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Abstract

Sodium hydride (NaH) in the gas phase presents a seemingly simple electronic structure

making it a potentially tractable system for the detailed investigation of nonadiabatic

molecular dynamics from both computational and experimental standpoints. The sin-

gle vibrational degree of freedom, as well as the strong nonadiabatic coupling that

arises from the excited electronic states taking on considerable ionic character, provides

a realistic chemical system to test the accuracy of quasi-classical methods to model

population dynamics where the results are directly comparable against quantum me-

chanical benchmarks. Using a simulated pump-probe experiment, this work presents

computational predictions of population transfer through the avoided crossings of NaH

via symmetric quasi-classical Meyer-Miller (SQC/MM), Ehrenfest, and exact quantum
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dynamics on realistic, ab initio potential energy surfaces. The main driving force for

population transfer arises from a sharply localized avoided crossing between the C
1⌃+

and D
1⌃+ potential energy surfaces which causes most of the population to transfer be-

tween t = 15 and t = 30 fs depending on the initially excited vibronic wavepacket. While

quantum mechanical e↵ects are expected due to the reduced mass of NaH, predictions

of the population dynamics from both the SQC/MM and Ehrenfest models perform

remarkably well against the quantum dynamics benchmark. Additionally, an analysis

of the vibronic structure in the nonadiabatically coupled regime and predicted transient

absorption signatures are presented using a variational eigensolver methodology. The

prospects for complementary experimental measurements are also assessed.

1 Introduction

Electronically nonadiabatic processes are ubiquitous throughout many important areas of

chemistry.1–6 In general, dynamic predictions of these processes requires the calculation of a

set of potential energy surfaces, nuclear gradients, and nonadiabatic coupling vectors, as well

as a time propagation model for the electronic and nuclear degrees-of-freedom (DOF). In the

dynamics context, one typically requires analytic gradients for the nuclear forces and non-

adiabatic couplings which, collectively, can amount to by far the dominant computational

expense. However, over the last decade, ab initio electronic structure theory has seen

substantial progress in the e�cient and accurate calculation of nonadiabatic couplings either

through diabatization models7–11 or directly as a first-order derivative coupling vector in

the adiabatic representation.12–16 Providing meaningful estimates of nonadiabatic coupling,

however often results in a trade-o↵ between accurate wavefunction-based electronic structure

approaches, which can include electron correlation but create a substantial computational

cost, or more approximate electronic structure theories which allow for the study of larger

systems with higher complexity.

Many dynamics methods have been developed already which can, in principle, utilize an

ab initio treatment of the electronic structure when propagating the electronic and nuclear
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Fig. 1: A comparison between the potential energy surfaces (this work) and the ion-pair interaction energy
(dotted line) of the lowest-energy singlet electronic states of sodium hydride (top). The dashed line at
6.3 eV represents the ion-pair dissociation limit. The calculated bond length dependence of the first-order
derivative couplings between the excited singlet states (bottom). The strongest but most localized first-order
derivative coupling occurs between the C-D potential energy surfaces (blue) while a much weaker first-order
derivative coupling exists between the A-C (green) and the A-D potential energy surfaces (brown).

DOF (FSSH, Ehrenfest, AIMS, SQC/MM, etc.) which all involve di↵erent approximations

and cost trade-o↵s.17,18 Ideally, one would choose a quantum mechanical-based method

for both the electronic and nuclear dynamics, which generally o↵ers the greatest accuracy,

but as these methods scale exponentially with system size, they are typically prohibitively

expensive for all but the lowest-dimensional chemical systems.19–21 When true quantum

mechanical e↵ects, i.e., tunneling, are not too important treating the electronic and/or

nuclear DOF with classical mechanics o↵ers an appealing low cost alternative with easily

parallelizable trajectories that are directly amenable to electronic structure calculations.

The symmetric quasi-classical Meyer-Miller (SQC/MM) approach is in essence a simple
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quantization model used in conjunction with the classical electronic+nuclear dynamics aris-

ing from the Meyer-Miller (MM) Hamiltonian.22–29 As such, SQC/MM has predicted with

reasonable accuracy many di↵erent electronically nonadiabatic processes for a wide range

of model systems, from the small coupling to the large coupling regime, while maintain-

ing a foundation that is based entirely in classical mechanics.30,31 While the treatment of

model chemical systems with SQC/MM have oftentimes been demonstrated in the diabatic

representation, for ab initio simulations, the natural representation is in terms of the adia-

batic electronic states arising from the Born-Oppenheimer approximation, and recent years

have seen significant progress in the development and application of SQC/MM to study

general molecular systems in the adiabatic basis where potential energy surfaces, nuclear

gradients, and nonadiabatic coupling vectors are calculated ”on-the-fly” using available elec-

tronic structure theories.24,32–35 Pushing these ideas further, demonstrative calculations of

the SQC/MM model where the results are readily comparable against experimental mea-

surements and/or quantum mechanical benchmarks, represents another step towards the

development of a su�ciently accurate “black box” approach for predicting the nonadiabatic

dynamics of general molecular systems.

