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Abstract

Evaluation of the equilibrium constant of boron isotope fractionation between boric acid and borate
(k3−4) in water is of high geochemical importance, due to its contribution in reconstruction of ancient
seawater pH and atmospheric CO2. As a result, precise evaluation of k3−4 has been the subject of
numerous studies, yielding diverse and controversial results. In the present study, employing three
different rigorous and high-precision theoretical approaches, we provide a reliable estimation of k3−4

which is a value between 1.028 to 1.030 for both pure and saline water. Within the context of present
study, we also propose partial normal mode analysis, Boltzmann weighted averaging and a revision
on the Bigeleisen and Mayer method which allow a more rigorous evaluation of isotope fraction in
solution and can be used for studying other isotopic systems as well.

Introduction
Studying equilibrium between boron species dissolved in seawater is of high geochemical importance,
due to its contribution to the alkalinity and buffering capacity of seawater and thus its ability to
mitigate pH changes, which is of vital importance for marine ecosystems [1,2].
Additionally, the equilibrium of boron species in seawater also plays a key role in studying and
reconstruction of ancient seawater pH and atmospheric pCO2 via analysis of boron isotopic ratios in
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marine shell fossils [3-7]. To that end, an accurately determined equilibrium constant of the following
isotope exchange reaction between aqueous boric acid and borate (k3−4):

10B(OH)3+
11 B(OH)−4 ⇆

11 B(OH)3+
10 B(OH)−4

is of central importance and has been the subject of numerous studies. As the other more recent
applications of studying the equilibrium between boron isotopes in water, we can refer to identification
of nitrate pollution sources [8] and elucidation of shale weathering in the critical zone [9].

The earliest evaluation of k3−4 was theoretically calculated by Kakihana et al. [10] who reported a
value of 1.0194 for this equilibrium constant. They obtained this value through the partition functions
they had computed based on an empirical valence force field. This initially reported value, however,
has been widely criticized in several more recent studies which suggest larger values for k3−4 ranging
from 1.025 to 1.035 [11-15,16]. It can specially be important because even the slight deviation
between the initially reported estimation of k3−4 and the more recent values can have a significant
geochemical importance, as it results in a value for the estimated pH of the ocean that is almost one
unit larger [16].

Among the recent evaluations of k3−4, only one work reports experimentally determined values of
1.0308 ± 0.0023 and 1.0272 ± 0.0003 obtained for pure and seawater, respectively [15]. Considering
that experimental measurement of isotope fractionation in isotope exchange reactions are typically
highly sensitive to experimentation, theoretical methods are more commonly employed for this
purpose and are required not only to evaluate isotope fractionation but also to support experimentally
determined results.

Despite the importance of precise determination of k3−4, our careful review of the theoretical
works previously carried out for this purpose reveals a number of significant limitations in those works
which might affect the accuracy of those reported results.

First and foremost, the employed theoretical approach for evaluation of k3−4 in all of the previously
reported results are mainly limited to Normal Mode vibrational frequency Analysis (NMA) based on
the harmonic oscillator approximation and thus neglect anharmonicity effects. The anharmonicity can
play a significant role in isotope exchange reactions specially in light elements like boron [17].

The other limiting factor is the expected inaccuracy inherent in the employed theoretical levels
in the previously reported results. The highest levels of theory employed in the previous studies are
mainly limited to HF/6-31G(d) and B3LYP/6-31G(d) [13], HF/6-31G* followed by empirical scaling
of frequencies [14] and PBE96 [18], which all are typically not considered as high accuracy methods
for thermochemistry studies via vibrational frequency analysis [19,20]. Rustad and co-workers
reported a calculation of k3−4 at the MP2/aug-cc-pVTZ level of theory [16] which was the highest
employed level of theory for this purpose so far. However, these computations were carried out
for clusters with only 11 water molecules, yielding k3−4 equal to 1.033. To empirically correct the
inefficiency resulted by the small size of their studied clusters, they reported extrapolated values
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according to the pattern they observed for lower-level computations, which resulted an estimation of
k3−4 between 1.026 to 1.028.

