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Abstract 

The behavior of proteins is closely related to the protonation states of the residues. Therefore,  

prediction and measurement of pKa are essential to understand the basic functions of proteins. 

In this work, we develop a new empirical scheme for protein pKa prediction that is based on deep 

representation learning. It combines machine learning with atomic environment vector (AEV) and 

learned quantum mechanical representation from ANI-2x neural network potential (J. Chem. 

Theory Comput. 2020, 16, 4192). The scheme requires only the coordinate information of a 

protein as the input and separately estimates the pKa for all five titratable amino acid types. The 

accuracy of the approach was analyzed with both cross-validation and an external test set of 

proteins. Obtained results were compared with the widely used empirical approach PROPKA. The 

new empirical model provides accuracy with MAEs below 0.5 for all amino acid types. It surpasses 

the accuracy of PROPKA and performs significantly better than the null model. Our model is also 

sensitive to the local conformational changes and molecular interactions. 

 

 

 

 

 

 

 



INTRODUCTION 

Basic features and the behavior of proteins such as folding or ligand binding, heavily depend on 

the environmental conditions like local protein environment. Titratable amino acids like aspartic 

acid (Asp) or histidine (His) are essential in many biological processes1–5 and can be either 

protonated or deprotonated depending on the local environment. Thus, the decision of the 

ionization states via pKa predictions is a prerequisite to understand the protein function. 

Determination of pKa values via experimental procedures is challenging and the most reliable 

results for proteins can be obtained only with NMR titrations6. This predicament enforces the pKa 

predictions in proteins by means of theoretical applications7. There is a tremendous amount of 

work on theoretical pKa calculations in the literature. These approaches can be classified into 

three categories as i) microscopic methods8,9, ii) macroscopic methods which establish continuum 

electrostatics10, and iii) knowledge-based methods that rely on empirical parameters11,12. 

Among three classes of theoretical pKa calculations, microscopic methods such as quantum 

mechanical (QM) approaches are considered the most reliable ones to compute pKa values of 

small molecules13. The most traditional approach with QM methods is to employ thermodynamic 

cycles by computing protonation/deprotonation free energies in gas-phase and in solution14–23. 

However, these calculations do not always provide reliable pKa values due to reasons such as 

the instability of the species in gas-phase or large conformational differences between gas-phase, 

and in solution17,24 In the case of the proteins, QM approaches are impractical simply due to the 

system size and can only be achieved with model systems consist of local protein environment of 

the residue of interest. Nevertheless, the size of the model and the choice of the local environment 

can alter the theoretical pKa values25.  A more practical microscopic method to compute pKa 

values is the hybrid quantum mechanics/molecular mechanics (QM/MM) approach, in which the 

titratable residue is modeled at a quantum level. At the same time, the remaining media is treated 

with molecular mechanics26–28. Molecular dynamics (MD) based methods such as free energy 

perturbation29,30 and constant pH molecular dynamics (CPHMD) simulations31–41 can provide 

reliable pKa values for protein residues. Combining enhance sampling techniques with CPHMD 

simulations can also improve the accuracy of pKa predictions34,42–47.  Nevertheless, the need of 

fast and reliable approaches to predict pKa values of protein residues can render the microscopic 

methods impractical due to the exhaustive computation time.  

The macroscopic methods can rely on either numerical Poisson−Boltzmann equation (PBE)10,48–

51 or Generalized Born (GB) technique with analytical approximations to electrostatic energies52,53. 

These methods model the proteins as homogeneous medium with a low dielectric constant while 



the environment (solvent) is modeled with a high dielectric constant. The Poisson−Boltzmann 

equation (PBE) based methods and their variations54–60. PBE methods allow modeling the 

accessibility of the solvent to the titratable residues61,62 and multiple ionizable residues within the 

proximity63,64. Even though there are different suggestions for the dielectric constant of proteins 

that varies from 4 to 8065–73, the appropriate value depends on the polarity of the surrounding 

residues and the flexibility of the protein 74,75.  This issue can be addressed by taking the flexibility 

of the protein into account via techniques that involve ensembles of conformers54,76–82. An 

example of such an approach is the Multi-Conformation Continuum Electrostatic (MCCE) method 

which has been shown to successfully predict pKa values of several protein residues with different 

force fields70,83–85.  

