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ABSTRACT:	An important metric for gauging the impact a synthetic route has on chemical resources, cost, and sustainability 
is process mass intensity (PMI). Calculating the overall PMI or step PMI for a given synthesis from a process description is 
more and more common across the industry. Our company has established a strong track record of delivering on our Corpo-
rate Sustainability goals, being recognized with seven EPA Green Chemistry Challenge Awards in the last 15 years. While 
green chemistry principles help in optimizing PMI and developing more sustainable processes, a key challenge for the field is 
defining what ‘good’ looks like for any given molecule. Predicting aspirational PMI for a synthetic target is not yet possible 
from chemical structure alone. The only tool chemists have at their disposal to predict PMI requires the synthetic route to be 
available, which is inherently retrospective. We have developed SMART-PMI (in-Silico MSD Aspirational Research Tool) to fill 
this glaring gap. Using only a 2D chemical structure, which enables a measure of molecular complexity, we can generate a 
predicted SMART-PMI using historical PMI data from our company’s clinical and commercial portfolio of processes. From this 
SMART-PMI prediction, we have established target ranges for Successful, World Class, and Aspirational PMI. Using this model, 
chemists can develop powerful synthetic strategies that make the biggest impact on PMI and, in turn, drive improvements to 
the model. The potential of SMART-PMI to set industry-wide aspirational PMI targets is discussed.   

  The world of pharmaceutical manufacturing is facing in-
creasing challenges of cost and sustainability. Today, there 
is heightened awareness of the environmental impacts of 
manufacturing activities in society. Scientists tasked with 
designing these manufacturing processes have a responsi-
bility to ensure that these practices are sustainable, limiting 
impact on climate change and waste generation. In order to 
achieve these critical goals, pharmaceutical scientists drive 
chemistry innovation to design and optimize synthetic 
routes for drug manufacture. Given multiple possible routes 
to the same synthetic target, chemists are faced with the 
challenge of maximizing yield, reducing cost of goods, elim-
inating hazardous reagents/solvents, and reducing waste. 
Despite these well-established parameters, it remains in-
credibly difficult to assess if a given process is “good 
enough” on any of these dimensions. Ultimately, metrics are 
used to evaluate progress and determine if goals are 
reached, We believe these aspirational targets are needed 
to drive continuous innovation into new synthetic and 
cheminformatics methods that help scientists find the most 
direct and sustainable route from commodity chemicals to 
the active pharmaceutical ingredient (API). If the field relies 
purely on established synthetic precedent, our drive for in-
novations in green chemistry will invariably stagnate. To 
avoid this torpor, we need to establish predictive models 
that can learn from new innovations and continue to set ev-
ermore aspirational targets for the field. 

  The use of process mass intensity (PMI) to gauge the 
greenness of a chemical route is well-established.1, 2 This 
metric accounts for the total mass of all components of a 

synthesis normalized per 1 kg of drug substance synthe-
sized. With PMI information on a route, chemists can make 
decisions about which steps should be areas of focus or 
which synthetic routes should be pursued. Useful statistics 
for a route include the total PMI and the step-PMI for each 
individual chemical step. Additional metrics for determin-
ing the environmental impact of chemical syntheses include 
the Green Aspirational Level (GAL) amongst others.1-10 It is 
common in the life cycle of any given synthetic route for the 
PMI to drastically improve. This outcome is expected since 
mitigation of waste generated from any single synthesis 
event becomes more important as molecules are synthe-
sized on larger scale. For example, it is common for ineffi-
cient workups and preparative chromatography to be used 
in early small-scale laboratory syntheses. As a molecule 
progresses into pre-clinical and clinical development, these 
operations are usually optimized or completely removed in 
favor of greener isolation and purification methods. For this 
reason, PMI is usually only evaluated in process chemistry 
settings. Given a synthetic route and process description, it 
is straightforward to calculate the PMI for a drug molecule.  

 Recently, it was demonstrated that a range of PMIs can be 
predicted for a given synthetic route.11, 12 “The PMI Predic-
tor” can be used to calculate a range of PMI values for a de-
tailed synthetic scheme. Understanding where a given PMI 
falls across this calculated range provides insight into how 
well a route has been optimized. However, while route op-
timization typically leads to reduction in PMI over time, this 
impact is often modest because it is unable to overcome the 
selection of a suboptimal route, nor does it challenge a 
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chemist to envision an aspirational route. Upon entering 
different routes, “The PMI Predictor” does identify which 
route is likely to lead to lower PMI, thus enabling scientists 
to make more informed choices when comparing known 
routes. However, subtle differences between routes may be 
hard to discern given the wide error ranges. Chemists are 
still unable to set an aspirational PMI bar for a molecule 
without considering the synthetic route. Herein, we de-
scribe a tool for setting aspirational PMI targets predicted 
from chemical structure alone. In doing so, it enables a con-
tinuous improvement mindset and can be used to drive syn-
thetic strategy and significant investments toward aspira-
tion manufacturing routes which improve sustainability 
goals. 