Alkali hydrides are some of the simplest diatomic molecules which may serve as realistic

ab initio test systems for studying the accuracy of the SQC/MM model. Their ground

electronic states (X1⌃+) are primarily single configurational, with energies well-separated

from their excited electronic states. Likewise, their deep potential wells lend themselves to

small anharmonicity constants, where calculations of ground state properties qualitatively

reproduce experimental observations, even with crude theoretical models.36–40 In their ex-

cited electronic states, however, these seemingly simple systems gain substantial complexity

as their electronic structure at longer bond lengths takes on a considerable amount of ionic

character.41,42 This, in turn, introduces a cascade of avoided crossings between the excited

Born-Oppenheimer potential energy surfaces. Since the low-lying electronic states of these

systems are generally well-described with only single and double excitations, in a man-

ageable active space, they are also prime candidates for the use of accurate wavefunction
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theories like equation-of-motion coupled cluster theory with single and double excitations

(EOM-EE-CCSD). The benefit of using such a high level of electronic structure theory for a

such simple systems is that a quantitatively accurate description of the underlying potential

energy surfaces may be achieved, along with accurate analytic gradients (for the calculation

of nuclear forces) and nonadiabatic derivative-coupling vectors.43–45

While to some degree all of the alkali hydrides exhibit this series of avoided crossings, a

prime example is seen in the excited potential energy surfaces of sodium hydride (see Fig.

1).46 The relatively low-energy, ion-pair dissociation limit, Na+(3p6) + H�(1s2), introduces

significant anharmonicity along the A, C, and D
1⌃+ potential energy surfaces as their

outer wells take on a substantial amount of ionic character. For the A electronic state, the

ionic contribution extends the outer well to long bond lengths, in e↵ect, forming a shallow

potential well that dissociates to the Na(3p) + H(1s) limit. As the ion-pair dissociation

limit is approached by the C and D potential energy surfaces however, the ionic character

becomes more pronounced creating an outer well of the C electronic state that is purely

ionic. This, in e↵ect, forms a delocalized double-well potential in the C electronic state with

a sharply localized avoided crossing between the C and D potential energy surfaces (see the

bottom panel of Fig. 1). When this double-well potential is formed, the displacement of

the C surface’s outer well introduces an additional, although far weaker, avoided crossing

with the A surface. Finally, while the C state dissociates to the Na(4s) + H(1s) asymptote,

the D state is known to dissociate to the ion-pair limit introducing yet another avoided

crossing between the C and D states at a displaced R = 12Å bond length.

Recent studies of sodium hydride have focused on utilizing available experimental and

theoretical data to fit quantitatively accurate ground and excited state potential energy

surfaces. On the theoretical front, a study by Aymar, Deiglmayr, and Deliu found that static

polarizibilities, transition, and permanent dipole moments could be accurately predicted by

modelling the electronic structure of sodium hydride as an e↵ective two-electron system in

the full configuration interaction limit—solidifying the use of double excitation methods for

a quantitative description of electronic properties.46 Later, using these calculations as well
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as available experimental data, Walji, Sentjens, and Le Roy went on to fit highly accurate

potential energy surfaces for the X and A states capable of producing vibrational lines that

are directly comparable to experimental measurements.47,48 From experiments, a study from

Chu, et al. found the double-well potential of the C state could be accessed using optical-

optical double resonance fluorescence spectroscopy.49,50 After a potential fit analysis, the

highest experimentally accessible vibrational level of the C state was determined which

notably lies directly in the region of strong first-order derivative coupling between the C

and D potential energy surfaces.

The aims of the present study are two-fold. First, electronic structure, vibronic energy

levels, and predicted transient absorption signatures of the low-lying singlet electronic states

of sodium hydride are presented with the hope that these benchmarks could be confirmed

through a properly constructed experiment. These predictions were based from quantita-

tively accurate potential energy surfaces, analytic nuclear gradients, and first-order deriva-

tive couplings, as well as the vibronic eigenstates which were calculated using high-level

electronic structure theory and a variational eigensolver. Second, using these calculations,

the accuracy of SQC/MM to model the population dynamics through this series of avoided

crossings is evaluated and compared against Ehrenfest predictions and quantum wavepacket

benchmarks.

2 Methods

2.1 Electronic Structure

The potential energy surfaces, analytic nuclear gradients, and first-order derivative couplings

were calculated using the EOM-EE-CCSD method with the core-valence polarized aug-cc-

pCVQZ basis set. The electronic basis set was chosen from the convergence behavior after

increasing angular momentum in the basis set. The results of the convergence tests are

provided in the ESI.† Both the excitation energies, as well as four Rydberg states of the

sodium atom were investigated. The number of occupied orbitals included in the correlated
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calculations, between frozen-core and core-valence polarized basis sets, was determined from

convergence tests of the EOM-EE-CCSD excitation energies evaluated at the ground state

equilibrium bond length. Correlation consistency was obtained after omitting the sodium

atom’s 1s orbital from the correlated calculations. Likewise, core-valence polarized basis

functions were required to obtain a reasonable agreement with available experimental data

for the Rydberg states of the sodium atom. The coupled-cluster expansion was truncated

at double excitations as it was found that including a perturbative triples correction to the

energy introduced only a slight improvement to the correlation energy of the X electronic

state at the equilibrium bond length. All potential energies, analytic nuclear gradients, and

first-order derivative couplings were calculated using a release version of the Q-Chem 5.3

software package.51

All electronic properties (energies, gradients, derivative couplings, oscillator strengths)

were calculated on an evenly spaced grid along sodium hydride’s normal-mode vibrational

coordinate (Q). The grid spacing was chosen as 0.026Å. All first-order derivative coupling

vectors were deduced from analytic gradients using Szalay’s approach which is the stan-

dard method for calculating EOM-EE-CCSD first-order derivative couplings in Q-Chem

