset and
model architecture are presented in Table 2. We observe that the impact of our self-supervised
learning framework largely depends both on the dataset and model architecture. For the same
dataset, improvement can vary from +0.01 to +0.055 ROC-AUC depending on the model used.
Conversely, for the same model the impact of self-supervised learning can vary from an improvement
of +0.055 to a decrease of -0.019 ROC-AUC depending on the dataset. Some datasets appear
to consistently benefit from self-supervised learning across architectures as can be observed on
BACE, BBBP and ClinTox while others vary on the model architecture like SIDER and Toxcast.
Finally self-supervised learning either has no effect or decreases performance on Tox21 for all 3
architectures. Based on averaging the performance across all datasets, our self-supervised learning
consistently improves performance across all architectures with the best average performance gain
obtained for the GCN architecture. Interestingly, the datasets with a lower number of samples seem to
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benefit more from self-supervised learning although sample size is not the only parameter of influence.

Comparing with other SOTA methods, GROVER [18] largely outperforms all other experiments.
GROVER uses not only self-supervised learning but also introduces a new architecture, combining
transformers and GNNs. In contrast, the performance significantly decreases when using GIN ar-
chitecture. This shows that an important part of the performance gain in GROVER is not related
to the self-supervised framework but to the new architecture used. However, even with GIN archi-
tecture, GROVER-GIN outperforms all other methods on the reported datasets. It should be noted
that GROVER and GROVER-GIN performed self-supervised learning on a dataset of 11 millions
molecules while we only used 250k for pre-training. Using our framework on a larger pre-training
set might allow to further improve the performance but we leave these experiments for future work.
Compared to Hu et al. our framework performs comparably while again using less data for the
pre-training phase (250k vs 2 millions). Additionally our framework does not require pre-processing
the entire pre-training dataset contrary to GROVER nor does it require an auxiliary GNN to be trained
contrary to Hu et al..

4.5 Additional experiments

4.5.1 Ablation study

We conducted an ablation study to investigate the relative contribution of each of the 3 tasks of our
self-supervised learning framework. To that end, we ran 3 different experiments where each model
was trained on only one of the 3 tasks. Then we ran an additional experiment selecting the two tasks
that performed best individually and compared all results to the complete framework that uses all 3
tasks. The results are presented in Table 3.

Here again the performance depends largely on the dataset with some task performing well individu-
ally on certain datasets (molecule only on BACE dataset) while leading to negative transfer learning
on other datasets (molecule only on Toxcast and Tox21). On average, the atom level task reaches
the best individual performance even though it is outperfomed by the other two on half the datasets
(BACE, BBBP and Tox21). The combination of atom and fragment level tasks reaches a better
average performance than any of the two individually and adding the third task brings and additional
improvement in average performance. These results suggest that fine tuning the λatom, λfragment,
λmolecule parameters depending on the dataset should be beneficial to reach optimal performance but
using equal weighting gives a good baseline.

Dataset BACE BBBP ClinTox SIDER Toxcast Tox21 Average Average
(1522) (2053) (1491) (1427) (8615) (8014) Gain

GCN 0.831(0.027) 0.898(0.033) 0.909(0.038) 0.605(0.027) 0.651(0.014) 0.769(0.013) 0.777(0.025)

GCN (SSL) 0.858(0.023) 0.904(0.035) 0.927(0.026) 0.615(0.017) 0.653(0.012) 0.761(0.024) 0.786(0.023) + 0.009
GCN SSL atom only 0.848(0.019) 0.905(0.033) 0.894(0.042) 0.614(0.024) 0.651(0.008) 0.766(0.016) 0.780(0.024) + 0.003
GCN SSL fragment only 0.837(0.028) 0.908(0.039) 0.900(0.040) 0.611(0.028) 0.651(0.010) 0.769(0.014) 0.779(0.027) + 0.002
GCN SSL molecule only 0.861(0.028) 0.898(0.037) 0.905(0.041) 0.610(0.024) 0.635(0.008) 0.752(0.023) 0.777(0.027) + 0.000
GCN SSL atom + fragment 0.850(0.024) 0.904(0.037) 0.899(0.040) 0.621(0.022) 0.652(0.010) 0.769(0.020) 0.783(0.025) + 0.006

Table 3: Comparing the impact of each task of the self-supervised learning framework. 4 distinct
settings are considered: using only the atom level task, using only the fragment level task, using only
the molecule level task and using the combination of atom and fragment level tasks. Best performance
overall is indicated in bold.