Note that both the applied level of theory and the cluster size can significantly impact the
theoretically evaluated k3−4, as shown by Rustad et al. [16]. It implies that the small size of the
studied clusters is another shortcoming in the previously reported estimations of k3−4. The largest
cluster size studied so far includes 34 water molecules [14], which is obviously bellow an optimal
size to properly include long range interactions.

Another limitation of the studies carried out previously is the low number of configurations for
calculating k3−4. As for larger molecules containing many atoms, typically several local minima exists.
Consequently, geometry optimizations required for the NMA can yield quite diverse geometries with
the possibility of very different energies, properties and solute-solvent interactions for each one. This
necessitates employing multiple molecular configurations for the studied clusters. The work of Rustad
and co-workers [16] used 10 different solute-solvent configurations, but the results reported in other
studies are based on only one configuration.

Finally, the currently reported theoretical studies of k3−4 are only limited to calculated equilibrium
constants in pure water, while the practical applications of equilibrium of boron isotopes mainly
require estimations of k3−4 for saline water.

The main aim of the present study is to address the abovementioned limitations and provide a
reliable and highly precise theoretical estimation of k3−4 for both pure and saline water. To that end,
we employ vibrational frequency NMA for 60 configurations of large clusters of boric acid and borate
dissolved in pure water employing a high level of theory. Nevertheless, NMA with the explicit solvent
approach cannot be conveniently employed for studying multicomponent solvents since achieving
appropriate sampling of a canonical ensemble in this way is challenging. Consequently, theoretical
evaluation of k3−4 in saline water is achieved via NMA with the implicit solvent approach [21] as well
as path integral molecular dynamics [22,23]. The latter method also allows studying the anharmonicity
impacts on the calculated partition functions.

Theory

Evaluation of equilibrium constants via NMA

The equilibrium constants of chemical reactions can be theoretically calculated via:

Keq = exp
(
−
∆A
kBT

)
, (1)

in which ∆A is the free energy change of the reaction, kB is the Boltzmann constant and T is the
temperature. Using the statistical thermodynamics definition of free energy which relates it to the
partition function (Q) via A = −kBT ln(Q), we can rewrite 1 as:
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Table 1 The partition functions obtained based on rigid rotor harmonic oscillator
approximation.

Qtrans. =
(

2πMkBT
h2

) 3
2 V

Qrot. =
√
π

s

(
8π2IAkBT

h2

) 1
2
(

8π2IBkBT
h2

) 1
2
(

8π2ICkBT
h2

) 1
2

(nonlinear molecule)

Qrot. =
8π2IkBT

sh2 (linear molecule)

Qvib. =
exp

(
−

hcνi
2kBT

)
1−exp

(
−
−hcνi
kBT

)
M is the mass of the molecule, V is the volume of the system, h is the Planck constant, s is the symmetry
number, I is the principial moment of inertia, c is the light speed (cm s−1) and νi is the i’th normal mode
harmonic vibrational frequency (cm−1).

Keq =

∏
i Qproduct,i∏
i Qreactant,i

. (2)

The total energy for each one of the reactants and products is traditionally split into contributions
from translation, rotation, vibration and electronic energy, resulting in [24]:

Q =
∑

exp
(
−
εtrans.+εrot.+εvib.+εelect.

kBT

)
= Qtrans.Qrot.Qvib.Qelect.. (3)

For isotope exchange reactions, the electronic partition functions of isotopomers cancel out as
they are electronically the same and differ only by their nuclear masses. As a result, one only needs
to compute the translational, rotational and vibrational partition functions which are conventionally
obtained based on the Rigid Rotor Harmonic Oscillator (RRHO) approximation reported in table ??
[24], which for a nonlinear molecule results in:

Q = αM
3
2

IAIBIC

s

∏
i

exp
(
−

hcνi
2kBT

)
1− exp

(
−
−hcνi
kBT

) . (4)

Here α is a constant which depends only on the volume and temperature of the system and cancels
out for reactions under constant volume and temperature.