5.3.43,44 For a few significantly displaced bond lengths the coupled-cluster equations were

non-convergent, and these points were removed from the data set. While there is sub-

stantial first-order derivative coupling between the C and D potential energy surfaces near

R = 12Å, the grid was truncated as convergence of the coupled-cluster T-amplitudes was

particularly problematic in this region. With the converged scan, all interior points were

evaluated by interpolation using a linear spline. The bond length and normal mode depen-

dence of the potential energy surfaces, nuclear gradients, and first-order derivative couplings

are provided for reference in the ESI.†

2.2 Time-Independent Eigensolver

In order to include the e↵ects of first-order derivative coupling on the vibrational energy

levels, the vibronic Schrödinger equation4 was solved numerically using a modified Fourier-
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grid52 variational eigensolver and the Hamiltonian shown in Eq 1:

Ĥij =
1

2µ

⇣
P̂� ih̄d(Q)

⌘2

ij
+ Ei(Q)�ij (1)

where µ is the normal-mode/reduced mass, P̂ij = �ih̄�ij
~rQ,Q’ is the momentum oper-

ator expressed in the position representation, d(Q) is a skew-symmetric matrix of first-

order derivative coupling vectors, and Ei(Q) is the potential energy surface corresponding

to adiabatic state i. The vector-matrix d(Q) has elements dij(Q) ⌘ h�i|rQ�ji which

are defined as the elements of the first-order derivative coupling vector between adiabatic

Born-Oppenheimer electronic states �i and �j after projection onto the normal-mode co-

ordinate Q. The momentum operator (P̂ij) was transformed from its diagonal momentum

representation to the position representation using a forward and reverse Fourier transform

accordingly.52 Solutions to the vibronic Schrödinger equation were computed variationally

by expanding the eigenstates in the direct-product adiabatic basis shown in Eq. 2:

 (r,Q) =
X

i

�i(r,Q)�i(Q) (2)

where �i(Q) is the nuclear contribution to the adiabatic Born-Oppenheimer electronic state

�i(r,Q). Only the X, A, C, and D potential energy surfaces, and corresponding first-order

derivative couplings were included in the calculation since coupling to the B
1⇧ state is

symmetry forbidden. Due to the substantial grid size, integration of the potential energy

surfaces and first-order derivative couplings required in total 2804 basis functions with 701

basis functions attributed directly to each adiabatic state. The Hamiltonian matrix was

built and diagonalized using in-house code outside of Q-Chem. Adiabatic only calculations

were performed using the same code by setting all matrix-vector elements dij(Q) = 0.

2.3 SQC/MM Nonadiabatic Dynamics

The SQC/MM approach to simulating nonadiabatic dynamics combines the classical Hamil-

tonian of Meyer and Miller (MM) with a simple symmetrical quasi-classical (SQC) quanti-
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zation procedure for defining the electronic state occupations and other observables.

In brief, the classical MM Hamiltonian29 maps the electronic DOF in a non-adiabatic

process to a collection of classical harmonic oscillators, one for each of the electronic states.

In a diabatic representation, it is given by

H(x,p,Q,P) =
1

2µ
P

2 +
FX

i

�
1
2p

2
i +

1
2x

2
i � �i

�
Hii(Q) +

FX

i<j

(pipj + xixj)Hij(Q), (3)

where {xi, pi} are the coordinates and momenta of the “electronic oscillators” corresponding

to a set of F electronic states, Q, P are the coordinates and momenta of the nuclear

DOF having normal-mode/reduced masses µ, {Hij(Q)} is an F ⇥ F nuclear coordinate-

dependent electronic matrix (diabatic in Eq. 3), and {�i} are a set of zero point energy

(ZPE) parameters which are initially adjusted per DOF as noted below. The evolution of

the F classical oscillators in Eq. 3 thus describes the electronic configuration in the MM

model and, in particular, the classical actions associated with each oscillator

ni ⌘ 1
2p

2
i +

1
2x

2
i � �i, (4)

represent the electronic occupations. The actions {ni} are specifically what are quantized

via the SQC windowing protocol22,23, by multiplicatively weighting the potential energy

surfaces, {Hii(Q)} in Eq. 3, they determine the e↵ective forces on the nuclei.

