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Highlights 8 

● A detailed LHV determination method with uncertainty quantification is reported 9 

● Determinations leverage a fundamental approach with GCxGC-FID measured class concentrations 10 

● Uncertainty quantifications consider isomeric, GC, and heats of formation variance 11 

● All 17 determinations from this work agree with ASTM D4809 measurements 12 

● The ASTM D3338 estimation method agrees poorly with ASTM D4809 for alternative fuels 13 

 14 

Abstract 15 

     A detailed assessment is presented on the calculation and uncertainty of the lower heating value (net heat of 16 

combustion) of conventional and sustainable aviation fuels, from hydrocarbon class concentration measurements, 17 

reference molecular heats of formation, and the uncertainties of these reference heats of formation. Calculations using 18 

this paper’s method and estimations using ASTM D3338 are reported for 17 fuels of diverse compositions and 19 
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compared against reported ASTM D4809 measurements. All the calculations made by this method and the reported 20 

ASTM D4809 measurements agree (i.e., within 95% confidence intervals). The 95% confidence interval of the lower 21 

heating value of fuel candidates that are comprised entirely of normal- and iso-alkanes is less than 0.1 MJ/kg by the 22 

method described here, while high cyclo-alkane content leads to 95% confidence bands that approach 0.2 MJ/kg. 23 

Taking a possible bias into account, the accuracy and precision of the method described in this work could be as high 24 

as 0.23 MJ/kg for some samples.  25 
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Abbreviations / Nomenclature 30 

GC-MS  = Gas chromatography, coupled with a mass spectroscopy 31 

GCxGC-FID = Gas chromatography with two columns and a flame ionization detector 32 

HHV  = Higher heating value, or gross heat of combustion, MJ/kg at 25 C and 1 atm 33 

LHV  = Lower heating value, or net heat of combustion, MJ/kg at 25 C and 1 atm 34 

Qbomb  = Heat of combustion at constant volume 35 

MAE  = Mean absolute error 36 

ME  = Mean error 37 

MSE  = Mean square error 38 

MW  = Molecular weight 39 

NIST  = National Institutes of Standards and Technology 40 

H/C  = Hydrogen to carbon ratio (mole basis) 41 

H  = Mass fraction of hydrogen 42 

S  = Mass fraction of sulfur 43 

𝛥𝐻𝑓  = Heat of formation 44 

𝜎  = Uncertainty or standard deviation 45 

 46 

  47 



1. Introduction 48 

     The net heat of combustion, which is often called the lower heating value (LHV), is important to fuel consumers 49 

and suppliers because it is the source of energy which is ultimately converted to usable power. Engine manufactures 50 

and their customers rely on determined LHV to gage engine performance and thermal efficiency, which are quality 51 

assurance measurements done at the product level prior to shipping an engine for installation into an aircraft or a 52 

power generation platform. Observations made by the correspondence author during his 20-year tenure working 53 

combustor design for industry imply terms/requirements around the performance margins measured by these new-54 

engine tests may be written into sales contracts. During the product development phase of a gas turbine engine, 55 

accurate LHV is necessary to establish performance margins for the engine model and to optimally interpret/assess 56 

test data pertaining to other engine-level requirements as well. Once in service though, as of today, the LHV of fuel 57 

that is consumed by an engine used for air transportation (unlike power generation platforms) is generally known only 58 

to be within the range specified by ASTM D1655 (for example), which is, “greater than or equal to 42.8 MJ/kg”.  59 

     The LHV of sustainable aviation fuel (SAF) blend components can be higher or lower than conventional fuels. At 60 

present, all SAF blend components, covered by ASTM D7566 specifications have LHVs that are greater than 42.8 61 

MJ/kg and 1-2% higher than conventional fuels because they are composed almost entirely of saturated hydrocarbons. 62 

In contrast, conventional fuels may contain up to 25%v aromatics. Higher LHVs offer the potential for lower fuel 63 

consumption rates and the ability to potentially impact other emissions and environmental outcomes of aviation 64 

kerosene combustion. Through investigations with these alternative aviation fuel blend components, inconsistencies, 65 

particularly with the ASTM D3338 estimation method, motivated an alternative determination approach. At present, 66 

SAF prescreening aims to predict key properties with minimal fuel volumes, making accurate and precise predictive 67 

determinations critical to the decarbonization of aviation. 68 

     For ground-based applications of gas turbine engines, the LHV of fuel that is to be consumed is frequently 69 

measured by the consumer because it is required input to engine control software, as advanced in part by the 70 

correspondence author. Sometimes it is determined from a continuous recording calorimeter (e.g., ASTM D1826 – 71 

94), and sometimes it is determined periodically from species concentration measurement via gas chromatography 72 

