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We report a rigorous formulation of multi-state density functional theory (MSDFT) that extends
the Kohn-Sham (KS) energy functional for the ground state to a Hamiltonian matrix functional
H[D] of the density matrix D in the space spanned by the lowest N adiabatic states. We establish
a variational principle of MSDFT, which guarantees that the variational optimization results in a
Hamiltonian matrix, whose eigenvalues are the lowest N eigen-energies of the system. We present an
explicit expression of H[D] and introduce the correlation matrix functional, Ec[D]. Akin to KS-DFT
for the ground state, a universal multi-state correlation potential vcMS(r) is derived for a two-state
system as an illustrative example. This work shows that MSDFT is an exact density functional
theory that treats the ground and excited states on an equal footing and provides a framework for
practical applications and future developments of approximate functionals for excited states.

Introduction The Hohenberg-Kohn theorems estab-
lish the existence of the ground-state energy as a func-
tional of the density[1], whereas the Kohn-Sham den-
sity functional theory (KS-DFT) provides a practical ap-
proach for computing the energy and properties by intro-
ducing one-body orbitals[2–4]. For electronically excited
states, linear-response time-dependent density functional
theory (TDDFT) is typically used[5–7]. These methods
have now become indispensable tools for electronic struc-
ture calculations of molecules and materials[8–11]. How-
ever, there are also well-known difficulties in the current
density functional approximations, including the treat-
ment of systems with degeneracy or near degeneracy
and excitations containing charge-transfer character[12].
Consequently, the quest for a time-independent approach
in DFT for excited states has long been a goal of theo-
rists. To this end, the ensemble density functional the-
ory (EDFT) of Theophilou[13] and the state-weighted ex-
tension by Gross, Oliveira and Kohn (GOK) established
a rigorous foundation[14–17], but these theorems only
provided the average energy of an ensemble of N-states
(ensemble energy) without the specific energies and vec-
tors of individual states. As a result, excitation energies
must be extracted indirectly with additional calculations
and different ensembles. Critically, both Theophilou’s
theorem and the GOK alternative do not formulate a
procedure for constructing the energy functionals of the
individual states, although significant progress has been
made recently in the understanding of the properties of
ensemble density functionals[18–20] in the framework of
Kohn-Sham theory[12, 21, 22].

Building up on the work of Theophilou[13], we in-
troduce two theorems that establish the Hamiltonian
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as a matrix functional H[D] of the density matrix D
and a variational theory for determining the state en-
ergies and vectors in the subspace of the lowest N eigen-
states. Furthermore, we introduce a multistate interact-
ing system to determine the exact state densities and
ensemble density, akin to, but fundamentally different
from, the Kohn-Sham non-interacting reference for the
single, ground-state density. Importantly, the tremen-
dous success of the approximate density functionals de-
veloped for KS-DFT can be directly used[23]. In fact,
such a multistate density functional theory (MSDFT)
has been used in the form of nonorthogonal state interac-
tion (NOSI) in a variety of applications[24, 25], including
valence and charge-transfer excited states[26–28], core-
level excitation of closed and open-shell molecules[29],
singlet-fission[30] and proton-coupled electron transfer
reactions[31] in systems of chemical, biological and mate-
rials interest. Here, we distinguish the term state inter-
action from configuration interaction because the former
describes interacting states that include dynamic corre-
lation, whereas the latter represents determinant config-
uration interaction[32, 33]. In this Letter, we also derive
an exact expression of the Hamiltonian matrix functional
and illustrate the results for a two-state system in terms
of local density-matrix approximation.

We consider a system of ne electrons under the lo-
cal multiplicative external potential V̂ext =

∑ne

j=1 v(rj),

where the Hamiltonian is given by Ĥ = Ĥ0 + V̂ext and
Ĥ0 consists of the kinetic and electronic Coulomb terms,

Ĥ0 =

ne∑
j=1

p2
j

2m
+

e2

4πε0

ne∑
i>j

1

|ri − rj |
(1)

In Eq. (1), rj and pj are, respectively, the coordinate
and momentum of electron j, e and m are the electronic
charge and mass, and ε0 is the vacuum permittivity.
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Ensemble density functional theory In order to intro-
duce the matrix functional for the Hamiltonian Ĥ, we
first review the ensemble DFT of Theophilou. We denote
the ensemble expectation of an operator Ô as trS(Ô) =

N−1
∑N
A=1

〈
ΦA|Ô|ΦA

〉
, where {ΦA, A = 1, · · · , N} is

an arbitrary orthonormal basis in an N -dimensional sub-
space SN of the complete Hilbert space of the system
H, SN ⊂ H. Throughout this Letter, we use I, J, · · · to
denote eigenstates and A,B, · · · for general basis states.
We assume that all vectors in H are normalized.