Empirical methods are based on statistical fitting of environmental descriptors and parameters to 

the three-dimensional structures of proteins. Even though they do not provide physical insights 

into the molecular determinants of the pKa values, sufficiently accurate predictions for most cases 

combined with their low computational cost make them widespread and favorable. There are a 

variety of empirical tools with comparable accuracies86–88, but PROPKA11,12 is the most widely 

used for protein pKa predictions. Conceptually, PROPKA computes the change of the amino acid 

pKa value from water to a protein environment. In this tool, the environmental perturbation is 

expressed as the sum of perturbation contributions from a protein environment.  

Recent studies with machine learning (ML) algorithms for pKa estimations of transition metal 

complexes provide new empirical schemes89,90. These approaches combine the pattern 

recognition capabilities of ML algorithms with the atomistic and molecular features that are 

obtained with a QM tool. However, this scheme can only be practical for proteins if molecular 

descriptors are obtained with low computational cost, such as neural network potentials (NNPs).  

Over the last decade, NNPs have been shown to provide accuracy approaching of QM 

calculations and comparable computational cost with all-atom force fields. These potentials, such 

as ANI91–98 and AIMNet99, can learn the electronic environment of an atom in conjunction with the 

many-body symmetry functions that arise from the coordinates100,101. Using this learned 

information and combining it with the structural fingerprints that depend on the coordinates, NNPs 

can predict target molecular properties such as energy and forces. Thus, NNPs can be utilized to 

obtain information that stems from the atomic environment, and this information can be used to 

train ML models for protein pKa estimations.  

In this context, we developed an empirical scheme for protein pKa predictions that employs ML 

algorithms for five amino acid types (Asp, Glu, His, Lys, and Tyr). We rely on representation 



learning, i.e., learning representation of the data by automatically extracting useful information 

when ML model is trained. We used ANI atomistic neural network architecture that learns 

molecular representation end-to-end, i.e., directly from atomic coordinates. This molecular 

representation reduces the dimensionality of a molecular structure into a compact vector format 

that encodes important quantum mechanical information. 

METHODS 

Our model provides predictions via the atomic environment and the learned electronic information 

that are obtained with a widely used NNP, ANI-2x96. The workflow for protein pKa prediction is 

depicted in Figure 1. In the present work, each amino acid type is treated separately to improve 

accuracy by ensuring different molecular features for different amino acid types. Models are 

trained and tested over hundreds of experimental pKa values, and the accuracy is also compared 

with the widely used PROPKA12 tool. The presented approach performs significantly better than 

null models and improves the current empirical methods for pKa estimations.  

 

Figure 1. Protein pKa prediction with neural network features obtained with ANI-2x. Each amino 

acid type has its own predictor.  

Reference data for training  

The pKa model is trained and tested with two datasets. The first dataset is obtained from PKAD 

database 102. This dataset consists of over 1500 experimentally measured pKa values of residues 

on both wild type (WT) and mutant proteins. The second dataset consists of 337 entries that were 

extracted from primary literature103–127. Mutation of a residue on a protein can cause significant 



conformational changes that alter the amino acids' electronic environment in proximity to the 

mutation site. However, not all mutant proteins have crystallographic structures deposited to the 

databanks. Extensive conformational sampling must be performed to account for the 

conformational alteration due to the mutations. Since conformational sampling is out of the scope 

of this study, all mutant protein entries were excluded from datasets. Our model is trained only for 

WT proteins. This selection results in training and test datasets containing entries from 186 WT 

PDB structures. The distribution of the pKa values in training and test datasets can be found in 

Supporting Information (Figure S.1). For this initial proof of principle model, only five titratable 

residues (GLU, ASP, LYS, HIS and TYR) are selected as targets for pKa predictions.  