[1,2]. The total number of species in a gaseous fuel, including N2 and CO2, is typically ~10, and it is a straightforward 73 

application of Hess’s Law to construct LHV of the fuel from its components’ concentrations and a small library of 74 

thermo-chemical data. Heavier fuels such as propane, butane, gasoline, kerosene, diesel, etc. have more molecular 75 



components, increasing ~factorially with average carbon number, which makes it progressively more difficult to 76 

derive LHV from composition data and a reference library of thermo-chemical data of pure molecules. 77 

     For fuel within the jet fuel volatility range, the range and concentration of molecules present is bounded by a flash 78 

point (38 °C) and T10 (205 °C) on the light end. On the heavy end, the freeze point (-40 or -47 °C) and endpoint of 79 

distillation (300 °C) limit the heavy species. There are thousands of molecules possible between the light and heavy 80 

ends of the range. Accurate measurement of every molecular concentration is not practical. However, a fundamental 81 

approach for LHV determination is still possible. The use of multidimensional gas chromatography with flame 82 

ionization detection (GCxGC-FID) has been used in the past [3,4]. However, all previous methods with GCxGC-FID 83 

have used correlative methods, instead of the fundamental approach described in this work, which is based on Hess’ 84 

Law. 85 

   A physically based modeling approach utilizing GCxGC-FID data is attractive because such a method would require 86 

minimal sample and labor, while yielding a diverse array of additional property determinations or predictions [3–5]. 87 

For example, <1 ml of sample is required for GCxGC-FID compared to 1-2 ml combined for ASTM methods D4809 88 

for HHV, D2622 for S, and D5291 for H. However, recent experience with a commercial lab suggests a total volume 89 

of 50 ml is requested for just the calorimetry measurement; perhaps, 50 mL is closer to the industry standard. One 90 

concern with a physically based modeling approach, leveraging GCxGC-FID experimentation has been, until now, a 91 

thorough assessment of the accuracy and precision of its property determinations. For reference, the stated 92 

reproducibility, 95% confidence interval, for LHV determined by the method described in ASTM D4809 is 0.324 93 

MJ/kg, which is less than 0.1% of the LHV.  94 

    While the conversion from gross heat of combustion at constant volume (𝑄𝑏𝑜𝑚𝑏, the measured quantity in ASTM 95 

D4809) to net heat of combustion at constant pressure is clearly defined in ASTM D4809 and reproduced here as 96 

Equation 1, the reference enthalpy for the H2O and CO2 products is not entirely clear which could lead to differences  97 

 98 

𝐻𝐻𝑉 = 𝑄𝑏𝑜𝑚𝑏 + 0.006145 ∗ 𝐻%𝑚    & 99 

LHV = 𝑄𝑏𝑜𝑚𝑏 − 0.2122 ∗ 𝐻%𝑚     ∴ 100 

𝐻𝐻𝑉 − 𝐿𝐻𝑉 =  0.218345 ∗ 𝐻%𝑚     (1) 101 

 102 



between research labs or industries who may not all be referring to ASTM D4809. For hydrocarbons, it turns out that 103 

(HHV-LHV) = 2.444 MJ/(kg-of-water), which corresponds to the heat of vaporization of water at 25 °C. In this work, 104 

HHV is calculated from the heats of formation of the products and reactants in their respective ground states at 25 °C 105 

and 1 atmosphere, and the mass percent hydrogen is determined from GCxGC-FID measurements to determine LHV. 106 

A comparison between different methods to determine hydrogen content is out of scope for this work.  107 

     Relative to the work previously reported [5], the current methodology differs in several ways. The reference state 108 

is now liquid at 25 C for water and for all reactant molecules. The database has grown as a result of this work to 109 

include now 1077 molecules within the jet fuel range and another 2047 molecules that are unlikely to be present in jet 110 

fuel but may be present in samples that have yet to be tailored into potential alternative jet fuel. The uncertainties in 111 

concentration measurements and database heats of formation are now propagated through the calculations and 112 

contribute to the reported uncertainty of the determined LHV.  113 

     Related research by other teams is introduced in this paragraph. Two previous works will be revisited later to help 114 

underscore the differences between the fundamental approach described here and the correlation methods [3,4]. 115 

Thorough reviews of the literature on the topic are provided by Vozka and Kilaz [6] and by Gautam et al. [7]. In 116 

contrast to the fundamental approach described in this work, all these methods use correlation to train a statistical 117 

model which, theoretically could be used to predict the LHV of fuel samples that are not part of the training dataset. 118 

These correlation methods are good for interpolations, as similar variants of them are used in many ASTM methods 119 

(e.g., ASTM D3338 and D2887). Caswell et al. [8] used proton NMR to derive an average structure of eluted fractions 120 

from liquid chromatography, which then serve as the basis functions for correlation to middle distillate fuel properties. 121 