Extending the Hohenberg-Kohn theorem for the
ground state[1], Theophilou proved that given the num-

ber of states Ns ≥ 1 and an external potential V̂ext, there
exists a unique Ns-dimensional subspace VNs

min ⊂ H that
minimizes the ensemble energy of the system[13],

E[v] = trV (Ĥ) = min{trS(Ĥ)|SNs ⊂ H} (2)

The unique subspace VNs

min, spanned by the lowest Ns
eigenstates of Ĥ, ĤΨI = EIΨI with E1 ≤ · · · ≤ ENs

,
including all degenerate eigenstates of the highest eigen-
value ENs

, corresponds to a unique ensemble density
ρ0
V = trV (ρ̂) with ρ̂ =

∑ne

j δ(r − rj) being the density

operator. E[v] = N−1
s

∑Ns

I=1EI is the minimal ensemble
energy.

Ensemble Levy-Lieb functional Further insights are
provided by generalizing the Levy-Lieb functional to the
ensemble energy. We define the Levy-Lieb functional for
an arbitrary ensemble density ρV as [34–36],

FL[ρV ] = inf{trS(Ĥ0)|trS(ρ̂) = ρV ,∀SNs ⊂ H} (3)

Analogous to the ground-state functional, the infimum of
the ensemble energy functional FL[ρV ] is also a minimum
(see Supplementary Note 1). Therefore, provided ρV , one
can always find a subspace that gives FL[ρV ], and then all
the theorems in the original work of Lieb for DFT can be
applied to the generalized ensemble functional FL[ρV ]. A
direct result of Theorem 3.10 in Lieb[35] is the variational

principle in terms of the functional FL[ρV ],

E[v] = inf{E[ρV ]} (4)

where E[ρV ] = FL[ρV ] +
∫

dr v(r)ρV (r) is the ensemble
energy functional of ρV , and E[ρV ] = E[v] when ρV = ρ0

V .
Multi-state density functional theory With the above

preliminaries, we are ready to establish the Hamiltonian
matrix functional and the variational principle of MS-
DFT.

Given Ns and ρV , the functional FL[ρV ] (Eq.3) de-
fines an Ns-dimensional subspace, denoted as V[ρV ] ⊂ H.
For an arbitrary basis, i.e., a linearly independent set of
states, {ΦA} ∈ V[ρV ], we define the multi-state density
matrix D with the (A,B)-th element, DAB = 〈ΦA|ρ̂|ΦB〉.

Theorem 1 : Given the number of states Ns, there ex-
ists a density matrix of degree Ns, D, such that a unique
ensemble density ρV is determined. Then, the Hamilto-
nian projected in the subspace V[ρV ] is a matrix func-
tional of D, denoted as H[D].
Proof :To prove this theorem, we first establish that
given the number of states Ns, there is a one-to-one cor-
respondence between a density matrix D and a set of Ns
linearly independent states, {ΦA} ∈ H, which is a basis
of V[ρV ]. The details of the proof are given in Supple-
mentary Note 2. Then, the ensemble density is given by
ρV = tr(S−1D), where S is the overlap matrix uniquely
determined by D. We emphasize that, in general, the
states in {ΦA} are non-orthogonal.

Once this one-to-one correspondence is established.
Then, given D, whose ensemble density is ρV , there is
a basis {ΦA} ∈ V[ρV ]. The Hamiltonian projected in
V[ρV ] is uniquely determined by {ΦA} with its matrix

elements, HAB =
〈

ΦA|Ĥ|ΦB
〉

. Therefore, the Hamilto-

nian is a matrix functional of D. The proof is complete.
We can see from the proof that there are infinite den-

sity matrices that satisfy Theorem 1. Given D, we
compute H[D], which can be diagonalized by a matrix
C belonging to the Special Linear group of degree Ns,
SL(Ns,C)[37]. We define the multi-state energy func-
tional as the ensemble energy of the space V[ρV ], which
is the average of the eigenvalues of H[D],

EMS[D] = N−1
s

Ns∑
I

Ns∑
A,B

CIAC∗IBHAB = tr
(
CH[D]C†

)
(5)

with HAB being the (A,B)-th element of H[D].
Given Eq. 5, we arrive at the following theorem.