Data curation  

Crystallographic structures of 187 WT proteins are obtained from the PDB. A flowchart for data 

preparation prior to the training can be found in Supporting Information (Figure S.2). In 

conventional PDB files, the crystallographic structures can involve entries other than proteins and 

nucleotides, such as ligands, mobile counterions, metal ions, or water molecules. It is important 

to state that the presence of a co-factor or a ligand can alter the pKa of residues within a protein. 

However, any entry other than proteins and nucleotides is removed from PDB structures due to 

two reasons. First, the number of atomic species that are defined in a neural network potential 

(NNP) is currently limited to nonmetals. This limitation prevents inclusion of HETATM entries that 

can have atomic species that NNP does not define. Second, the conditions in experimental 

procedures for pKa determination and the crystallographic data preparation can be different. PDB 

entries correspond to constrained structures obtained using either X-ray or neutron diffractions, 

requiring specific strategies to achieve crystallographic packing. For example, many PDB entries 

tend to contain mobile counterions due to the packing procedures and these ions mainly do not 

exist in experimental pKa determinations.  

After the clean-up of PDB entries, missing heavy atoms and H atoms are added with tleap module 

of AmberTools21128 using ff14SB force field for proteins129 and BSC1 force field for DNA130. For 

titratable protein residues, standard protonation states are assumed. To prevent any possible 

steric clashes after the addition of missing atoms, very short gas-phase minimizations (250 steps 

of steepest descent followed by a conjugate gradient up to 500 steps in total) are performed using 

sander module of AmberTools21128.  

 

 



Descriptor Calculations 

Minimized structures are used as inputs for NNP to compute all descriptors. A detailed description 

of ANI neural network potential and corresponding descriptors can be found in elsewhere 96,100. 

Briefly, In ANI-type NNPs, the environment of the atomic species in the given coordinate system 

is transformed to atomic environment vectors (AEVs) that contain radial and angular contributions. 

Since the pKa of amino acids in proteins are sensitive to the neighborhood environment, naturally, 

AEVs were chosen as candidates for pKa descriptors. Additionally, different neural network 

embeddings were chosen as learned representations. Therefore, 2nd and 3rd layers of atomic 

neural network embeddings are selected as additional descriptor candidates. In both cases, AEVs 

and NN embeddings descriptors correspond only to the heavy atoms of titratable residues.  

Feature importance and training  

We observed that many features in the overall descriptor were redundant or highly correlated. To 

eliminate the redundant features, a three-step filtering procedure is adopted. First, noninformative 

features (values of 0.0) for all reference data are removed. Second, correlation of the features is 

computed, and highly correlated features (correlation coefficient > 0.95) are eliminated. Third, a 

recursive feature elimination (RFE)131 process is performed using a random forest regressor 

(RF)132 algorithm as implemented in the scikit-learn package133. RFE is a technique that allows 

defining least important features using an importance ranking, and it has been shown that ML 

models benefit from it134. The pseudo-code for RFE is depicted in Figure 2. In each recursive step 

of the procedure, the feature importance is measured, and a desired number of features are kept 

(𝐹†) by removing less important ones. The new feature list is used to perform training with RFR 

using 1000 decision trees. A final set of features (𝐹‡) is defined by the local model that has the 

best coefficient of determination for predictions over out-of-bag samples. After obtaining the final 

set of features, a 10-fold cross validation (CV) is performed with RFR using same settings for 

training in feature elimination process.  



 

Figure 2. Pseudo-code for feature selection with recursive feature elimination (RFE). 

Molecular dynamics simulations and clustering 

Two different ionization states of ASP26 (neutral: ASH, and negatively charged: ASP) on human 

thioredoxin conformer (PDB ID: 3TRX) are considered. Topology and coordinate files are built 

with the default ionization states for residues in ff14SB force field for proteins129 using tleap 

module of AmberTools21128. The samples are neutralized using Na+ counter ions; 4Na+ for the 

sample containing neutral ASP, and 5 Na+ for the sample containing negatively charged ASP. To 

provide salt concentration, 5 Na+ and 5 Cl- counter ions are added to the samples. Waters in the 

original crystal structure are deleted, and the samples are solvated using TIP3P water 

molecules135 with a distance between solute and the edge of the box as 12Å, which results in an 

average box dimension of 66.8 Å x 69.7 Å x 62.3 Å. 