Johnson et al. [9] used partial least squares regression of 45 fuel samples to evaluate the correlation between near-122 

infrared, Raman, and GC-MS data and fuel specification properties. Fodor et al. [10] and Wang et al. [11] used Fourier 123 

transform infrared spectra to correlate with fuel specification properties. Striebich et al. [12] correlated fast (5 minutes) 124 

GC data with fuel volatility and freeze point properties. While the correlation approaches show good agreement with 125 

measured fuel properties as reported, the agreement of predictions for fuel compositions that are outside the range of 126 

the training data is unknown. 127 

     Perhaps more importantly, the physical uncertainty of correlation methods remains unclear. Confidence intervals 128 

and R2 values are only one type of uncertainty imparted on the prediction of a regression model, and the inclusion of 129 

even those unknowns in uncertainty quantification can be lacking. Statistical and correlative methods that train data 130 



directly to observations need many more observations than physically based models. For example, the method and 131 

number of independent variables described later in this paper would need a minimum of 100 observations to determine 132 

coefficients for each class considered while reserving many additional observations for testing. Approximately two to 133 

three times that number of observations (200-300 total observations) would be needed to bound upper and lower limits 134 

for each of the coefficients. In stark contrast, physically based models require no training data, and all compared results 135 

can be viewed as untrained test data. The typical ‘80-20’ rule for training (80% of data is used for training) and testing 136 

(20% of data is used for evaluation of the method) data does not hold for physically based models. Here a physically 137 

based LHV calculation from GCxGC-FID data and reference thermo-chemical data is applied to a diverse array of 138 

aviation turbine fuels and blend components leveraging a large heat of formation database, with comprehensive 139 

uncertainty quantification. 140 

 141 

2. Materials  142 

     A total of 17 samples were utilized in this study for the evaluation of LHV determinations; four petroleum-derived 143 

jet fuels, six neat SAFs, and six hydrocarbon mixtures that were defined under the National Jet Fuels Combustion 144 

Program [13] to have some properties outside of jet fuel specification (ASTM D1655). Relevant information on these 145 

fuels is displayed in Table 1. These samples were chosen due to the availability of existing multidimensional gas 146 

chromatography [12] and ASTM D4809 [14] data. The samples span a wide range of physical and chemical properties. 147 

For example, the LHV range of these samples is 42.9 - 44.1 MJ/kg, which is somewhat broader than LHV range of 148 

conventional jet fuels: 42.9-43.3 MJ/kg [13] and is significantly broader than range covered by at least one prior work 149 

[15] which utilized a correlation approach instead of a fundamental approach. Many of the samples reported here have 150 

been studied extensively, and those results are reported in other publications as well [11,14]. 151 

 152 

3. Data 153 

     Two types of data are required to determine LHV by the fundamental approach, species concentration data and 154 

reference heats of formation data. Reference heat of formation data (including uncertainties) for 1077 molecules that 155 

are within the jet fuel volatility range has been mined from the NIST Standard Reference 203: TRC Web Thermo 156 

Tables [16]. As with any data gathering endeavor, this process included evaluation of the reported NIST data. Working   157 



Table 1. Fuel sample composition. Sample numbers are identical to those assigned by the Air Force Research 158 

Laboratory upon receipt. Many of the names match those designated by the National Jet Fuel Combustion Program 159 

[13]. The names starting with ‘A-’ indicate that it was one of the conventional fuels selected to represent the range 160 

of operational experience. The names starting with ‘C-’ indicate that it was a solvent blend crafted to probe the 161 

impact of specific fuel properties on combustion figures of merit. 162 

Sample name POSF Molecular 

weight, kg/kmol 

H/C Composition, mass% 

(n/iso/cyclo/aro/alkene) 

LHV, MJ/kg 

(ASTM D4809)  

Syntroleum FT-SPK (S-8) 5018 167.52 2.17 24.2 / 75.2 /0.6 /0. /0.0 44.10 

C-4 12344 162.17 2.17 0.2 /98.9 /0.4 /0.4 /0.0 43.81 

Sasol FT-SPK (SPK) 7629 153.15 2.17 0.3 /91.3 /5.2 /0.6 /2.7 43.80 

UOP HEFA-SPK (UOP) 10301 170.18 2.16 10.1 /86.1 /3.7 /0.1 /0. 43.90 

Dynamic HEFA-SPK 

(HEFA) 