For an isotope exchange reaction *A+B⇆A+*B (the heavier isotopomer is specified with *), eq.
(4) can be further simplified using the Teller-Redlich product rule, which for two isotopomers 1 and 2
implies:

∏
i

νi,2

νi,1
=

(
M2

M1

) 3
2
(

IA,2IB,2IC,2

IA,1IB,1IC,1

) 1
2 ∏

j

(
m1, j

m2, j

) 3
2

(5)
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where mi, j is the mass of jth atom in the isotopomer i. In what follows, for an isotope exchange
reaction, combining (4) and (5) yields:

KA−B =
RPFRB

RPFRA
, (6)

where RPFR is known as the reduced partition function ratio of the solute and is calculated via:

RPFR =
∏

i

νi,∗

νi

 1− exp
(
−

hcνi
kbT

)
1− exp

(
−

hcνi,∗
kBT

) . (7)

Calculation of equilibrium constants of isotope exchange reactions via RPFR was first proposed
by Bigeleisen and Mayer [25] and has been widely used to study isotope exchange reactions [26-33].
The main advantage of the Bigeleisen and Mayer approach is that it allows calculating the isotope
exchange equilibrium constants solely via normal mode vibrational frequencies. Considering that
those vibrational frequencies can be obtained also experimentally and therefore without requiring
calculations of principal moments of inertia for the molecules, the Bigeleisen and Mayer approach
provides a practical way to evaluate the required equilibrium constants.
In the present study, in addition to the original Bigeleisen and Mayer approach, we also introduce
and investigate a revision in the original implementation of the Bigeleisen and Mayer approach in the
following which allows achieving a more rigorous integration of the results obtained for the multiple
molecular configurations.

Cost effective NMA with explicit solvent via partial normal mode analysis

Normal mode vibrational frequencies required by NMA are conventionally computed based on the
RRHO approximation. To that end, the first derivative of the system Hessian with respect to molecular
geometry, i.e., the net force on each atom, must be zero, which is fulfilled by geometry optimization.
For NMA in solution, taking into account the solvent effects is commonly achieved via two ways,
namely implicit and explicit solvent approaches [21]. While in the explicit solvent approach, the
solute is placed in the cluster of a number of solvent molecules, in the implicit solvent approach the
solute is placed in the cavity of an implicitly defined solvent, instead.

For NMA with explicit solvent, the required geometry optimization is commonly applied for the
whole solute-solvent cluster. This, however, makes the computations far more challenging and for high
theoretical levels or large cluster sizes sometimes too expensive to be affordable. This is the reason
of commonly limiting those computations to a very small number of solute-solvent configurations,
small cluster sizes or low computational levels, as discussed earlier. More importantly, geometry
optimization of the whole cluster can result in optimized geometries with an unpredictable density,
sometimes inconsistent with that of the real studied system.

To overcome all these limitations, we introduce here the partial normal mode analysis. According
to this approach, for multiple molecular configurations of solute and solvent clusters with a constant
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density, we carry out geometry optimization and NMA only for the solute while the solvent molecules
are kept frozen during the optimization and NMA. Employing partial normal mode analysis followed
by the thermodynamically rigorous integration, introduced in the next section, allows us to not only
reduce the computational costs and challenges by several orders of magnitude but also to achieve
accurate results due to studying clusters with a correct density and being able to study contributions
from a higher number of configurations and for larger cluster sizes. Partial normal mode analysis for
multiple molecular configurations also allows capturing anharmonic effects in the obtained results
due to carrying out the NMA for diverse computed frequencies and configurations.

Integrating multiple configuration results

As discussed earlier, appropriate evaluation of thermochemistry in solution with explicit solvents
requires considering contributions from multiple solute-solvent configurations. The results obtained
for each configuration then should be integrated to yield the required quantities. To that end, the most
convenient integration approach is obviously averaging the results obtained for all configurations. It
has been the method of choice to integrate the results of 10 configurations by Rustad and co-workers
[16]. For extremely large numbers of appropriately sampled configurations, this averaging yields
the exact estimation of the thermodynamic properties. Nevertheless, integrating smaller numbers of
configurations requires going beyond the simple arithmetic mean and employing a more rigorous
integration. For this purpose, here we propose a revision of the Bigeleisen and Mayer approach which
allows exploiting Boltzmann-weighted averaging, as introduced in the following.