Simulations are performed using CUDA version of AMBER20's pmemd module128,136,137. A time 

step of 1.0fs is used along with Berendsen temperature coupling 138 and SHAKE algorithm139 for 

the bonds involving hydrogen atoms. The particle mesh Ewald summation (PME) technique140 is 

employed using a cutoff distance of 8 Å.  An 11-step equilibration procedure141 that consists of 

harmonic restraints on protein residues and its reduction in each step at 10K, which is followed 

by the gradual heating of samples to 300K with a gradual harmonic restrain reduction at 300K. A 

100ns long production simulation is performed using equilibrated samples for both samples. 

Production trajectories are used to cluster the frames using a hierarchical agglomerative (bottom-

up) approach as implemented in cpptraj module of AMBERTools21 128. Clustering is performed 

using root mean square method as the distance metric for carboxyl group of ASP26 side chain 

(ASH26 in case of neutral ASP). It is finalized when the minimum distance between the clusters 



is larger than 1.5 Å. The best cluster representatives are selected using the lowest cumulative 

distance to all the other frames in the same cluster.  

RESULTS AND DISCUSSION 

There has been a surge of approaches looking to learn a representation that directly encodes 

information about molecules142,143. The idea behind representation learning is to learn a mapping 

that embeds molecular structures as points in a low-dimensional vector space144. The goal is to 

optimize this mapping so that relationships in the embedding space reflect the similarities between 

objects. After optimizing the embedding space, the learned embeddings can be used as feature 

inputs for downstream machine learning tasks. The key distinction between representation 

learning and traditional descriptor calculations is how they treat the molecular structure problem. 

Descriptors treat this problem as a pre-processing step, using domain knowledge and hand-

crafted rules to extract molecular information. In contrast, representation learning treats this 

problem as a machine learning task, using a purely data-driven approach to learn embeddings 

that encode molecular structure.  

The pKa of an amino acid on a protein can be affected by different environmental features such 

as amino acids in proximity or solvent access. The surrounding amino acids can be encoded 

through so-called atomic environment vectors (AEVs) which can be obtained with popular 

atomistic neural network potentials like ANI 96. Even though the presence of the solvent cannot 

be modeled with the current ANI-2x implementation, the gas-phase electronic-structure 

contributions can be addressed with neural network embeddings. These embeddings would 

provide information regarding the electronic environment of the titratable residue.  

To show the utility of the representation learning, we first performed a simple exercise. We 

extracted 3D structures for 171 natural and non-natural amino acids from SwissSidechain 

database145. Figure 3 shows a 2D t-Distributed stochastic neighbor embedding (t-SNE)146   

projection of atomic embeddings for oxygen and nitrogen atoms based on 3rd  (top) layer neural 

network. Naturally, Oxygen and Nitrogen atoms show two distinctly different clusters 

corresponding to each element.  

Inside the Oxygen cluster, titratable groups like sidechain carboxyls, aliphatic and aromatic 

alcohols are spread out. This is possible due to the very different environments modulated by 

non-natural amino acids. We hypothesized that the difference in embedding vectors should reflect 

the acid-base properties of these groups too. Therefore, these embedding vectors could be used 

as descriptors for empirical pKa prediction. For the sake of completeness, we will consider all 



possible descriptors i.e., AEV, and 2nd and 3rd layer neural network embeddings obtained with 

ANI-2x model as an initial set of descriptors. 

 

Figure 3. t-Distributed stochastic neighbor embedding (t-SNE) maps depicting similarity of 3rd 

layer neural network embeddings for oxygen and nitrogen atoms located on structures from 

SwissSidechain database 145. The backbones of the corresponding structures ensure zwitterion 

form with NH3
+ (backbone-amine) and COO- (backbone-carboxyl) as backbone groups.  