7272 175.89 2.16 9.5 /88.4 /2.0 /0.0 /0.0 43.90 

Lanzatech ETJ (L.T.) 12756 166.00 2.16 0.8 /96.3 /2.8 /0.0 /0.0 43.90 

Gevo 11498 178.45 2.16 0.0 /99.6 /0.1 /0.0 /0.3 44.00 

A-1 10264 151.79 2.01 26.1 /37.5 /22.9 /13.6 /0.0 43.24 

C-2 12223 173.00 2.00 5.2 /77.5 /0.1 /17.1 /0.2 43.39 

C-6 10279 166.84 1.99 7.5 /8.9 /83.1 /0.5 /0.0 43.30 

C-3 12341 179.55 1.97 9.2 /45.2 /31.7 /13.6 /0.0 43.30 

C-7 12925 169.77 1.97 3.3 /29.5 /62.3 /4.9 /0.0 43.30 

A-2 10325 158.96 1.94 20.0 /29.7 /31.8 /18.5 /0.0 43.06 

C-5 12345 135.41 1.92 17.7 /51.6 /0.1 /30.7 /0.0 43.01 

A-3 10289 166.29 1.89 13.4 /18.9 /47.4 /20.4 /0.0 42.88 

JP-5 10376 169.00 1.89 13.7 /18.6 /47.3 /20.4 /0.0 43.00 

C-8 12923 160.39 1.86 13.7 /21.0 /38.0 /27.3 /0.0 42.90 

 163 

together with NIST, all inconsistencies found were resolved before incorporation into our internal database. The NIST 164 

database is built from a variety of measurements and analysis methods, resulting in a precision that is an order of 165 

magnitude smaller than ASTM D4809 in many cases. The class species concentration data was provided by L. Shafer 166 

and has been used previously [5]. 167 



    The LHV data was provided by T. Edwards [14] and is also available through the Federal Aviation Administration 168 

National Alternative Jet Fuels Test Database [17]. That online database was also mined for input data required by 169 

ASTM D3338. None of this data is required to make an LHV determination via the fundamental approach, and was 170 

used in this work strictly for validation of the model. 171 

 172 

4. Methodology 173 

     The concentration of 73 different classes of hydrocarbons, ranging from 7 to 20 (n) carbon atoms and (2n+2) to 174 

(2n-12) hydrogen atoms, are determined by integrating the signal from an FID detector which is positioned at the back 175 

end of the second column in a GCxGC configuration, the details of which are described by Striebich et al. [18], over 176 

a stenciled boundary of elution times corresponding to the time spent in the first and second columns, respectively. 177 

The conversion of integrated FID signal to concentration units is aided by leveraging calibration mixtures of molecules 178 

covering the range of the 73 classes of hydrocarbons that are of interest. An exemplar stencil in time/time-space 179 

marking the boundaries of each hydrocarbon class is provided in Figure 1. The total number of isomers of the ten most 180 

common hydrocarbon classes within the jet fuel range is presented in Table 2, along with the total number of isomers 181 

in each class with liquid-phase heat of formation values included in the database.  182 

 183 

 184 

 185 

Figure 1. Definition of hydrocarbon classes. Species classes with a relatively high concentration show up as orange 186 

spots, and the corresponding bins that subtend each are of particular interest—figure provided by L. Shafer [5]. 187 

  188 



Table 2. Representative sample coverage of isomer populations. 60% of the average fuel composition is represented. 189 

Class Isomer Population (N) Samples in Database (n) n/N 

iso-C9 34 34 1.00 

iso-C10 74 71 0.86 

iso-C11 158 42 0.27 

iso-C12 354 48 0.14 

iso-C13 801 38 0.05 

iso-C14 1857 30 0.02 

iso-C15 4346 30 0.01 

cyc-C11 > 48 36 < 0.75 

cyc-C12 > 100 38 < 0.38 

C9 aromatics 8 6 0.75 

 190 

 191 

     Once the class concentration data is available, it can be used to calculate or estimate other properties of interest via 192 

physical models, such as the fundamental approach taken in this work, or regression models such as the approach 193 

taken by Shi et al. [3] and by Berrier et al. [4]. Properties that are physically determined by molecular bonds and 194 

atomic characteristics can be accurately determined by physical models, while properties that are heavily influenced 195 

by inter-molecular interactions in the condensed phase, typically are harder to determine accurately from first 196 

principles. Clear examples of the former include molecular weight, H/C ratio, and heat of combustion. Clear examples 197 

of the latter include viscosity and freeze point. While the utility of a regression model linking molecular weight, H/C 198 

ratio or LHV to some other data is unclear, recent innovations in regression software have made it easy to select any 199 

property as a dependent variable. 200 

    In contrast, the fundamental approach is narrower in scope. To rigorously apply the physical model for LHV [2] it 201 

is necessary to know the concentration and standard heat of formation of each constituent in the fuel and some 202 

quantification of the error associated with any assumptions or approximations related to the inter-molecular 203 

interactions. For LHV of liquid fuels, the contribution from inter-molecular interactions, called heat of mixing or heat 204 

of solution in most physical chemistry textbooks, is 0.15 ± 0.15 kJ/kg, based on the measurements of Lundberg [19]. 205 