  At our company, it is typical for the chemistry routes used 
to manufacture clinical supplies early in development to be 
changed and optimized for the appropriate measures of 
success for a long-term commercial process. This route op-
timization effort includes a focus on reducing PMI. We pre-
viously identified a relationship between molecular com-
plexity (as determined by a machine learning (ML) model 
derived from chemists’ intuition) and PMI.13 With these ini-
tial observations, we were inspired to further explore the 
underlying molecular descriptors that could be used to 
drive aspirational synthetic targets. A data set was con-
structed (Supporting Information Table S1) for all com-
pounds for which PMI values were available; in total, this 
composite includes 30 compounds and 36 PMIs (six mole-
cules have two routes available). The stage of development 
varied for this set from early clinical supply (31) up to com-
mercial manufacturing (5). This set is, therefore, biased to-
ward less efficient routes.  

  PMI was experimentally calculated from the synthetic 
route definition according to guidelines developed by the 
American Chemical Society Green Chemistry Institute (PMI-
LCA – life cycle assessment tool). Using this dataset, we built 
a linear combination of molecular complexity values gener-
ated using our ML model and molecular weight (MW). This 
model, which we call SMART-PMI (in-Silico MSD Aspira-
tional Research Tool), was used to predict PMI. We investi-
gated several other molecular descriptors for underlying 
correlations to PMI, but MW was the only metric that 
helped. Owing to the larger sampled chemical space of the 
complexity training set, ML models built directly to PMI 
from a limited number of data points will be less robust and 
were not pursued.    

  The MW of more complex molecules tends to be greater 
than less complex molecules. However, at any given MW 
range, the complexity values can vary considerably. For this 
reason, the two descriptors were combined into a linear 
model to predict SMART-PMI. The resultant best fit to the 
synthetically determined PMI is provided by Equation 1.  

           

 

 

 

 

Equation 1 

SMART-PMI = (0.13 × MW) + (177 × Complexity) - 252
   

  Shown in Figure 1 is the experimental PMI for each API 
plotted against the predicted SMART-PMI. As expected, as 
the MW and complexity of a molecule increase, the SMART-
PMI increases. The best fit line to all data points represents 
a target SMART-PMI averaged across all stages of route de-
velopment with an R2 of only 0.33 (MAE and MUE is 0.2 and 
144, respectively). For this reason, it is a rough guide to how 
good a given synthetic route is at any point in time. Values 
that lie significantly above the best fit line indicate that the 
synthetically determined PMI is less optimal, even for early 
clinical supply chemistry. This outcome may be due to ei-
ther sub-optimal chemistry in the route or a less efficient 
chemical route to the target API.  

 Our ultimate goal was to use this tool to set aspirational tar-
gets for commercial manufacturing routes, therefore help-
ing in investment decisions toward new routes that meet or 
exceed our company’s long-term sustainability goals.14, 15 A 
comparison of APIs, for which we have both an early clinical 
supply route PMI and commercial manufacturing route PMI, 
is presented in Figure 2. Several of the early routes (3/6) 
have synthetic PMIs much larger than that predicted from 
the model with the other three in-line or slightly better. For 
these three, the PMIs were decreased by an average of 66%. 
Despite a significantly better starting point, for the other 
three API routes, PMI was still improved 47% on average.  

 

 
Figure 1: SMART-PMI in relation to the minimum syn-
thetic PMI for each molecule 

 

 

  Considering this analysis and focusing on the data points 
from commercial manufacturing routes, we developed 
guidelines with a continuous improvement mindset that set 
an aspirational bar for the PMI of our future products. With 
the best fit line roughly equivalent to PMI = SMART-PMI, 
three categories were set in relation to SMART-PMI values: 
Successful = 0.9 to 1.1 × SMART-PMI, World Class = 0.5 to 
0.9 × SMART-PMI, and Aspirational = < 0.5 × SMART-PMI. A 
graphical representation of SMART-PMI ranges for Success-
ful, World Class, and Aspirational are presented in Figure 3. 