Theorem 2 (Variational principle of MSDFT) :

E[v] = inf{EMS[D]} (6)

which is equivalent to the variational principle of
Theophilou (Eq.4) with E[v] given in terms of the Hamil-
tonian matrix functional (Eq.5). Moreover, the eigen-
values of the Hamiltonian matrix functional are ex-
actly the Ns lowest adiabatic energies of the system,
{E1, · · · , ENs

}.
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Proof :Since EMS[D] (Eq.5) is defined as the ensemble
energy over the subspace V[ρV ] with ρV determined by
D, it is equal to the ensemble energy functional E[ρV ]
defined on the same space V[ρV ],

EMS[D] = E[ρV ] (7)

The variational principle of MSDFT (Eq.6) then follows
directly from that of Theophilou (Eq.4),

E[v] = inf{E[ρV ]} = inf{EMS[D]} (8)

We minimize EMS[D] by varying the elements of D
until we reach E[v] with an optimal density matrix Do
that gives the ensemble density ρ0

V . According to Theo-

rem 1, Do corresponds to a unique basis {ΦoA} ∈ VNs

min,

where VNs

min = span{Ψ1, · · · ,ΨNs
}, with ΨI being the I-

th eigenstate of Ĥ with energy EI . Since the Hamiltonian
matrix in VNs

min is constructed by {ΦoA}, which are linear
combinations of {ΨI}, the eigenvalues of the Hamiltonian
matrix functional are necessarily the lowest Ns eigenen-

ergies of the system and E[v] = N−1
s

∑Ns

I EI . The proof
is then complete.

Transformation property of the Hamiltonian matrix
functional According to Theorem 1, given a density
matrix, D, there is a unique basis {ΦA} ∈ V[ρV ] with
ρV determined by D. Any linear transformation of the
basis that belongs to SL(Ns,C) gives another basis of

V[ρV ][37], {Φ(2)
A },

Φ
(2),∗
A =

Ns∑
B=1

LABΦ∗B ⇒ D(2) = LDL† (9)

which induces a transformation between the correspond-
ing density matrices, D(2) and D. The matrix functional
H[D(2)] must also be related to that of H[D] through[38],

H[D(2)] = LH[D]L† (10)

Multi-state auxiliary system The Hamiltonian matrix
functional can be divided into three parts,

H[D] = T [D] + ECoul[D] +

∫
dr v(r)D(r) (11)

where the three terms on the right-hand-side are, respec-
tively, the matrix functional of kinetic energy, the elec-
tronic Coulomb energy, and the energy from external po-
tential.

In analogy to the Kohn-Sham auxiliary system for the
ground state, we introduce a set of Ns Slater determi-
nants {ΦMS

A } that form a minimal active space to yield
the exact multistate (MS) density matrix D of the sub-

space VNs

min,

ΦMS
A (r1, · · · , rne) = (ne!)

− 1
2A{φA1 (r1) · · ·φAne

(rne)}
(12)

whereA is the anti-symmetrizer. The orbitals in each MS
configuration are assumed to be orthonormal,

〈
φAi |φAj

〉
=

δij , but no restriction is imposed between orbitals in dif-
ferent MS determinants. Therefore, the basis determi-
nants in the active space are generally nonorthogonal.
We then construct the density matrix element by

DAB =
〈
ΦMS
A |ρ̂|ΦMS

B

〉
=

ne∑
j,k

fABjk φA,∗j φBk (13)

where the coefficient fABjk is the overlap between two

Slater determinants of (ne−1) orbitals (eq (13) of Supple-
mentary Note 3). When A = B, the basis-state density
is DAA =

∑
j |φAj |2. Then the ensemble density is given

by ρV = tr
(
S−1D

)
with S being the overlap matrix,

SAB = 〈ΦMS
A |ΦMS

B 〉 = n−1
e

∫
drDAB(r)[39].