Lundberg investigated a range of mixture fractions of 27 different binary solutions of hydrocarbons in the jet fuel 206 

distillation range, which is less than 0.1% of the reproducibility of ASTM D4809. The lack of detailed knowledge of 207 

every species’ concentration and their corresponding heats of formation prevents direct application of a physical model 208 

for liquid fuels the same way that it is applied routinely to gaseous fuels [1]. That said, the same model structure can 209 

be used with class species concentration measurements, and some informed guess at the heat of formation 210 

corresponding to each class. This fundamental approach is advanced in this work. Later, we describe how to make an 211 

informed approximation of the heat of formation corresponding to each class. In contrast to the fundamental approach, 212 

correlation methods, if coupled with physically based regression equation constraints, and if decorated with a copious 213 

dataset, may provide some insight into the LHV mean for some or all hydrocarbon classes as compared to the ranges 214 

used for the fundamental approach.  215 

     In this work, the heat of formation of each class of hydrocarbons is determined by performing a Monte Carlo 216 

analysis where the mole fraction of a random member of the database class is set equal to one and all others in that 217 

class are assigned the value of zero. This process is repeated for each of the hydrocarbon classes, giving 73 sets of 218 

isomeric mass fractions that each sum to one. A visual representation of this process is provided in Figure 2, by which 219 

the model population with a uniform distribution is related to the fuel population with an unknown distribution. Each 220 

of the modeled classes is weighted by the GCxGC-FID, measured mass concentration [20], to define one element of 221 

the Monte Carlo simulation. In total, 10,000 random samples were created for the simulation, which has been shown 222 

previously [5] to be sufficiently large to achieve sampling convergence.  223 

 224 

 225 

Figure 2: Visual representation of fuel composition 226 

 227 



     The higher heating value (HHV) of fuel with an empirical formula represented as CXHY is given by Equation 2, 228 

where 𝛥𝐻𝑓,𝑚 is the standard heat of formation of material, m. Equation 3 is the cornerstone of the fundamental   229 

 230 

𝐻𝐻𝑉𝑓𝑢𝑒𝑙 =  𝑋 ∗ 𝛥𝐻𝑓,𝐶𝑂2(𝑔) +
𝑌

2
∗  𝛥𝐻𝑓,𝐻2𝑂(𝑙) − 𝛥𝐻𝑓,𝑓𝑢𝑒𝑙(𝑙)     (2) 231 

 232 

Δ𝐻𝑓,𝑓𝑢𝑒𝑙(𝑙) =  ∑ 𝑐𝑗 ∗ ∑ 𝑐𝑖,𝑗 ∗ Δ𝐻𝑓,𝑖,𝑗(𝑙)𝑖𝑗      (3) 233 

 234 

approach, and is exact as written but for the neglect of Δ𝐻𝑚𝑖𝑥 , which is negligibly small. The second sum in this 235 

expression is what distinguishes this approach for liquid fuels from its conventional usage for gaseous fuels, for which 236 

no such term is required. The first coefficient, 𝑐𝑗 is the measured concentration of hydrocarbon class, j. The second 237 

coefficient 𝑐𝑖,𝑗 represents the unknown population distribution of all molecules that belong to class j. The values of X 238 

and Y in the empirical formula of the fuel are also determined by the measured concentrations of each hydrocarbon 239 

class, as shown in Equation 4, where 𝑋𝑗 and 𝑌𝑗 are the number of carbon and hydrogen atoms in class j, respectively.  240 

 241 

𝑋 =  ∑ 𝑐𝑗 ∗ 𝑋𝑗𝑗      and      𝑌 =  ∑ 𝑐𝑗 ∗ 𝑌𝑗𝑗   (4) 242 

 243 

     For reasons that will become clear, the uncertainties affiliated with this fundamental approach for HHV of liquid 244 

fuel are broken into three terms as given by Equations 5-7. Term A as defined in Equation 5 accounts for the 245 

uncertainty arising from the GCxGC-FID measurements of hydrocarbon class concentrations. Term B as defined in 246 

Equation 6 accounts for the uncertainties associated with the data pulled from the NIST database. Term C as defined 247 

in Equation 7 accounts for the uncertainties arising from the unknown population distribution of isomers within each  248 

 249 

𝐴 =  ∑ 𝜎𝑐𝑗 ∗ 𝑋𝑗 ∗ Δ𝐻𝑓,𝐶𝑂2(𝑔)   +  0.5 ∗  ∑ 𝜎𝑐𝑗 ∗ 𝑌𝑗  ∗  Δ𝐻𝑓,𝐻2𝑂(𝑙)   +  ∑ 𝜎𝑐𝑗 ∗  Δ𝐻𝑓,𝑗(𝑙)𝑗  𝑗  𝑗 |  1 = ∑ 𝑐𝑗𝑗    (4) 250 