      When comparing the values of SMART-PMI to those from 
“The PMI Predictor” for any given route, we typically see 
lower targets for SMART-PMI, as it includes a 
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disproportionate number of PMIs from commercial manu-
facturing routes in the training set, several of which have 
not been previously disclosed. In order to pressure-test 
these aggressive targets, we mapped processes that have 
received external recognition for Green Chemistry onto the 
model. Over the last 15 years, our company has been recog-
nized with the Environmental Protection Agency’s (EPA) 
Green Chemistry Challenge Award on six occasions for com-
mercial products (Emend®, PrevymisTM, Zerbaxa®, Del-
strigoTM, Januvia® (x2)). The location of these six APIs in 
Figure 3 is quite striking when plotted onto the SMART-PMI 
model. The selection of the Aspirational target having a 
value of < 0.5 × SMART-PMI, when indicated on the plot, 
sends a green line directly through the path of the six 
award-winning synthetic routes. We believe this threshold 
strengthens the case that Aspirational SMART-PMI will 
drive innovative chemistry  

 

 
Figure 2: Improvement in PMI for six APIs through route optimization efforts. 
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Scheme 1 

 

 
 

 

 

 

 
Figure 3: The SMART-PMI model with Successful, World Class, and Aspirational categories overlaid. MRL has received six EPA 
Green Chemistry Challenge Awards which are indicated on the plot, all of which lie on the Aspirational line. 
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Figure 4: SMART-PMI predictions for gefapixant citrate and Islatravir. Since the model predicts based on API 2D structure 
alone, the step-PMI for citrate of 20 was added to the initial predicted PMI of gefapixant. 

 

 

 

over time and ultimately reduce the waste produced in 
pharmaceutical manufacturing to the greatest extent over 
time. In the spirit of continuous improvement, the aspira-
tional target line needs to continue to move downward.    

  We recently published the commercial manufacturing 
route to gefapixant (MK-7264).16 When our work on this 
API was initiated, an existing route had been proposed as 
the commercial manufacturing route (Scheme 1). We as-
sessed the PMI of this route relative to both the “PMI Pre-
dictor” and our own SMART-PMI. Using the “PMI Predictor” 
we obtained a PMI range of 876-1482 for the API Supply 
Process in Scheme 1. The actual route PMI was only 366. By 
this analysis, one might conclude that an aspirational PMI 
had been achieved with this route, rendering it suitable for 
commercial manufacturing. However, SMART-PMI (of API 
with citrate) predicts a Successful SMART-PMI of 216-
259 and an Aspirational target of 129 or less (Figure 4). 
This prediction clearly demonstrated that the current route 
fell short of our sustainability goals, in addition to key con-
cerns around the use of undesirable reagents leading to 
higher cost of goods. This inspired us to invest in a campaign 
to redesign the manufacturing process resulting in a new 
route with a PMI of 88 (Scheme 1) and a reduction in PMI of 
89%. The “PMI Predictor” indicates a PMI range of 159-248 
is realistic for the new Commercial Route in Scheme 1 
demonstrating the effect that this tool plays in comparing 
routes. 

  Likewise, another recent example of this impact can be 
gleaned from our work on islatravir (MK-8591). A highly ef-
ficient chemical process for the manufacture of clinical sup-
plies was in place (Scheme 1). Using the “PMI Predictor”, we 
obtained a PMI range of 2458-3187 for the islatravir supply 
route in Scheme 1. The PMI of this route was >5000. How-
ever, the SMART-PMI (Figure 4) for “World-Class” range 
was 203-363 (Aspirational < 202). Optimizing the current 
route could allow us to meet the “PMI Predictor” ranges. 
However, it would be impossible to overcome selection of 
this suboptimal route to realize the improvement by an or-
der of magnitude predicted for the “World-Class” range 
with SMART-PMI. As such a completely revamped and 
streamlined approach to this nucleoside analogue was de-
veloped leveraging a biocatalytic cascade that significantly 
reduces the number of steps and isolation for its prepara-
tion.17 Using an improved process based on this route, PMI 
was lowered by 93% to 360, in line with the “World-Class” 
range. 

  The SMART-PMI model demonstrates the ability to predict 
PMI from 2D chemical structure alone and can used to 
gauge the success of both chemical and biocatalytic routes. 
No information is needed about the chemical steps or syn-
thetic strategy. Chemists can draw a structure into a chemi-
cal sketcher and then execute the prediction of SMART-PMI 
in real-time, providing an instantaneous estimate with As-
pirational targets that then inspire innovative chemistry 
needed to achieve them. As our teams continue to meet and 
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exceed this bar, improved PMI data is incorporated into the 
analysis, the model will trend toward lower SMART-PMI 
predictions which will lead to continued improvements in 
chemistry and decreased environmental impact.  
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