In realistic simulations employing rigorous ab initio electronic structure theory, the re-

sulting electronic states are adiabatic and, in the adiabatic representation, the MM Hamil-

tonian is given by

H(x,p,Q,P) =
1

2µ
(P+�P(x,p,Q))2 + Ve↵(x,p,Q), (5)

where P is still a vector of canonical nuclear momenta but now arises in combination with
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a nonadiabatic coupling vector potential given by

�P(x,p,Q) =
FX

i<j

(xipj � xjpi) dij(Q), (6)

which depends explicitly on the standard first-derivative nonadiabatic coupling vector dij(Q) ⌘

h�i|rQ�ji between adiabatic Born-Oppenheimer electronic states �i and �j (the electronic

oscillator variables {xi, pi} now corresponding to adiabatic electronic states). Eq. 5 also ex-

presses the adiabatic MM Hamiltonian in terms of a symmetrized, occupation-weighted

potential

Ve↵(x,p,Q) =
1

F

FX

i

Ei(Q) +
1

F

FX

i<j

(ni � nj) (Ei(Q)� Ej(Q)) , (7)

which is commonly employed in both adiabatic and diabatic calculations and guarantees

the electronic dynamics are independent of energy scale. Of course, Eq. 7 only references

the diagonal elements of the electronic matrix {Ei(Q) ⌘ Hii(Q)} because it is diagonal in

the adiabatic representation.

Applying Hamilton’s equations to Eqs. 5, 6, and 7 yields dynamically-consistent classi-

cal EOM for both nuclear and electronic DOF in terms of the canonical coordinates and

momenta appearing in Eq. 5 but, unfortunately, will explicitly require the use of second -

derivative non-adiabatic coupling matrices which are extremely impractical to calculate in

a simulation employing realistic quantum chemistry for the electronic states (and not read-

ily available in standard codes). The simple cure24 is to re-write the canonical EOM in

terms of a kinematic momentum, which results in kinematic EOM which contain only the

first-derivative couplings dij but are nevertheless exactly equivalent; these kinematic EOM
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therefore represent the operational formulation employed exclusively in this work:

ẋi = pi
1

F

FX

j

(Ei(Q)� Ej(Q)) +
FX

j

xjdji(Q) · Pkin

µ
, (8a)

ṗi = �xi
1

F

FX

j

(Ei(Q)� Ej(Q)) +
FX

j

pjdji(Q) · Pkin

µ
, (8b)

Q̇ =
Pkin

µ
, (8c)

Ṗkin = �@Ve↵

@Q
�
X

ij

✓
1

2
pipj +

1

2
xixj

◆
(Ej(Q)� Ei(Q))dij(Q). (8d)

In the SQC/MM approach, quantization of the classical Hamiltonian dynamics produced

by Eq. 8 is accomplished, initially and finally, by Monte Carlo sampling initial actions from

a “windowing” function defined by the SQC model and, after running the dynamics for a

prescribed time interval (via Eq. 8), “binning” the final actions by a symmetric windowing

function. In this work, the triangle windowing model was chosen in combination with the

�-adjustment procedure, exactly as described in Ref. [25], except that here the adiabatic

version of the MM Hamiltonian is employed through the EOM of Eq. 8. The key point of

the �-adjustment procedure is to set the {�i} in Eq. 4 (and therefore in Eq. 7), per DOF

(and per trajectory), so that, for each trajectory, the initial force on the nuclei is that of the

initial pure quantum state—i.e., the single-surface force. With this prescription, the {�i}

still give the ensemble of trajectories an average ZPE of 1
3 over the window function which,

as described in the SQC/MM papers, is optimal in this model and somewhat less than the

quantum value of 1
2 . Again, an important consequence of the SQC model in combination

with the �-adjustment protocol is that the nuclei are subject to ZPE fluctuations (in the

forces from the electronic DOF) but that the dynamics is initiated with exactly single-

surface pure state forces corresponding to the initially excited adiabatic quantum state.
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2.4 Transient Absorption and Population Dynamic Simulations

The transient absorption spectrum and quantum/quasi-classical population dynamics were

simulated assuming a pump-probe type experiment. The simulated experimental setup

is as follows. At time t = 0, a pump laser promotes the X ground vibronic state (X,

� = 0), calculated either from the vibronic Schrödinger equation (quantum) or as the

harmonic oscillator ground vibrational state (quasi-classical) to the A potential energy

surface which is then allowed to propagate for a delay time �. At select pump-probe time

delays, between 0 � 250 fs, the pumped quantum wavepacket or classical particle moving

on the A potential energy surface is promoted with a probe laser to either the C or D

potential energy surfaces and allowed to further propagate. Finally, quantum and quasi-

classical population dynamics, as well as the transient absorption spectrum of the quantum

wavepacket, are recorded as the wavepacket or classical particle moves through the avoided

crossing region between the C and D adiabatic states.