 251 

𝐵 =  ∑ 𝑐𝑗 ∗  ∑ 𝑐𝑖,𝑗 ∗  𝜎Δ𝐻𝑓,𝑖,𝑗(𝑙)𝑖    𝑗    (5) 252 

 253 

𝐶 =  ∑ 𝑐𝑗 ∗  ∑ 𝜎𝑐𝑖,𝑗 ∗  Δ𝐻𝑓,𝑖,𝑗(𝑙)𝑖  |  1 = ∑ 𝑐𝑖,𝑗𝑖   𝑗    (6) 254 



 255 

hydrocarbon class. The 𝜎 in Equations 4 [21] and 5 represents reproducibility of measurements, and it represents 256 

model uncertainty in Equation 6. To estimate a representative heat of formation for each hydrocarbon class in term A, 257 

an arithmetic average was taken over the population of isomers contained within the database for each class. To 258 

estimate the average isomeric concentration in term B, an arithmetic average was taken over the 10,000 elements 259 

contained within the simulation. The calculated values of terms A and B are thus invariant to the simulation. To 260 

estimate term C, the results of the simulation must be analyzed, as well as the underlying assumptions about the 261 

isomeric population distributions, and how closely the modeled distributions match the corresponding distributions 262 

that may be present in the real fuel. 263 

 264 

5. Results and Discussion 265 

     The uncertainty of determinations made by the fundamental approach involves three principal components: 1) the 266 

measurement error associated with the concentration of each class of hydrocarbon, 2) the error associated with the 267 

heats of formation of individual molecules as determined by NIST, and 3) the uncertainty of the population distribution 268 

of isomers that each belong to the same class of hydrocarbon. The uncertainty resulting from the unknown isomer 269 

population distribution has two sub-components: a) the confidence interval associated with the potential difference 270 

between the population mean and fuel sample and b) the confidence interval associated with the potential difference 271 

between the population mean and modeled mean. However, the second piece to this is much smaller than the first 272 

because the number of components in each modeled class is high (or a high fraction of the total population), while the 273 

number of components within a given class in the real fuel could be as few as one.  274 

     Naturally occurring isomer population distributions, developed over geological timescales of exposure to high 275 

temperature and pressure, may be determined by minimization of the Gibbs free energy of the system, or at least 276 

influenced by it more than chemicals manufactured in a chemical plant by any of several potential synthetic pathways. 277 

That said, the population distribution of synthesized isomers is also expected to be skewed toward lower heats of 278 

formation, with rare exceptions. Farnesane by Amyris (ASTM D7566.A3) is one such exception, as it is a single 279 

isomer, synthesized through a biological mechanism. The database used to create our model of the full population is 280 

also expected to be biased toward isomers that are more readily produced and purified because, until recently, all 281 

methods used to make the heat of formation determinations required at least some volume of the real molecule. By 282 



incorporating ab initio calculations, as has been done recently, any isomer can be included in the model’s database 283 

regardless of whether it is produced naturally (in an appreciable fraction) or by any known synthetic pathway. 284 

     Unbiased sampling from the database produces an unweighted mean of the database, which will be higher than the 285 

real value of petroleum-derived fuels and many synthetic fuels as well. Correcting for this bias is not well-defined and 286 

is left for future work. In this work, the quantification of the sources of uncertainty in the fundamental approach reveals 287 

that the largest contribution to uncertainty is in the range of heats of formation within each hydrocarbon class. In the 288 

left half of Figure 3, a comparison is made between this work and two other methods; ASTM D4809 (calorimetry- 289 

 290 

      291 

Figure 3: (Left) Unity plot comparing three methods of LHV determination. The black dotted lines correspond to the 292 

reproducibility (95 percentile) of ASTM D4809 test method. The colored circles represent the mean value of the 293 

fundamental approach and the colored stars represent the minimum determined LHV given the measured composition 294 

and the NIST database value corresponding to the most stable isomer in each class. The colored x’s represent 295 

estimations made via the ASTM D3338 method. The vertical lines through each circle correspond to the 95 percentiles 296 

Each color represents to a different fuel sample, which are named in the lower right of the figure. (Lower Right) 297 

Components of uncertainty in this work. Blue bars represent the contribution originating from the unknown population 298 

distribution of isomers within each class. Red bars represent the contribution arising from the reported uncertainties 299 

of the thermo-chemical reference data. Green bars represent the contribution arising from the GCxGC-FID 300 

concentration measurement. (Upper Right) Range of LHV values, averaged across carbon number for each category. 301 



 302 

based method) and ASTM D3338, which is a correlation-based estimation referenced in the ASTM D7566 fuel 303 

specification. Statistics comparing the fundamental approach with the ASTM D3338 estimation are provided in Table 304 