Considering the probability of existence of any observable in the canonical ensemble, which is
proportional to e−

H
kBT based on the Boltzmann statistics where H is the Hamiltonian of the molecule

[34], we suggest a more rigorous Boltzmann weighted averaging defined as:

Keq =

∏
i

〈
Qproduct,i

〉∏
i
〈
Qreactant,i

〉 , (8)

where ⟨Q⟩ is an ensemble-averaged partition function and is computed via:

⟨Q⟩ =

∑
i Qi exp

(
−
εi

kBT

)
∑

i exp
(
−
εi

kBT

) . (9)

Here, Qi and εi are the calculated partition function and energy of the solute for configuration i.
To implement of the Boltzmann-weighted averaging in an approach similar to the Bigeleisen

and Mayer method, we propose fractionizing the Teller-Redlich product rule defined in eq. (5) for
isotopomer a as follows:

∏
i

νi,a = α
′(Ma)

3
2 (IA,aIB,aIC,a)

1
2

∏
j

(
1

ma, j

) 3
2

, (10)
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where α′ is a coefficient which is constant for isotopomers of a molecule. If we substitute eq. (10) in
eq. (4), we obtain:

Q =
α

α′s

∏
j

(ma, j)
3
2

∏
i

νi
exp

(
−

hcνi
2kBT

)
1− exp

(
−

hcνi
kBT

) . (11)

Knowing that in calculating equilibrium constants for isotope exchange reactions, the factor αα′
∏

j(ma, j)
3
2

will be cancelled out, we can now define the Reduced Partition Function (RPF) as:

RPF =
α′Q

α
∏

j(ma, j)
3
2

=
1
2

∏
i

νi
exp

(
−

hcνi
2kBT

)
1− exp

(
−

hcνi
kBT

) . (12)

Using RPF, the equilibrium constant is then calculated via:

KA−B =

∏
i

〈
RPFproduct,i

〉∏
i
〈
RPFreactants,i

〉 . (13)

Here, ⟨RPF⟩ is the ensemble average of the reduced partition function and is calculated via RPFi and
εi which are the RPF and energy of the solute in configuration i as follows:

⟨RPF⟩ =

∑
i RPFi exp

(
−
εi

kBT

)
∑

i exp
(
−
εi

kBT

) . (14)

The energy of solute molecules required by eq. ((14)) can be obtained most straightforwardly
using the implicit solvent approaches. To that end, we employed the IEF-PCM continuum solvation
model for the same level of theory to evaluate the in-solution energy of various conformers of the
solute obtained by geometry optimization in each cluster.

Considering that the εi values are total ground state electronic energies and thus large negative
numbers, to avoid numerical blow-up we employed subtracting the minimum of obtained εi values
from all of them. This is equivalent to multiply both the denominator and numerator of eq. (14) by

e−
min(εi)

kBT and therefore allows numerical evaluation of the reduced partition functions without losing
accuracy.

NMA with implicit solvent

Although the NMA with explicit solvent possesses a number of obvious advantageous such as taking
into account intricate solute-solvent interactions such as hydrogen bonding, at the same time it suffers
from some limitations. In addition to challenges discussed in the previous section, the computational
costs even for the partial normal mode analysis can still be high especially for large clusters and high
levels of theory. The other main limitation of NMA with explicit solvent is the appropriate treatment
of multi-component solvents like saline water and challenges of correctly positioning the ions.
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To overcome such limitations, for evaluation of k3−4 in saline water, we exploited NMA with implicitly
defined solvent as another widely applied method to take into account solvent effects in computational
chemistry [21]. A schematic illustration of implicitly defined solvents for boric acid and borate is
demonstrated in figure 1.

 

Fig. 1 Illustration of implicitly defined solvents in boric acid and borate.