The transient absorption signatures were calculated quantum mechanically, up to � = 50

fs in �� = 5 fs intervals, from the Franck-Condon overlap integrals between the quantum

wavepacket, after promotion to the C or D potential energy surfaces, and the nonadiabati-

cally coupled vibronic states of Eq. 2. The di↵erence spectrum between the Franck-Condon

factors after initial absorption (� = 0) and the Franck-Condon factors at time � were broad-

ened using a Lorentzian function with a linewidth of 100 meV and the results were summed

to give the separated component lineshapes. Then, using the computed vibronic energy lev-

els, quantum wavepacket dynamics were performed by expanding the probed wavepacket as

a linear combination of the nonadiabatically coupled eigenstates and this basis was propa-

gated analytically by solving the time-dependent Schrödinger equation. Quantum dynamics

were simulated, at each pump-probe delay time, for t = 60 fs with a 0.1 fs time step. Since

the normalization of the wavepacket is a conserved quantity, the electronic state populations

as a function of time were evaluated as the summed contribution to the total norm from

each adiabatic basis function �i.

The Ehrenfest and SQC/MM dynamics were simulated by initially sampling 25, 000
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nuclear positions and momentum directly from a 0K harmonic oscillator Wigner distribu-

tion. The reduced mass (µ = 1.050 amu) and harmonic frequency (! = 1162.88 cm
�1)

were calculated from the equilibrium bond length of the ground electronic state of NaH.

Coupled-cluster with single and double excitations and the aug-cc-pCVQZ basis set was

used to calculate the harmonic frequency, reduced mass, and normal-vector Q. In the dy-

namics, the Wigner sampled positions and momenta were allowed to propagate classically

on the A potential energy surface, with a 0.1 fs time step, for a time delay �, before being

instantaneously promoted to the C or D potential energy surfaces where the particle was

allowed to further propagate via Meyer-Miller multi-surface dynamics for t = 60 fs with the

same 0.1 fs time step. The nuclear equations of motion were integrated numerically with

a traditional velocity-Verlet integrator and a semi-analytic, direct diagonalization scheme

was used to integrate the equations of motion for the electronic action variables. All dy-

namic simulations were performed using in-house code outside of Q-Chem. The Ehrenfest

simulations were performed with the same code by setting � = 0.

3 Results & Discussion

3.1 Vibronic Level Structure

The e↵ect of first-order derivative coupling on the adiabatic vibrational energy levels is

shown, for a few selected eigenvalues, in table 1. The eigenstates were assigned to a single

vibrational level �i on the X, A, C, or D electronic states by taking the maximum squared

projection onto the adiabatic basis functions �i�i. The energy zero is set at the bottom of

the well for the X potential energy surface which allows for direct comparison with Fig. 1.

As shown in the bottom panel of Fig. 1, the first-order derivative coupling between the

A andC potential energy surfaces peaks atR ⇡ 7Å in bond length with a delocalized spread

of nearly ±2Å. This weak coupling introduces minimal mixing with adiabatic states from

the C manifold suggesting that the A vibrational levels maintain a near perfect adiabatic

character—at least for low-lying vibrational levels. As the outer well of the A potential
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Fig. 2: The pump-probe delay time � and bond length dependence of the quantum wavepacket (left) and
the classical trajectories (right) propagating along the A potential energy surface. The dashed line in both
plots is the position of maximum first-order derivative coupling between the C and D potential energy
surfaces.

energy surfaces takes on substantial ionic character, the resulting anharmonicity creates

a potential where the energetic splitting between vibrational levels slightly increases with

vibrational excitation (see table 1).47 As a result, the low-lying vibrational eigenstates of

the A state are delocalized over a wide range of bond lengths For example, the average

bond length of the � = 8 vibrational level is hRi = 3.41Å which is significantly longer than

the X (� = 0) ground state which only has an average bond length of hRi = 1.92Å.

The prominent reduction in adiabatic character begins in the highly-excited vibrational

levels of the C state and proceeds through the low-lying vibrational levels of the D state.

In this regime, the vibrational states can no longer be considered adiabatic as there is a

substantial amount of mixing that occurs between the adiabatic basis functions attributed

to the C and D states. For example, the assignment of the ground vibrational level of

the D adiabatic state, (D,0), has an adiabatic character of only 0.383 indicating that

substantial mixing with nearby adiabatic vibronic states has occurred. While there is a

sharp degradation in character for vibrational levels near the avoided crossing, the energetic
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pumped quantum wavepacket propagating along the A potential energy surface as a function of pump-
probe delay time �.

shifts between the adiabatic states and their nonadiabatically coupled counterparts are

surprisingly only on the order of 0.01 eV which indicates that, while the states are still

highly mixed, the e↵ective first-order derivative coupling between the C and D potential

energy surfaces remains localized to a small energetic region of the spectrum. A comparable

degradation of adiabatic character also manifests in the low-lying vibrational levels of the

D state with highly mixed states combined with a near negligible energy splittings between

the adiabatic and nonadiabatically coupled states.

3.2 A1⌃+
Quantum/Classical Dynamics

The time dependence of the initially excited quantum wavepacket (X, � = 0), propagating

along the A potential energy surface, is shown in the left panel of Fig. 2. The dashed line

represents the bond length were the first-order derivative coupling between the C and D

states is maximum–which occurs along the repulsive wall of the A potential energy surfaces.