Within the active space, span{ΦMS
A }, we define the ki-

netic energy matrix functional Ts with

T ABs =

〈
ΦMS
A

∣∣∣− ~2

2m

ne∑
j=1

∇2
j

∣∣∣ΦMS
B

〉
=

ne∑
j,k

fABjk tABjk

(14)

where tABjk = − ~2

2m

〈
φAj |∇2|φBk

〉
. In particular, for each

diagonal element, we have a similar expression as that
of KS-DFT for the ground state, T AAs =

∑
j t
AA
jj with

tAAjj = − ~2

2m 〈φ
A
j |∇2|φAj 〉. However, T ABs (A 6= B) is ab-

sent in KS-DFT.
Similarly, within span{ΦMS

A }, we define the Coulomb
interaction matrix EHx with

EABHx =

〈
ΦMS
A

∣∣∣ e2

8πε0

∑
i 6=j

1

|ri − rj |

∣∣∣ΦMS
B

〉
=
∑
i<j

∑
k<l

fABij,kl 〈ij||kl〉AB (15)

where 〈ij||kl〉AB is the two-particle integral with fABij,kl be-

ing the coefficient (eqs (15-16) of Supplementary Note 3).
The diagonal element of EHx is EAAHx =

∑
i<j 〈ij||ij〉AA.

From the definitions of Ts and EHx, it follows that they
both satisfy the transformation property (Eq.10).

Finally, the multistate correlation matrix functional
Ec[D] can be defined as follows

Ec[D] = (T [D]− Ts) + (ECoul[D]− EHx) (16)

where the energies in parentheses represent, respectively,
the difference in kinetic energy and in Coulomb energy
between the real (fully interacting) system and the aux-
iliary active space (partially interacting). Therefore, the
correlation matrix functional represents the part of cor-
relation energy not included in the active space. Then,
the Hamiltonian matrix functional of MSDFT has the
following generic form (eq 11),

H[D] = Ts + EHx +

∫
dr v(r)D(r) + Ec[D] (17)

The correlation matrix functional Ec[D] must possess the
following properties.
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1. The linear transformation property of Eq.10 is sat-
isfied.

2. When Ns = 1, the density matrix D becomes
the single-state density ρ0. The Hamiltonian
matrix functional H[D] is reduced to the Kohn-
Sham energy functional EKS[ρ0]. If we denote
the single-state electrostatic energy as EH [ρ0] =
e2

8πε0

∫
r−1
12 ρ0(r1)ρ0(r2), Ec[D] becomes the KS

exchange-correlation functional Exc[ρ0]:

EHx + Ec[D]→ EH [ρ0] + Exc[ρ0], (18)

when D → ρ0.

3. In the full CI limit Ns = NFCI, where the config-
urations {ΦMS

A } form a complete basis of the full
Hilbert space, the exact kinetic energy functional
equals Ts, T [D] = Ts, and ECoul[D] = EHx. The
correlation energy functional vanishes,

Ec[D] = 0, when Ns = NFCI (19)

With an explicit expression of the Hamiltonian matrix
functional (Eq.17), the multi-state energy functional EMS

(Eq.5) reads

EMS[D] = tr
[
S−1H[D]

]
(20)

Significantly, when EMS[D] = E[v] (Theorem 2), solution
of the generalized secular equation of the Hamiltonian
matrix functional[40],

H[D]C = SCE0 (21)

gives the Ns-lowest adiabatic energies E0 =
diag (E1, · · · , ENs

) and state vectors that give the
exact densities {ρI} of the individual eigenstates.
Local density-matrix approximation Here we derive

an analytical expression for Ec[D] under the local density-
matrix approximation (LDMA),

ELDMA
c [D] = E0

∫
dr G (D(r)) (22)

where E0 is a real constant. In general, the correlation
functional has a non-linear dependence with D. A matrix
integral transformation is required. The matrix function
G(D(r)) is the correlation energy density defined by

G(D(r)) = S 1
2 g(D⊥(r))S 1

2 (23)

where S is the overlap matrix determined by D(r), and
g(D⊥(r)) is a generalized matrix function of the stan-
dard Kohn-Sham correlation energy (below). D⊥(r) is

defined as D⊥(r) = S− 1
2D(r)S− 1

2 . Since for all r ∈ R3,
the matrix D⊥(r) is Hermitian and positive definite, we

can always find a local unitary transformation with the
unitary matrix U(r) that diagonalizes D⊥(r),

D⊥(r) = U(r)Λ(r)U†(r) (24)

with Λ(r) = diag (λ1(r), · · · , λNs
(r)) in which all λj(r) >

0. The diagonal matrix Λ(r) is invariant under the linear
transformation of D(r) (For proof, see Supplementary
Note 4). The function g(z) with z ∈ C in Eq.23 can be
an arbitrary analytic function within a domainD(g) ⊆ C.
The matrix function g(D⊥(r)) is given by (For derivation,
see Supplementary Note 5[41])

g
(
D⊥(r)