Computation of k3−4 in pure water has already been reported by Liu and Tossel [14]. However, the
IEF-PCM and CPCM continuum solvation models they employed at the HF/6-31G* level of theory
for this purpose are commonly found to be less accurate compared to more recent solvation models
like the SMx family of methods and higher levels of theory, as we have shown in a recent study [21].
Therefore, in the present study, in addition to IEF-PCM and CPCM, we also study the SMD solvation
model for a high level of theory for pure and saline water.
We also employ the implicit solvent approach for evaluating the suitability of our selected cluster sizes
for appropriately taking into account the long-range interactions for the NMA with explicit solvent.
To that end, in addition to 60 clusters studied in vacuo, we also studied 20 clusters placed inside a
cavity of implicitly defined solvents as implemented in several works [35-39].

Theoretical evaluation of equilibrium constant via path integral molecu-
lar dynamics

In addition to NMA which has been the earliest theoretical approach for evaluation of equilibrium
constant of isotope exchange reactions, another rigorous approach which has been widely used for
this purpose is the thermodynamic integration of kinetic energies associated with isotope effects via
Path Integral Molecular Dynamics (PIMD) [17,29,40-43]. Based on this approach, the equilibrium
constant of an isotope exchange reaction is calculated as:

Keq = −
3
2

ln
(
m2

m1

)
+

1
kBT

∫ m2

m1

⟨KE(m)⟩
m

dm, (15)
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where mi is the mass of isotope i and KE is the kinetic energy. To evaluate the equilibrium constant via
eq. (15), the ensemble average of kinetic energies for a number of masses alchemically transformed
between m1and m2 should be computed via PIMD to allow evaluating area under the ⟨KE(m)⟩

m versus m
curve, as required by eq. (15). Although alchemically transforming the isotope masses can be done
arbitrarily, doing this via the following switching function:

m(λ) =
m1m2

(λ
√

m1+ (1−λ)m2)2 , (16)

where λ is changed from 0 to 1 to yield transformed masses between m1and m2, has shown to be
advantageous [44] and will be employed in the present study. One common way to evaluate the kinetic
energies required by eq. (15) via PIMD is based on the primitive kinetic energy estimator defined as:

⟨KE(m)⟩(primitive) =
3PkBT

2
−

〈 P∑
i=1

1
2

mω2
p(ri− ri−1)2

〉
, (17)

in which P is the number of beads, ωp =
√

PkBT/h̄ is the ring polymer frequency and ri is the position
of the ith bead of the studied isotope. However, due to the well-known drawback of the primitive
estimator of kinetic energy which is its increasing variance for increasing the number of beads [45],
the virial estimator of kinetic energy defined as:

⟨kE(m)⟩(virial) =
3kBT

2
+

〈
1

2P

P∑
i=1

(ri− rc)
∂U
∂ri

〉
, (18)

is more commonly used for this purpose. Here, rc is the position of the centroid of the beads and ∂U∂ri

is the net force on the ith bead due the interaction of the atoms in the same replica and without the
inter-bead interactions included.

In the present study, in evaluation of kinetic energy we exploit the features of the both abovemen-
tioned estimators to improve numerical evaluation of the integral in eq. (15). Accordingly, considering
that the primitive estimator implies a linear dependency between the kinetic energies and switched
masses, we fit a linear curve of the form ⟨KE(m)⟩ = a+bm, where a and b are constants and the kinetic
energies are calculated based on the virial estimator. It allows us to reduce the numerical noises of
each mass using all kinetic energy data for all other masses and also be able to solve the integral in eq.
(15) analytically.

Compared to NMA, thermodynamic integration through PIMD offers a number of advantageous
such as taking into account the anharmonicity effects as well as appropriate sampling of canonical
ensemble and possibility of studying multi-component solvents. As a result, we employed this method
for evaluation of k3−4 for the boron isotope fractionation for both pure and saline water. A schematic
illustration of ring-polymers of boric acid with three beads is depicted in figure 2
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Fig. 2 Schematic illustration of a path-integral ring polymer of boric acid with three beads.
The B, O and H atoms are drawn in pink, red and gray color, respectively.