After initial promotion from the X state, there is a spreading of the quantum wavepacket

that results from the anharmonicity of the A potential energy surface as the wavepacket
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Table 1: A comparison between selected adiabatic (dij(Q) = 0) and nonadiabatically coupled vibronic
energy levels and their assignments. Each nonadiabatically coupled eigenstate was assigned to a single
vibrational level (�i) on a single adiabatic potential energy surface (�i) by taking the maximum squared
projection.

State (�i,�i) Adiabatic (eV) Nonadiabatic (eV) Character

X1⌃+

X,0 0.072 0.072 1.000

A1⌃+

A,0 2.921 2.921 1.000
A,1 2.959 2.959 1.000
A,2 2.999 2.999 1.000
A,3 3.040 3.040 1.000
A,4 3.082 3.082 1.000
A,5 3.125 3.125 1.000
A,6 3.168 3.168 1.000
A,7 3.212 3.212 1.000
A,8 3.255 3.256 1.000

C1⌃+

C,40 5.183 5.181 0.842
C,41 5.197 5.199 0.653
C,42 5.211 5.214 0.742
C,43 5.226 5.232 0.363
C,44 5.241 5.247 0.414
C,45 5.258 5.264 0.476
C,46 5.275 5.282 0.382
C,47 5.292 5.300 0.399
C,48 5.309 5.315 0.182
C,49 5.327 5.318 0.236

D1⌃+

D,0 5.187 5.187 0.383
D,1 5.223 5.223 0.803
D,2 5.230 5.230 0.844
D,3 5.231 5.222 0.253
D,4 5.238 5.238 0.992
D,5 5.246 5.246 0.705
D,6 5.254 5.254 0.973
D,7 5.259 5.251 0.436
D,8 5.261 5.261 0.979

approaches the bottom of the A potential well. This spread maximizes between R = 4Å

and R = 6Å in bond length which occurs as the wavepacket nears the classical turning point
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of the outer well of the A potential energy surface (� ⇡ 50 fs). Then, as the inner well of

the A potential energy surface is approached from longer bond lengths, a sharp contraction

occurs as the quantum wavepacket moves up the repulsive wall. For pump-probe delay

times longer that 90 fs, the spatial extent of the quantum wavepacket remains mostly intact

although nodes are introduced due to further spreading. Throughout the 250 fs pump-probe

delay range, the quantum wavepacket, moving on the A potential energy surface, passes

through the avoided crossing region a total of five times—three from the left (shorter bond

lengths) and two from the right (longer bond lengths).

Remarkably similar dynamics are seen when the motion on the A potential energy

surface is purely classical and sampled from the 0K harmonic oscillator Wigner distribution

as shown in the right panel of Fig. 2. The classical motion on the A potential energy

surface has a comparable spreading to the quantum wavepacket near the outer well, between

R = 4Å andR = 6Å, as well as a similar contraction as the particle approaches the repulsive

wall near R ⇡ 2Å. While both quantum and classical dynamics have a comparable period,

wavelength, and general form across all pump-probe delay times, the primary distinction

between the two approaches is the quantum wavepacket develops nodes at pump-probe

delay times � > 100 fs which aren’t observed in the classical motion.

To investigate the near classical motion of the quantum wavepacket further, compar-

isons between the classical force averaged over the quantum wavepacket and the classical

force evaluated at the quantum wavepacket’s average position as a function of pump-probe

time delay are provided in Fig. 3. The average force calculations suggest that since the

initially excited quantum wavepacket is compact, due to the near-harmonic potential energy

surface of the X electronic state, quantum motion on the A potential energy surface can be

approximated, to a reasonable accuracy across all pump-probe delay times, with classical

mechanics by Ehrenfest’s theorem.
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3.3 Transient Absorption Spectrum

As the pumped wavepacket is propagating along the A potential energy surface, the prob-

ability of absorption from the probe laser is determined by the oscillator strength of the

A!C or A!D transitions. The bond length dependence on the oscillator strength is

shown in the bottom panel of Fig. 4 with the A, C, and D potential energy surfaces shown

for reference in the top panel. Noticeably, the full extent of the initial quantum wavepacket,

at t = 0, is entirely encompassed in the region where the oscillator strength is exclusively

attributed to the A!D transition. However, as the wavepacket passes through the avoided

crossing region for the first time, there is a dramatic change in character as the oscillator

strength is now dominated by the A!C transition. The A!C oscillator strength peaks

at R ⇡ 4Å before decaying at bond lengths R > 7Å. As even longer bond lengths are
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fs, the initial quantum wavepacket (X, � = 0), propagating on the A state, is promoted with a probe laser
to the C (bottom) or D (top) potential energy surfaces. The Franck-Condon factors are broadened using
a Lorentzian function with a linewidth of 100 meV and summed.

approached, the overall oscillator strength is significantly reduced although there is an in-

crease in A!D which results from approaching the R ⇡ 12Å avoided crossing between the

C and D potential energy surfaces.

The Franck-Condon simulated transient absorption spectrum for the pumped quantum

wavepacket, after promotion to the C state is shown in the bottom panel of Fig. 5. Ac-

cording to table 1, vibronic states in the avoided crossing region are between 5 and 6 eV.