)
= U(r)

 g(λ1(r)) · · · 0
... g(λj(r))

...
0 · · · g(λNs(r))

U†(r)
(25)

Eq.25 shows that both diagonal and off-diagonal elements
of the correlation matrix functional can be determined
using a standard correlation functional developed for KS-
DFT (as g(z)) followed by a local unitary transformation
(Supplementary Note 5). By following a similar proce-
dure, it is straightforward to include the dependence of
the gradient of density matrix and kinetic-energy density
matrix into Ec[D][42, 43].
Example Finally, we consider a special case consisting

of two states (Ns = 2), where analytical expressions both
for U(r) and Λ(r) can be derived. For simplicity, we
assume that all functions are real and the constant E0 =
1 in Eq.22. The density matrix D reads

D(r) =

(
ρ1(r) ρ12(r)
ρ12(r) ρ2(r)

)
⇒ S =

(
1 ∆
∆ 1

)
(26)

which gives the overlap matrix S with ∆ =
n−1
e

∫
dr ρ12(r). D⊥(r) is then given by(

ρV + ρ1−ρ2
2
√

1−∆2
ρ12 −∆ρV

ρ12 −∆ρV ρV − ρ1−ρ2
2
√

1−∆2

)
(27)

Diagonalization of D⊥(r) leads to Λ(r) =

diag(λ1(r), λ2(r)), where λ1,2(r) = ρV ±
√
ρ2
V − ||D⊥|| >

0. ρV (r) = tr
(
D⊥(r)

)
is the ensemble density and

||D⊥(r)|| is the determinant of D⊥(r) (eq (33) of
Supplementary Note 6).

After a few algebraic operations (For details, see Sup-
plementary Note 6), we arrive at the expression of the
correlation energy density (Eq.23),

G(D(r)) = vcMS

[
D − SρV

]
+ SgV (28)

where gV (r) = 1
2

[
g(λ1(r)) + g(λ2(r))

]
is the ensemble

correlation energy density and we have defined

vcMS(r) =
g(λ1(r))− g(λ2(r))

λ1(r)− λ2(r)
(29)

(Note when λ2 → λ1, vcMS(r)→ g′(λ1(r)).).
Consequently, the Hamiltonian matrix functional un-

der the local density-matrix approximation has the fol-
lowing form,
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HLDMA[D] = Ts + EHx +

∫
dr v(r)D(r) + SEc[D] +

∫
dr vcMS(r)

[
D(r)− SρV (r)

]
(30)

where Ec[D] =
∫

dr gV (r) is the ensemble correlation
energy. In the two-state system, the correlation energy
functional Ec[D] is divided into two parts: The mean cor-
relation matrix functional, SEc[D], directly proportional
to the overlap matrix S and the ensemble correlation en-
ergy; The second part is the multi-state correlation ma-
trix functional,

∫
dr vcMS

[
D − SρV

]
, proportional to the

difference between D and the reference density matrix
SρV . In this sense, vcMS(r) is named as the multi-state
correlation potential, which is invariant under the linear
transformation of D(r) (Eq.9) and is a universal func-
tional that applies to all elements of D(r). The division
is physically meaningful because only the first part con-
tributes to the multi-state energy functional (Eq.20),

ELDMA
MS [D] = tr

[
S−1

(
Ts + EHx +

∫
dr vD

)]
+ Ec[D]

(31)

while the latter is responsible for the distribution of corre-
lation energy among matrix elements of HLDMA[D] (Sup-
plementary Note 7).

Conclusions In this work, we establish the varia-
tional principle of MSDFT (Theorem 2) by introducing a
Hamiltonian matrix functional, H[D] (Theorem 1). With

a multi-state auxiliary system, an explicit formulation of
H[D] is presented with the correlation matrix functional,
Ec[D] (Eq.17). An expression of Ec[D] is given under the
local density-matrix approximation (LDMA). In the two-
state system, we find that, with a universal correlation
potential vcMS(r), each element of the matrix functional
in Eq.30 has an analogous formulation as the KS energy
functional, EKS[ρ0], suggesting that various functional
approximations for the ground state can be applicable to
the multistate formulation[4, 23, 42, 43]. Whether the
universal potential vcMS(r) exists for systems of Ns > 2 is
subject to further analysis. The multi-state DFT extends
the Kohn-Sham energy functional for the ground state
to a Hamiltonian matrix functional for a finite number
of ground and excited states, paving the way for many
future applications in chemistry, biology and materials.
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