Computational details

Evaluation of k3−4 via NMA

To calculate k3−4 based on NMA with explicit solvent, 60 randomly selected clusters of 64 water
molecules with one boric acid or borate ion in the center of the cluster were extracted from a trajectory
of configurations produced by Molecular Dynamics (MD) simulations. These MD simulations were
carried out for a simulation box containing 1200 water and one boric acid or borate molecule under
NVT condition. The box size was fine-tuned to yield a density equal to 0.995 g/mol which was close
to the density of water at standard conditions. The inter-atomic interactions in the MD simulations
were evaluated using the GFN2-xTB tight-binding method [46] and the temperature was controlled
using a Nose-Hoover Chain thermostat with three chains and 50fs relaxation time. We ran the MD
simulations in CP2K [47] for 10ns after 1ns equilibration with 0.5fs time step and took snapshots
every 100ps to generate the required configurations via screening the solute and 64 water molecules
closest to it.

For the generated configurations, the normal modes were computed based on the partial normal
mode analysis. To that end, the geometries of the solutes were relaxed while the solvent geometries
were frozen. Considering that the employed level of theory plays a significant role in the accuracy
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of evaluated k3−4 as discussed earlier, we employed the DSD-PBEP86/QZVPP level of theory for
optimization and calculations of normal modes of the solute as a rigorous and accurate method
for evaluating thermodynamics quantities [19,20,48] and scaled the vibrational frequencies by the
recommended scaling factor of 0.9971 for improving the accuracy of this method [49]. However, for
the solvent molecules, for which the normal mode calculations are not required and thus employing a
high level of theory loses its importance, we used the B3LYP/6-311++G(2d,p) level of theory and
computed the total energy of the cluster via the ONIOM approach.

Although clusters with 64 water molecules seem to be large enough to yield a proper solvation
of the studied solutes, to further verify it, for 20 of the studied configurations we also computed the
normal modes of those clusters placed in the cavity of a continuously defined solvent based on the
IEF-PCM continuum solvation model.

For the computation of k3−4 solely with the implicit solvent approach, we calculated the normal
modes using the DSD-PBEP86/QZVPP level of theory and the SMD, CPCM and IEF-PCM continuum
solvation models for both pure and saline water. For the CPCM solvation model, in addition to the
original implementation of this model in Gaussian 16, we also studied scaling the dielectric constant
of the solvent via:

ε̃(ε, x) =
ε+ x
x+1

(19)

for x=0.5, as this was found to be more efficient in improving the accuracy of the CPCM method
[21,50].

For calculation of k3−4 in saline water, the dielectric constant of the saline water required by the
continuum solvation models with the value of 70.35 recommended by Lang et al. [51] was employed.
All the computations were carried out using the Gaussian 16 software [52].

Evaluation of k3−4 via PIMD

To study the anharmonic effects as well as the contributions from the configurational entropies, we
employed PIMD based on the guidelines discussed earlier. To that end, we studied PIMD with 4, 8,
16, 32 and 64 beads. Using switching constants λ linearly distributed between zero and one, 9 isotopic
masses of boron varying between 10.01294 to 11.009305 were assigned via the switching function
defined in eq. (16). The kinetic energies evaluated based on the virial estimator for the studied masses
were then used to calculate k3−4 as described earlier.

The PIMD simulations were carried out in CP2K within the staging approach [53] for a duration
of 500ps, 0.5 fs time step, temperature controlled via Nose-Hoover Chain thermostat with three chains,
periodic boundary condition and the interactions evaluated via GFN2-xTB tight-binding method [46].

For both pure and saline water, the PIMD simulation were carried out in canonical ensemble and
the box size was set to yield 0.995 gr/mol density for the system. For the pure water, the simulation
box contained 64 water molecule and one boric acid or borate. However, for the saline water, to set a
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reasonable molar ratio for water and NaCl as recommended by Zeron et al. [54], we constructed a
simulation box containing one boric acid or borate, 5 NaCl and 572 water molecules.

Results and discussion
The RPFs of boric acid and borate isotopomers calculated for 60 configurations based on the NMA
with explicit solvent and the energy of the solute in each one evaluated by the IEF-PCM solvation
model are reported in table 2. The calculated k3−4 values using different integrations of these data are
reported in table ??. The results obtained via NMA with explicit solvent approach and Boltzmann
weighted integration show the best agreement with the upper limit of the extrapolated results reported
by Rustad et al. (k3−4=1.028) for the same approach and the highest level of theory they employed
[16]. Nevertheless, all these results are slightly lower than the experimental value of 1.0308±0.0023
reported by Klochko et al. [15].