For pump-probe delay times between � = 5 and � = 20 fs, both a weak excited state and

ground state bleach signal is observed in this region indicating that initially the distribution

is comprised primarily of vibronic states near the C-D avoided crossing. For pump-probe

delay times between � = 25 and � = 50 fs, a ground state bleach signal greater than 5 eV,
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along with an excited state absorption signal for energies less than 5 eV, is observed which

indicates that the distribution is now comprised of low-lying vibronic states attributed to

the C state, far from the avoided crossing region which maintain most of their adiabatic

character. Maximum intensity is reached at � = 40 fs before the wavepacket turns around

and begins approaching the avoided crossing region from the right.

The transient absorption spectrum after promotion to the D state presents a very dif-

ferent picture (see the top panel of Fig. 5). In this case, the entire transient absorption

spectrum is above 5 eV. Consequentially, an intense excited state absorption signal isn’t ob-

served until � = 30 fs which indicates that initially the distribution is comprised of vibronic

energy levels that are near the avoided crossing and remain so for longer delay times when

compared with promotion to the C state. The population transfer through the avoided

crossing, after promotion to the D state will be, in general more e�cient when compared

to the quantum wavepacket promoted to the C state. Likewise, the ground state bleach

signal is blue shifted compared to the C state indicating that the distribution is constructed

primarily from low-lying vibronic states attributed to the D state. This suggests that pop-

ulation transfer through the avoided crossing, after promotion to the D state, will occur

over a much longer range of pump-probe delay times when compared with promotion to

the C state. This is further evidenced by the excited state absorption signal reaching a

maximum just to the blue of 5 eV which lies directly in the energetic region of the C-D

avoided crossing.

3.4 Nonadiabatic Dynamics

Comparisons between quantum and SQC/MM population dynamics, when the wavepacket

is promoted to the C state, are shown in the left and middle panels of Fig. 6. The contour

lines represent a twenty percent decrease in population of the initially populated C state.

Over the 250 fs pump-probe delay range, there are three regions that incur substantial

population change (� = 0 � 20, � = 70 � 120, and � = 160 � 210). For pump-probe delay

times � < 20 fs the population transfer is rapid, between t = 10 and t = 25 fs, ending with
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pump-probe delay times (�) between 0� 250 fs. The populations are calculated from quantum wavepacket
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Fig. 7: The population dynamics from the C to the D adiabatic states simulated up to t = 60 fs with
pump-probe delay times (�) between 0� 250 fs. The populations are calculated from quantum wavepacket
dynamics (left) and the Ehrenfest model (middle). The contour lines represent a decrease of ten percent
population change in each plot. The calculated signed error between the quantum and Ehrenfest population
dependence with contour lines representing a signed error of ±0.1 (right) .
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Fig. 9: The population dynamics from the D to the C adiabatic states simulated up to t = 60 fs with
pump-probe delay times (�) between 0� 250 fs. The populations are calculated from quantum wavepacket
dynamics (left) and the Ehrenfest model (middle). The contour lines represent a decrease of ten percent
population change in each plot. The calculated signed error between the quantum and Ehrenfest population
dependence with contour lines representing a signed error of ±10 percent (right) .
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less than twenty percent population remaining in the C state. There are regions of pump-

probe delay times, however where there is no population change as the wavepacket leaves

the nonadiabatically coupled region and approaches the outer well of the A potential energy

surface. As the wavepacket approaches the avoided crossing from the right, which occurs

first near � = 70 fs, the population transfer is again rapid with most of the population

transferring before t = 10 fs. Finally, for � > 160 fs, the introduction of nodes in the

wavepacket, propagating along the A surface, and the increased spread of the wavepacket

results in an overall loss of e�ciency in population transfer ending with less than thirty

percent population remaining in the C state after passing through the avoided crossing

region.

In general, the signed errors, which are simply defined as the di↵erence between the
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quantum and SQC/MM results, are at most ±20 percent for population transfer from the

C and D adiabatic states (see right panel of Fig. 6). The contour lines in the error plot

represent a change in signed error of ten percent population change. The errors are more

pronounced for longer simulation times (t > 50 fs), as well as longer pump-probe delay times

(� > 160 fs) with the largest errors occurring, in general, during the final pass through the

avoided crossing. While the population transfer estimates with SQC/MM are slightly less

e�cient when compared with the quantum mechanical simulations, the SQC/MM dynamics

do recover the same qualitative trend. For example, there is no population transfer when

the initially excited classical particle is out of the nonadiabatically coupled region. Also

consistent with the quantum mechanical simulations, the population transfer begins very

quickly when the wavepacket approaches the avoided crossing from the left or the right (near

� = 80, 110, 170, and 200 fs) but is significantly slower when the wavepacket is promoted

directly onto the avoided crossing region (near � = 0, 90 and 185 fs).