3. Relative to method ASTM D3338, the fundamental approach has a lower mean absolute error (0.18 compared to 305 

0.29) and a tighter correlation with calorimetry measurements (R2=0.77 compared to R2=0.39), arguing for its eventual 306 

inclusion as an acceptable method for LHV determination in the ASTM D7566 (and D1655) fuel specifications. 307 

 308 

Table 3. Statistic of alternative LHV methods 309 

 This Work ASTM D3338 

ME 0.179 -0.077 

MAE 0.179 0.289 

MSE 0.04 0.103 

R2 0.766 0.389 

Slope 0.9584* 0.3083 

*One is perfect agreement. 310 

 311 

    The mean of all seventeen LHV determinations by the fundamental approach is within the 95 percentile band around 312 

the ASTM D4809 measurements. On average, the values determined in this work are 0.18 MJ/kg higher than those 313 

measured by the ASTM D4809 standard test method. Some of this offset is caused by the working assumption to use 314 

unbiased (uniform) sampling instead of sampling that attempts to represent a population in thermodynamic 315 

equilibrium (i.e., biasing the distribution sampling with Gibb energy). To provide a lower bound on the determinations, 316 

an extra calculation was made using the lowest energy isomer in each class to represent the whole class. These results 317 

are shown using the star symbols on the left side of Figure 3. A mean offset of 0.06 MJ/kg relative to ASTM D4809 318 

persists even in this bounding extreme, but this number is within the reported “net bias (0.089 MJ/kg) of ASTM D4809 319 

as determined by the statistical examination of interlaboratory test results.” Trace impurities, e.g. oxygenated species, 320 

particularly in the conventional fuels (A-1, A-2, A-3 and JP-5) are not considered in this fundamental approach, which 321 

may lead to some overestimation of LHV. That said, A-1 is a carefully selected (best-case petroleum) fuel [13] with 322 

low sulfur content, low total acid number and low existent gum that is expected to have the lowest hetero-atom content 323 



of any of the petroleum-derived samples considered in this study. Therefore, the decision to neglect corrections for 324 

trace impurities does not explain the relatively high difference between ASTM D4809 and the fundamental approach 325 

for this sample. 326 

     The 95 percentile bars shown on the left side of Figure 3 are sorted from lowest to highest and re-displayed in the 327 

bar chart in the lower right of the figure, which also serves as the legend for the colors displayed in the unity plot on 328 

the left. As is quite evident from the bar chart, most of the uncertainty in the LHV determinations made here originate 329 

with the unknown isomer population distributions. The uncertainties in molecular heats of formation add 330 

approximately 0.01 MJ/kg to the uncertainty in our determination. The uncertainty from the measured class 331 

concentration reproducibility (labeled GC) varies significantly from sample to sample for two reasons. The percent 332 

uncertainty of the concentration measurement for a given class scales inversely with concentration so samples that are 333 

comprised of many classes will not be characterized as well as samples that are comprised of few classes. Also, 334 

samples with a more even distribution of constituents across the range of possible LHV’s (range of hydrocarbon types) 335 

will not be characterized as well as those that are comprised almost entirely of constituents with nearly the same LHV 336 

(e.g. C-4 is 99% iso-alkanes). The main reason for the observed differences in the uncertainty ascribed to isomeric 337 

population distribution uncertainty is that some hydrocarbon classes have a greater range of heat of formation (which 338 

maps directly with the range of HHV and LHV) across their population than others. This can be seen by the bar chart 339 

in the upper right of Figure 3, where the class average range is shown for three common categories of species in jet 340 

fuel. The LHV of samples with a relatively high concentration of cyclo-alkanes will be determined less precisely than 341 

others, while those with a relatively high concentration of normal-alkanes (range=0) will be determined more precisely 342 

than others. 343 

     A more detailed representation of class-wise variation in LHV is shown in Figure 4. On the left side, LHV is plotted 344 

as a function of H/C revealing the not-so-surprising results that LHV trends higher as proportionately more water is 345 

produced by the reaction, and some general observations about the LHV of different categories of hydrocarbons. 346 

Neither alkynes or dienes are normally present in jet fuels, but they do help to focus attention on the importance of 347 

hydrocarbon type on both LHV and the range of LHV by carbon number. Generally, small normal- or iso-alkanes 348 

have the highest LHV while aromatic compounds have the lowest LHV due to their low H/C and the special stability 349 

(aromaticity) of these compounds. On the right side, LHV is plotted as a function of molecular weight to highlight the 350 

variation in LHV from category to category and within each category as carbon number varies. 351 