To assess the performance of ML models with ANI-2x descriptors, the available pKa data is 

divided into training and test subsets. Different ML algorithms were tested, and the accuracies 

were analyzed. Results obtained with different procedures are depicted in supporting information 

(see Figure S.3). We observed that linear regression (LR) and support vector machines (SVMs) 

with linear kernel yielded similar results. Training with the RF provided more reliable results with 

MAEs about 0.5, while the inclusion of recursive feature elimination (RFE) improved the accuracy 

even further. RFE resulted in a feature space of about 10 to 100 descriptors for amino acids. We 

observed that the features belong to the side chains and the features belong to the backbone 

atoms are selected as important descriptors. That can be related to the learned inductive 

(through-bond) effects. Feature elimination revealed that even though most of the descriptors 

from the initial feature list are eliminated, all the feature classes are preserved in the final feature 



list. These results indicate that pKa predictions require the information regarding the atomic 

environment of titratable residue and electronic information encoded by the neural network 

embeddings of the NNP.  

First, the model accuracy was accessed with K-fold cross-validation. To compare the accuracy of 

our model, pKa values for the whole training dataset are also predicted with Propka 3.112. The 

results obtained with the ML model, Propka, and the null model for GLU, ASP, and HIS are 

depicted in Figure 4 (see Supporting Information Figure S.4 for LYS and TYR). It was found that 

the coefficient of determinations (𝑟2) for all amino acid types are above 0.6 with ML model (except 

for LYS, 𝑟2 = 0.31) while mean absolute error (MAE) for all amino acid types are below 0.5 pKa 

units. In case of Propka, predictions have  𝑟2 < 0.3 and 𝑀𝐴𝐸 > 0.6 with GLU and ASP being the 

most reliable predictions. Interestingly, Propka yields similar or less reliable results relative to the 

null model ( 𝑝𝐾𝑎̂ =  𝑝𝐾𝑎
̅̅ ̅̅ ̅ ), especially for HIS, LYS and TYR. These results might be due to the 

Propka computation scheme which considers the shift of the pKa value for the amino acid from 

water to protein (∆𝑝𝐾𝑎
𝑤𝑎𝑡𝑒𝑟→𝑝𝑟𝑜𝑡𝑒𝑖𝑛) 11, while the ML model is trained directly for pKa values in 

protein environment using a relatively larger training set. The number of 𝑝𝐾𝑎̂
𝑒𝑟𝑟𝑜𝑟

> 1.0 is 

computed for all amino acid types (𝑁𝑒𝑟𝑟𝑜𝑟>1.0) for experimental pKa (𝑝𝐾𝑎
𝑒𝑥𝑝) values that are 1.0 

unit below/above than the pKa value of the corresponding amino acid in water (𝑝𝐾𝑎
𝑤𝑎𝑡𝑒𝑟). The 

results are depicted in Table 1. We see that the 𝑁𝑒𝑟𝑟𝑜𝑟>1.0  with ML model are about twice smaller 

than with Propka for all amino acid types. These results indicate that ML model predictions are 

more reliable for all amino acid types that has a water to protein pKa shift that is at least 1.0 unit 

(|∆𝑝𝐾𝑎
𝑤𝑎𝑡𝑒𝑟→𝑝𝑟𝑜𝑡𝑒𝑖𝑛| ≥ 1.0). 

Table 1. Number of experimental pKa values that are 1.0 pKa unit lower or larger than the pKa in 

water (𝑁𝑒𝑥𝑝) and the number of prediction errors that are above 1.0 pKa unit (𝑁𝑒𝑟𝑟𝑜𝑟>1.0). 

Amino acid pKa range 𝑵𝒆𝒙𝒑 𝑵𝒆𝒓𝒓𝒐𝒓>𝟏.𝟎
𝑴𝑳 𝑴𝒐𝒅𝒆𝒍  𝑵𝒆𝒓𝒓𝒐𝒓>𝟏.𝟎

𝑷𝒓𝒐𝒑𝒌𝒂
 

GLU pKa<3.5 & pKa>5.5 68 12 21 

ASP pKa<2.8 & pKa>4.8 93 27 35 

HIS pKa<5.5 & pKa>7.5 85 20 55 

LYS pKa<9.5 & pKa>11.5 16 7 8 

TYR pKa<9.0 & pKa>11.0 28 0 8 



 

 

Figure 4. The accuracy of the predictions of experimental pKa values for a) 10-fold cross 

validation predictions with ML model for GLU, b) 10-fold cross validation predictions with ML 

model for ASP, c) 10-fold cross validation predictions with ML model for HIS, d) GLU using 

Propka, e) ASP using Propka, f) HIS using Propka, g) GLU with Null model, h) ASP with Null 

model, i) HIS with Null model. 