Comparisons between population transfer calculated with the Ehrenfest model and the

quantum benchmark are provided in Fig. 7. While the signed errors between SQC/MM

and Ehrenfest are comparable across most pump-probe delay times �, slightly lower errors

are seen with Ehrenfest better estimating population dynamics in the longer time limit

(� > 50 fs) across all three regimes. In fact, for population transfer from the C to D states

errors with the Ehrenfest model are only greater than ten percent when the avoided crossing

is approached from the right (� = 70, 160 fs). Interestingly, the errors in this region are

positive where Ehrenfest tends to systematically overestimate the amount of population

transfer compared with SQC/MM. For a clearer comparison of the error, two single cuts

through the 2D population maps in Fig. 6 and 7 are shown, for � = 5 fs and � = 70 fs, in

Fig. 10.

When the wavepacket, or classical particle, is promoted to the D state, the population

transfer is more e�cient overall and occurs over a longer range of pump-probe delay times

when compared with promotion to the C state. Comparisons between quantum wavepacket

and SQC/MM population dynamics for this case are shown in left and middle panels of Fig.
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8. Again, the contour lines represent twenty percent decrease in population of the D state.

Quantum mechanically the population transfer is very rapid with nearly eighty percent of

the population occurring in t < 15 fs—substantially shorter than population transfer from

C to D which takes t ⇡ 30 fs. Also, when initially promoted to the D state, ranges of

pump-probe delay times with no population transfer are shorter compared with population

transfer from the C state which is consistent with the transient absorption spectrum being

comprised of either primarily D vibronic states or states near the C-D avoided crossing (see

the top panel of Fig. 5). For longer pump-probe delay times (� > 150 fs), the population

transfer quantum mechanically is again less e�cient overall when compared with population

transfer when � > 50 fs and is more pronounced when the wavepacket approaches the

avoided crossing from the right.

A similar agreement between the quantum mechanical and SQC/MM results is seen for

population transfer from the D to C states with SQC/MM predicting population dynamics

that are remarkably close to the quantum benchmark. Signed errors for this case are shown

in the right panel of Fig. 8. In general, the errors are largest when the avoided crossing is

approached from the right but still remain low over all pump-probe delay times. Comparable

to the population dynamics from the C to the D states, the errors progressively worsen

at longer pump-probe delay times with the largest errors occurring for � > 150 fs. When

compared with the right panel of Fig. 6, where errors of twenty percent are seen when the

avoided crossing is approached from the right, errors of only ten percent for this case are

seen for pump-probe delay times � > 50 and � > 150 fs. Likewise for simulation times

t > 50 fs, the errors are less than ten percent across all three relevant ranges of pump-probe

delay times.

Comparisons between population transfer from the D to C states calculated with the

Ehrenfest model and the quantum benchmark are provided in Fig. 9. The errors with

Ehrenfest compared with SQC/MM are comparable when the population transfer occurs

from the D to the C adiabatic states with the errors less than or equal to ten percent across

all pump-probe delay times.
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4 Conclusions

In this work, quantitatively accurate potential energy surfaces, analytic nuclear gradients,

and first-derivative couplings, calculated at the EOM-EE-CCSD level with a quadruple-zeta

quality core-valence polarized basis set, were presented for the low-lying singlet states of

sodium hydride. The vibronic energy levels of the ground and three excited electronic states

were analyzed (X, A, C, and D) using a variational eigensolver, directly in the adiabatic

basis—which included the e↵ect of first-order derivative coupling. As first-order derivative

coupling between the A�C and A�D adiabatic potential energy surfaces had a negligible

e↵ect on the nonadiabatically coupled eigenstates, the nonadiabatic vibronic levels were

e↵ectively reduced to an electronic two-state problem involving only the C and D states.

Between the C and D adiabatic states, the majority of population transfer occurred from

a sharply localized but strong first-order derivative coupling that arises directly from the

outer well of the C potential energy surface taking on substantial ionic character. In order

to elucidate the e↵ect this first-order derivative coupling had on the resulting eigenstates,

the dependence on bond length was presented, as well as, the degradation of nonadiabatic

character that maturates by expanding the eigenstates directly in the adiabatic basis.

Using the calculated nonadiabatically coupled vibronic energy levels, the transient ab-

sorption spectrum and quantum/quasi-classical nonadiabatic dynamics were analyzed by

simulating a pump-probe type experiment. In this simulated experiment classical tra-

jectories and a quantum wavepacket, moving along the A potential energy surface, was

promoted to either the C or D adiabatic states at selected pump-probe delay times. For

the transient absorption spectrum, the Franck-Condon overlap integrals were calculated

and the di↵erence spectrum was presented. Then, using the corresponding eigenstates,

quantum/quasi-classical population dynamics were simulated and analyzed after time prop-

agating the promoted wavepacket quantum mechanically and with classical trajectories.

The exact quantum benchmarks were compared against predictions from the Ehrenfest and

SQC/MM models which had signed errors of less than ten percent over most pump-probe
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delay times with errors around twenty percent only when the avoided crossing was ap-

proached from the right and for t > 30 fs. In general, we found population transfer between

the C and D states occurs ultrafast, between t = 15 and t = 30 fs, depending on the initially

excited wavepacket with more e�cient population transfer occurring after promotion to the

D state.
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