Note that although we report integrated results for 60 configurations, the arithmetic averaging and
the Boltzmann-weighted averaging result in k3−4 values of 1.0263 and 1.0279, respectively. These two
numbers still show a deviation similar to the one between upper and lower limit of the extrapolated
results reported by Rustad et al. [16]. However, the results obtained via the Boltzmann weighted
averaging are in much better agreement with those we obtained via NMA and the implicit solvent
approach as well as PIMD reported in the following, and are almost within the uncertainty of the
experimentally determined values of 1.0308±0.0023 reported by Klochko et al. [15]. This confirms
the robustness of the Boltzmann weighted averaging.

As discussed earlier, for 20 of the studied configurations, we also repeated the optimization and
NMA for the same clusters but placed in the cavity of an implicitly defined solvent. However, our
results showed almost exactly the same values up to 3 significant figures between the two approaches
which implies that the explicit cluster size is large enough to appropriately solvate the studied solutes.

The evaluated RPFs and k3−4 calculated via NMA with implicit solvent are reported in table ??.
These results show an excellent agreement with those obtained via PIMD. These results also imply
the possibility of obtaining accurate results for evaluation of isotope fractionation through the implicit
solvent approach despite its much lower computational challenge and cost. However, it should be
noted that all this has become possible via carefully parameterizing the employed continuum solvation
models to reproduce solvation free energies of numerous solutes in water and thus empirically taking
into account and correcting limitations due to anharmonicity or inefficient canonical sampling [21].
The advantage of NMA with explicit solvent is that it yields results which are obtained entirely from
first principle and therefore can be more reliably employed for new solvents or solutes.

According to the results of NMA with implicit solvent, the evaluated k3−4 for pure and saline
water are almost the same, similar to the results we obtained via PIMD discussed in the following.
These results are also in contrast to the experimentally determined values reported by Klochko et al.
[15] which suggested more diverse values for k3−4 in pure and saline water equal to 1.0308±0.0023



13

Table 2 The RPFs and conformer energies (εi, Hartree/molecule) for boric acid and borate.