4.5.2 Testing different input features

We noticed that Hu et al. report an impressive average absolute improvement of 0.072 compared to
their baseline while GROVER and GROVER-GIN only report reaching 0.038 and 0.027 respectively
and our work only reached 0.009.
We conjectured that the choice of input features for the graphs is an important factor influencing how
much a model can benefit from self-supervised learning. This came from the observation that the
choice of input features was one of the main differences between the two previously mentioned works.
Our hypothesis was that when using a poor feature representation as input, using self-supervised
learning can bring more performance gain as it can effectively recover some of the missing input
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features.
To test this hypothesis, we ran an additional set of experiments where we used a reduced set of input
features, the same as those used by Hu et al.:

• The atom features are 2 dimensional vectors encoding the atom type and chirality.

• The bond features are 2 dimensional vectors encoding the bond type and direction.

We compared again the baseline setting where the model is trained from randomly initialized weights
with using our self supervised learning framework. The results are presented in Table 4.

We observe that when using the reduced set of features, the increase in average performance brought
by using our self-supervised learning framework increased drastically from +0.009, +0.006 and
+0.004 to +0.052, +0.024 and + 0.055 for GCN, GIN and DMPNN respectively. These results
strongly suggest that the choice of input features has a critical importance in the performance gain
that can be achieved using self supervised learning. Using a more extensive set of input features may
lead to a lower improvement in performance. We interpret this phenomena the following way: if a lot
of the information that the network can learn from the self-supervision is already contained in the
input features then the performance gain is marginal. On the contrary, if a more limited set of input
features is used, the network has more opportunities to learn features that are not already included in
the input features during self-supervision, which in turn leads to larger gains in performance.

Dataset BACE BBBP ClinTox SIDER Toxcast Tox21 Average Average
(1522) (2053) (1491) (1427) (8615) (8014) Gain

GCN † 0.717(0.048) 0.864(0.038) 0.630(0.121) 0.572(0.023) 0.624(0.009) 0.715(0.048) 0.687(0.042)

GCN (SSL) † 0.856(0.019) 0.896(0.037) 0.687(0.051) 0.592(0.019) 0.649(0.004) 0.755(0.017) 0.739(0.025) + 0.052
GIN † 0.816(0.038) 0.893(0.032) 0.560(0.070) 0.576(0.023) 0.598(0.019) 0.740(0.022) 0.697(0.033)

GIN (SSL) † 0.849(0.032) 0.904(0.026) 0.605(0.148) 0.594(0.029) 0.623(0.011) 0.750(0.015) 0.721(0.043) + 0.024
DMPNN † 0.676(0.037) 0.833(0.051) 0.509(0.108) 0.564(0.024) 0.603(0.018) 0.710(0.039) 0.649(0.046)

DMPNN (SSL) † 0.831(0.032) 0.877(0.041) 0.595(0.109) 0.594(0.014) 0.598(0.033) 0.733(0.016) 0.704(0.041) + 0.055
Table 4: Performance of models when using a reduced set of input features. †indicates that the
experiments used a reduced set of features. Results in bold indicate for each architecture which of
the baseline or SSL experiment performed better.

5 Conclusion

In this work, we applied self-supervised learning methods for GNNs specifically in the context
of molecular property prediction. We introduced a framework that uses a combination of 3
tasks focusing each on a different scale of molecules: atom, fragment and entire molecules. We
evaluated our framework on 6 datasets from MoleculeNet using scaffold splits and 3 different GNN
architectures. For each architecture, we compared our framework to a baseline of training the
network from randomly initialized weights. Finally we analyzed the impact of the choice of input
features on our framework.

Our results indicate that self-supervision can successfully improve the performance of GNNs for
molecular property prediction, especially in low data regime. However, our framework was not
able to improve the performance consistently across datasets and architectures. Another important
finding highlighted in this work is the importance of the choice of input features for self-supervision.
When using a very limited set of input features, the gain in performance obtained by applying our
self-supervised framework increased significantly and was consistent across all datasets and GNN
architectures tested. This finding is consistent with the results of previous studies, where GROVER
[18], that used a rich set of input features, reported a lower improvement on their baseline than Hu
et al. [11], that used a much more reduced set.
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