The ML models were also evaluated with the external test dataset of pKa values from 33 different 

proteins that do not appear in the training data. Results for GLU, ASP and HIS amino acids are 

depicted in Figure 5 (LYS and TYR test results can be found in SI Figure S.5). We found that ML 

models for all amino acid types provide predictions with 𝑀𝐴𝐸 < 1.0, where GLU and LYS yield 

better predictions (𝑀𝐴𝐸 < 0.5) relative to the other amino acids. The higher MAE values, 



especially in the case of ASP are related to outliers that have very high/low experimental pKa 

values for the corresponding amino acid (high |∆𝑝𝐾𝑎
𝑤𝑎𝑡𝑒𝑟→𝑝𝑟𝑜𝑡𝑒𝑖𝑛|).  

 

Figure 5. Test set predictions with ML models trained with descriptors obtained with ANI-2x. 

Two test set cases are selected to investigate the underlying reason for the errors in certain 

predictions: GLU7 predictions for hen egg white lysozyme conformers and ASP26 predictions for 

recombinant human thioredoxin conformer (Figure 6). The hen egg lysozyme white (HEWL) test 

set comprises seven different crystallographic structures with multiple conformer configurations 

for GLU7 residue (Figure 6a). In all HEWL conformers, there is at least one positively charged 

residue within 5Å of GLU7; ARG5 in all conformers, LYS1 in every conformer except 1E8L, and 

Arg14 for all conformers except 1E8L, 1LSA, and 4LYT.  It is observed that GLU7 in three 

conformers (1AKI, 1LSA, and 4LYT) is in close proximity to LYS1, promoting a H-bond interaction 

(𝑅𝐺𝐿𝑈7−𝐿𝑌𝑆1
𝑠𝑖𝑑𝑒 𝑐ℎ𝑎𝑖𝑛 < 3.0Å). In the other four HEWL conformers, there is no H-bond interaction between 

these residues since GLU7 is rotated to the opposite direction of LYS1 residue. Interestingly, the 

prediction errors for the conformers with GLU7-LYS1 side chain interaction are lower than 1.0 

while the prediction errors for the conformers that do not contain this interaction are higher than 

1.0 pKa unit. The prediction errors for the same residue with CPHMD simulations were reported 

approximately 0.8 and 1.3 with explicit and implicit solvent respectively45. These results indicate 

that the model is highly sensitive to the conformational states of the residues and provides similar 

results with CPHMD simulations.  

Another test case is the ASP26 on recombinant human thioredoxin (PDB IDs: 3TRX and 4TRX). 

Here we see prediction errors of more than 4.0 pKa units for both conformers. The pKa of this 

residue is reported as 9.9, which indicates that this residue is in neutral form. Thus, the effect of 

different ASP26 states (charged and neutral) on thioredoxin is investigated with conformers 

obtained from molecular dynamics (MD) simulations. Since there is no distinctive conformational 



difference between two thioredoxin crystallographic structures, simulations were performed only 

with 3TRX. After 100ns long MD simulations, the trajectories are clustered to find the most 

populated cluster and its representative (Figure 6b). These representatives (negatively charged 

ASP: MD-ASP26, neutral ASP: MD-ASH26) are then used to predict the pKa values of ASP26. In 

the case of neutral ASP residue in MD-ASH26 conformer, the proton on the side chain is removed 

before the pKa prediction since the model is trained with negatively charged ASP. It is observed 

that ASP26 confirmation does not alter drastically, but the conformations of three surrounding 

residues (SER28, LYS39, GLU56) are affected with different ionization states of ASP. In both test 

set and MD-ASP26 conformers, LYS39 and GLU56 share a hydrogen bond, while this interaction 

does not exist in MD-ASH26 conformer. 