 RPF-B(OH)3 𝜀𝑖-B(OH)3 RPF-B(OH)4
- 𝜀𝑖- B(OH)4

-  RPF-B(OH)3 𝜀𝑖-B(OH)3 RPF-B(OH)4
- 𝜀𝑖- B(OH)4

- 

1 1.232289 -252.26 1.201585 -328.159 31 1.233663 -252.263 1.200363 -328.162 

2 1.233101 -252.26 1.200963 -328.161 32 1.231332 -252.26 1.200272 -328.16 

3 1.233308 -252.262 1.202624 -328.159 33 1.231903 -252.261 1.199513 -328.16 

4 1.229193 -252.258 1.200637 -328.16 34 1.233421 -252.258 1.199002 -328.161 

5 1.232274 -252.263 1.201156 -328.157 35 1.231168 -252.257 1.200133 -328.159 

6 1.229627 -252.257 1.201668 -328.16 36 1.232375 -252.257 1.19771 -328.16 

7 1.234888 -252.263 1.198716 -328.161 37 1.231969 -252.264 1.201591 -328.159 

8 1.232739 -252.261 1.203835 -328.157 38 1.231112 -252.261 1.202307 -328.16 

9 1.233192 -252.26 1.200803 -328.161 39 1.233183 -252.261 1.198171 -328.159 

10 1.231513 -252.261 1.200002 -328.161 40 1.233118 -252.262 1.198609 -328.161 

11 1.230923 -252.258 1.197027 -328.159 41 1.23352 -252.263 1.201498 -328.158 

12 1.228097 -252.257 1.196828 -328.158 42 1.231855 -252.261 1.197847 -328.161 

13 1.232589 -252.261 1.195636 -328.16 43 1.231172 -252.261 1.204232 -328.16 

14 1.230915 -252.259 1.198634 -328.16 44 1.229711 -252.259 1.198582 -328.159 

15 1.231508 -252.259 1.20012 -328.158 45 1.232624 -252.261 1.198204 -328.162 

16 1.228483 -252.261 1.201247 -328.161 46 1.233064 -252.263 1.201458 -328.16 

17 1.23445 -252.262 1.203933 -328.159 47 1.23049 -252.259 1.202082 -328.159 

18 1.229549 -252.256 1.201923 -328.16 48 1.231707 -252.262 1.203092 -328.16 

19 1.23069 -252.256 1.198874 -328.158 49 1.232594 -252.262 1.199778 -328.161 

20 1.229597 -252.257 1.196579 -328.16 50 1.230889 -252.26 1.201935 -328.16 

21 1.231391 -252.26 1.19628 -328.16 51 1.230689 -252.257 1.202002 -328.158 

22 1.232017 -252.261 1.198901 -328.161 52 1.234509 -252.261 1.196724 -328.159 

23 1.234101 -252.263 1.20088 -328.161 53 1.230561 -252.258 1.202011 -328.16 

24 1.229961 -252.258 1.204097 -328.16 54 1.232139 -252.26 1.200349 -328.159 

25 1.231632 -252.258 1.204082 -328.159 55 1.233125 -252.263 1.201442 -328.157 

26 1.234181 -252.261 1.198961 -328.158 56 1.231232 -252.257 1.203445 -328.159 

27 1.231185 -252.259 1.200437 -328.159 57 1.229698 -252.254 1.202555 -328.16 

28 1.230308 -252.26 1.19904 -328.162 58 1.233923 -252.261 1.201612 -328.162 

29 1.231356 -252.259 1.195705 -328.16 59 1.230443 -252.258 1.197761 -328.16 

30 1.23166 -252.26 1.200217 -328.161 60 1.229274 -252.255 1.195276 -328.159 
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Table 3 Integrated results of RPFs and the evaluated k3−4.

B(OH)3 B(OH)−4 k3−4
Arithmetic averaging 1.2317 1.2002 1.0263
Boltzmann weighted averaging 1.2330 1.1997 1.0278

Table 4 Calculated RPFs and the evaluated k3−4 via different continuum solvation models
for pure and saline water

Pure water Saline water
B(OH)3 B(OH)−4 k3−4 B(OH)3 B(OH)−4 k3−4

SMD 1.2206 1.182 1.0327 1.2207 1.182 1.0327
IEF-PCM 1.2267 1.1902 1.0306 1.2267 1.1902 1.0306
CPCM 1.2266 1.1901 1.0307 1.2266 1.1901 1.0306
CPCM(x=0.5) 1.2267 1.1902 1.0307 1.2267 1.1902 1.0307

and 1.0272±0.0003, respectively. However, considering that the uncertainty in the experimentally
measured data reported by Klochko et al. for k3−4 in pure water is much higher than those observed
for saline water, implying some overlapping values in between, we can conclude that k3−4 is almost
the same in pure and saline water.
The evaluated k3−4 obtained via PIMD for pure and saline water for different path integral bead
numbers are reported in table ??. These results show that ring polymers with 32 beads yield converged
results for estimated k3−4. These results also show a good agreement with the theoretically predicted
results obtained via NMA as well as the experimentally measured values. Similar to the results
obtained via NMA with implicit solvent, here also the results imply that the k3−4 for both pure and
saline water are not significantly different.

Table 5 Evaluated k3−4 via PIMD for pure and saline water

No. beads Pure water Saline water
4 1.013377 1.013113
8 1.023831 1.02616
16 1.031404 1.030177
32 1.033596 1.030278
64 1.030522 1.030118
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Conclusion
In the present study, theoretical evaluation of k3−4 using high level NMA with the explicit solvent
approach and three different implicit solvent approaches as well as PIMD was studied. By comparing
various high-precision theoretical methods employed in the present study with those reported else-
where by Klochko et al. [15] via experimental techniques and theoretically reported results of Rustad
et al. [16], we can propose the most probable estimation of k3−4 within 1.028 to 1.030 for both pure
and saline water.
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