 352 

Figure 5: Heat of combustion variation within hydrocarbon classes  353 

     354 

     5.1 Near-misses between this work and ASTM D4809 355 

     From this work, two determinations, A-1 and C-4, are found in the tails of the ASTM D4809 probability 356 

distributions. In the case of C-4, the simple composition of the mixture illustrates how and why disagreements between 357 

the determinations of this work and ASTM D4809 can arise. C-4 is composed of almost 99%m iso-alkanes, with only 358 

6 iso-alkane classes represented by >97%m. The LHV data, calculated as described above, is plotted in Figure 5 along 359 

with cumulative distributions functions for the ASTM D4809 measurements (imagined) and the Monte Carlo 360 

simulations of this work, with LHV histograms of molecules in six hydrocarbon classes in the background. The 361 

histograms reported here are the conglomeration of all molecules in the database that meet the criteria in the legend, 362 

i.e. C9 to C16 iso-alkanes. The vast majority (>97%m) of the C-4 sample is composed of the reported hydrocarbon 363 

groups in Figure 5, with 42%m alone composed of C12 iso-alkanes. Unsurprisingly, the C12 iso-alkane LHV grouping 364 

is also near the expectation value for the bulk mixture. The tails of the ASTM D4809 confidence intervals marginally 365 

overlap the 95% confidence interval range of this work and the C12 iso-alkane distribution.  Meaning, it is highly 366 

unlikely that the actual LHV for this fuel is below the confidence interval reported for this work, unless the NIST 367 

database is incorrect or missing the most stable isomers of each class, which is highly unlikely.  368 

    For the other near-miss, two samples of A-1 from the same container were given different labels and sent to a 369 

commercial laboratory for ASTM D4809 testing. These new D4809 results for A-1 (42.1 and 43.5 MJ/kg) are 370 

compared in Figure 6, along with the initial ASTM D4809 (reported earlier) results and the determination from this 371 

work for A-1. The newly measured D4809 data points are not within the reported repeatability of measurement.  While 372 

neither of the recent LHV measurements should be trusted because they do not agree with ea ch other, they are reported  373 



 374 

Figure 5: The histograms from the six major hydrocarbon classes are compared, left vertical axis.  The (imagined) 375 

cumulative distribution function for two ASTM D4809 measurements (dotted and dash-dot line) and this work’s 376 

Monte Carlo simulation (black outlined teal line) are compared, vertical right axis.  The 95% confidence interval for 377 

the simulation of this work are bounded by the teal hashed and filled region, vertical right axis.   378 

 379 

 380 

Figure 6: Comparison of LHVs from ASTM D4809 testing and determinations from this work.  All error bars represent 381 

the 95% confidence interval for reported method.  Initial ASTM D4809 data, black squares or ‘old D4809’, is 382 

compared to recently tested measurement results, green pentagons or ‘new D4809’, and this work, an open blue circle.  383 



 384 

here to illustrate another source of uncertainty with all fuel property data from a customer’s perspective. Namely, not 385 

all technicians follow the procedures as expected or maintain the equipment as expected, but the customer usually has 386 

no way of knowing when this has happened.   387 

    These two near-miss examples are consistent with experience in the National Jet Fuels Combustion Program [13].  388 

There, several conventional fuels were tested multiple times with inconsistent results, while another fuel composed of 389 

very few hydrocarbon classes was reported with a non-physical LHV. Combined, these near-miss observations 390 

reinforce the desire to have more properties determined by diverse experimental and numerical methods (such as 391 

GCxGC-FID chromatograms, IR absorption spectra, or NMR spectra), regardless of approach, because the 392 

stakeholders-in-aggregate benefit from the additional checks and balances. 393 

 394 

6. Conclusion 395 

     The lower heating value of jet fuel and sustainable alternative fuel candidates can be determined from hydrocarbon 396 

class concentration data and thermo-chemical reference data with high precision and accuracy. While the seventeen 397 

samples reported here is less than previous studies, all determinations reported here are made in the absence of any 398 

training data. Using the standard 80/20 rule for training and test data, a correlation method would require at least 85 399 

samples overall to support seventeen predictions. The 95% confidence interval of the lower heating value of fuel 400 

candidates that are comprised entirely of normal- and iso-alkanes is less than 0.1 MJ/kg, while high cyclo-alkane 401 

content leads to 95% confidence bands that approach 0.2 MJ/kg. However, the accuracy of LHV determinations made 402 

by the fundamental approach depends on how well the population distribution of isomers in each hydrocarbon class 403 

is represented. In this work, we have assumed first that the distributions are uniform (no Boltzmann-type weighting) 404 

which is likely to bias the result toward higher LHV and, to gage the possible magnitude of this bias, a set of 405 

simulations was run using the lowest LHV isomer in each class to represent the whole class. On average, the difference 406 

between these two bounding assumptions is 0.13 MJ/kg.  407 
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