Additionally, the hydrogen bond interactions between ASP26 and SER28 in both test set and MD-

ASP26 conformers are not observed in MD-ASH26. Instead, SER28 in MD-ASH26 forms a 

hydrogen bond interaction with GLU56. Predictions with the ML model reveal that the error 

increases with MD-ASP26 conformer (error=6.18) and reduces more than 1.5 units with MD-

ASH26 conformer (error=2.53) relative to the test set conformer. These results point out the 

conformer sensitivity of the ML model and possible discrepancies between the crystallographic 

and the experimental conformers that causes the prediction error. 

 

Figure 6. Three-dimensional representations of a) hen lysozyme conformers in test set with their 

PDB IDs. b) thioredoxin (PDB ID: 3TRX) conformer in test set (gray), most populated conformer 

obtained after molecular dynamics simulations with protonated ASP26 (purple), and most 

populated conformer obtained after molecular dynamics simulations with ASP26 (green). 

Prediction errors for all cases are depicted within parentheses.  

Final ML models are trained using both the training and the test datasets following the same 

procedure for feature elimination and tests with 10-fold cross-validation. The accuracy of the 



predictions is compared with Propka and the Null model. All results are depicted in Figure 7. The 

RMSE values for all amino acid types are computed below 1.0 with ML models, while Propka 

predictions, except for ASP, yield higher RMSE values than the null models. A similar pattern is 

observed for MAE values. Final ML models predict experimental pKa values with MAEs below 

0.5, while MAEs obtained with Propka predictions are substantially higher. 

Interestingly, Propka pKa predictors have MAEs similar to or even worse than the null models. To 

our knowledge, the model presented in this work is the first empirical model that performs 

statistically significantly better than the Null model for all titratable residues. Finally, the coefficient 

of determination for pKa predictions with ML models is at least twice as large as that of Propka 

for all amino acid types.  

 

Figure 7. Comparison of final model with propka and null models 

Exploring the high dimensional pKa training and test data in terms of similarity is impossible 

without dimensionality reduction. Thus, t-SNE 146 is used to reduce the high dimensional data by 

transforming it into two-dimensional similarity maps. Such visualization allowed us to align similar 

residues and cross-reference them by the corresponding pKa values. 2D t-SNE maps for GLU 

and HIS amino acids are given in Figure 8 (see Figure S.6 for LYS and TYR amino acids). 

Generally, residues with high or low experimental pKa values are well separated except for some 

outliers, and residues on the same class of proteins form small clusters together. For instance, 

GLU7 from hen egg-white lysozyme (HEWL) and turkey egg-white lysozyme (TEWL) form 

clusters 𝒂𝒊 (Figure 8a). Among these clusters 𝒂𝟓 involves entries from both species (TEWL PDB 

IDs: 1LZ3, 135L and HEWL PDB IDs: 1LSA, 1LSE, 1LYS). Clusters are shown with 𝒃𝒊 on Figure 



8a corresponds to the GLU35 residues on HEWL and TEWL proteins. Other examples of such 

clusters correspond to GLU2 residues on bovine Ribonuclease A (cluster 𝑐, Figure8a), and 

GLU73 residue on Barnase (clusters 𝑑𝑖, Figure 8a). A similar pattern is observed with HIS amino 

acid (Figure 8b). Residues in the same class of proteins form small clusters such as cluster 𝒂 for 

GLU162 on Bacillus agaradhaerens family 11 xylanase, cluster 𝒃 for HIS36 on myoglobin from 

sperm whale and horse, and clusters 𝒄𝒊 for HIS72 on bovine tyrosine phosphatase.  

 

Figure 8. t-Distributed stochastic neighbor embedding (t-SNE) maps depicting similarity of 

descriptors after recursive feature elimination for (a) GLU residues, (b) HIS residues. Each data 

point is colored by the corresponding experimental pKa values.  

As mentioned before, pKa models are sensitive to conformers, and t-SNE maps show some 

outliers. An example of such cases can be seen in Figure 9, which depicts the t-SNE map for ASP 

amino acids. For instance, ASP26 in recombinant human thioredoxin conformer in the test set 

(PDB ID: 3TRX) is an outlier (arrow 𝒂 on Figure 9) on t-SNE map. This point is in proximity to 

ASP67 on the tenth type III cell adhesion module of human fibronectin (PDB ID: 1FNA, pKa=4.2), 

ASP77 on fungal elictor (PDB ID: 1BEG, pKa=2.61), and ASP28 on black rat cell adhesion 

molecule CD2 (PDB ID: 1HNG, pKa=3.57). The experimental pKa of ASP26 on human thioredoxin 

is 9.9 while its neighbors have pKa values all below pKa=5.0, which results in high prediction error. 

The positions of residues from MD simulations (MD-ASH26: neutral ASP and MD-ASP26: 

negatively charged ASP) are shown with arrows 𝒃 and 𝒄 on Figure 9. The t-SNE map shows that 

MD-ASH26 conformer (arrow 𝒃) is neighboring with thioredoxin from E.coli (PDB ID: 2TRX, 

pKa=7.5). In contrast, MD-ASP26 conformer (arrow 𝒄) is neighbor to bovine ribonuclease A  

ASP14  (PDB ID: 3RN3, pKa=2.0). The error of pKa prediction increases with MD-ASP26 



conformer and decreases with MD-ASH26 conformer. These observations point out that the 

descriptors obtained from ANI-2x NNP can effectively predict pKa of an amino acid by describing 

its environment. The prediction errors are closely related to the differences in crystal and the 

experimental conformers.   

 

Figure 9. t-Distributed stochastic neighbor embedding (t-SNE) maps depicting similarity of 

descriptors after recursive feature elimination for ASP residues. Conformers for 3TRX (Test set 

conformer, conformer obtained from MD simulations with negatively charged ASP26, and neutral 

ASH26 side chains) are shown with arrows. Each data point is colored by the corresponding 

experimental pKa values.  

CONCLUSION  

The presented work demonstrates the capabilities of neural network potentials to provide pKa 

descriptors for knowledge-based methods.  The learned representation can be used to describe 

the chemical environment of amino acids in proteins. As the neural network potentials emerge as 

an alternative to the all-atom potentials, reliable pKa descriptors can be obtained faster with their 

employment. ML models presented in this work is the first empirical model that performs 

significantly better than the null model for all titratable residues. 

 



A new empirical scheme for pKa prediction of amino acids in proteins uses an ML model with 

descriptors calculated on ANI-2x NNP. The quantum mechanical information, which depends on 

the local chemical environment, is obtained from the top layers of neural network embeddings. 

These descriptors are used for training with the RF model to predict pKa values. It is found that 

the adoption of RFE slightly improves the accuracy and yields to the number of features ranging 

from 25 to 100 in the final model.  

The accuracy of the pKa estimations is accessed via 10-fold CV, and the results are compared 

with the null models and Propka predictions. It is found that the model presented in this work 

performs better than the null model and Propka. The RMSE of the pKa predictions is below 0.7 

except for His (0.72) with both the initial and the final models. The MAEs for all amino acid types 

are found below 0.5, again for the initial and the final models. In the case of Propka, the calculated 

RMSEs are over 1.0 except for Glu and Lys residues which are still over 0.7. The computed MAEs 

for Propka predictions (all above 0.6) show that Propka performs almost on par – if not worse – 

with the null model.  

Further evaluations with an external test set not included in training data show a  slight increase 

in RMSEs and MAEs. Among the external test set, two cases are selected to explore the principal 

reason for errors. The conformational differences of GLU7 on HEWL structures and their 

respective prediction errors indicate that the ML model is sensitive to the conformational 

differences. The latter case involves representative structures for ASP26 on recombinant human 

thioredoxin that are obtained with MD simulations (both with neutral and ionized ASP26 side 

chain). The pKa predictions with these representatives confirm the conformational sensitivity of 

the ML model. Conceptually, a protein pKa predictor should be sensitive to conformational 

alterations. Two test cases demonstrate the capability of the ML model in distinguishing different 

conformational states. Therefore, the errors obtained with the presented models are closely 

related to the conformational discrepancies between the crystal (fixed) and experimental (flexible) 

structures. 
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