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Abstract

Allostery is a fundamental process in regulating proteins’ activity. The discovery,

design and development of allosteric drugs demand for better identification of allosteric

sites. Several computational methods have been developed previously to predict al-

losteric sites using static pocket features and protein dynamics. Here, we present a

computational model using automated machine learning for allosteric site prediction.

Our model, PASSer2.0, advanced the previous results and performed well across mul-

tiple indicators with 89.2% of allosteric pockets appeared among the top 3 positions.

The trained machine learning model has been integrated with the Protein Allosteric

Sites Server (https://passer.smu.edu) to facilitate allosteric drug discovery.
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1 Introduction

In biochemistry, allostery is a fundamental process that regulates a protein’s functional

activity. In allosteric regulation, an effector molecule binds a protein at a site (allosteric

site) other than its active site, often resulting in conformational and dynamical changes.1,2

There are many reasons why allosteric drug development holds promise: the medicines

delivered are more selective and less toxic; they produce fewer side effects;3,4 they can either

activate or inhibit proteins; they can be used in conjunction with orthosteric drugs. Due to

these advantages, the usage of allosteric drugs has gradually increased in recent years.

So far, several methods have been developed to detect and predict allosteric sites in

proteins, such as normal mode analysis,5 molecular dynamics (MD) simulations6 and ma-

chine learning (ML) models.2,7–9 Several current methods are available as web servers or

open-source packages, such as AllositePro,10 AlloPred,11 SPACER,12 PARS13 and PASSer.9

These studies have demonstrated the feasibility of allosteric sites prediction using methods

which combine pocket features and protein dynamics. In these studies, features are calcu-

lated by site descriptors describing chemical and physical properties of protein pockets, while

the protein dynamics are extracted from molecular dynamics (MD) simulations.

The past decade has witnessed the rapid development of machine learning. ML methods

have been shown to be superior in the classification of protein pockets. Allosite2 and Allo-

Pred11 used support vector machine (SVM)14 with curated features. Chen et al15 used ran-

dom forest (RF)16 to construct a three-way predictive model. Our previous study9 used an

ensemble learning method combining the results of eXtreme gradient boosting (XGBoost)17

and graph convolutional neural networks (GCNN).18

Recently, automated machine learning (AutoML) has emerged as a novel strategy to

implement machine learning methods to solve real world problems.19–21 It has been widely

applied in nucleic acid22 and disease studies.23,24 As the name suggests, AutoML helps to

automate the machine learning pipeline, from data processing, model selection and ensem-

bling to hyperparameter tuning without expert knowledge. This saves human power from the
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time-consuming and iterative tasks of machine learning model development.19 Also, AutoML

offers the opportunities to produce simpler solutions with superior model performance.21

In this study, we applied AutoGluon,25 an AutoML framework developed by Amazon

Web Services, for the prediction of protein allosteric sites. Our model, PASSer2.0, is shown

to be robust and powerful under various indicators.

2 Methods

2.1 Protein database

The data used in this work was collected from the Allosteric Database (ASD).26 There

are a total of 1949 entries of allosteric sites, each with different proteins and modulators.27

To ensure protein quality and diversity, 90 proteins were selected using the previous rules:2

protein structures with either resolution below 3 angstroms or missing residues in the al-

losteric sites were removed; redundant proteins that have more than 30% sequence identity

were filtered out. The names and IDs of the 90 proteins are extracted from the Protein

DataBank28,29 and listed in Table ??.

2.2 Site descriptors

FPocket algorithm30 is used to detect pockets on the surface of the selected proteins. A

pocket is labeled as either 1 (positive) if it contains at least one residue identified as binding

to allosteric modulators or 0 (negative) if it does not contain such residues. Therefore, a

protein structure may have more than one positive label. A total of 2123 pockets were

detected with 133 pockets being labeled as allosteric sites. For each of the detected pockets,

19 numerical features are calculated from FPocket and are listed in Table ??.

3



Table 1. Binary classification results in confusion matrix.

Real positive Real negative
Predicted positive True positive (TP) False positive (FP)
Predicted negative False negative (FN) True negative (TN)

2.3 Automated Machine Learning

State-of-the-art ML performance normally requires extensive domain knowledge and ex-

perience. This process includes data preparation and preprocessing, feature engineering,

model selection and hyperparameter tuning, which are time-consuming and challenging even

for experienced practitioners. Automated machine learning aims to free human effort from

this process. Developed by Amazon Web Services, AutoGluon25 automates these ML tasks

and achieves the best performance with no machine learning experience required. More-

over, AutoGluon includes techniques for multi-layer stacking that can further boost ML

performance.

AutoGluon is advantageous in: (1) simplicity: straightforward and user-friendly APIs;

(2) robustness: no data manipulation or feature engineering required; (3) predictable-timing:

ML models are trained within the allocated time; (4) fault-tolerance: the training process can

be resumed after interruption. Also, AutoGluon is an open-source library with transparency

and extensibility.

In the current study, AutoGluon v0.2.0 is applied with base models listed in Table ??.

2.4 Performance indicators

For binary classification, the results can be classified as Table 1. This confusion matrix

can visualize and evaluate models performance.

Various indicators were used to quantify model performance: (1) precision measures how

well the model can predict real positive labels; (2) recall measures the ability to classify True

Positive and True Negative; (3) F1 score is the weighted average of precision and recall.

The indicators are calculated as shown from equation 1-3. The higher the values of these
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indicators, the better the model’s performance.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 score =
2× Precision× Recall

Precision + Recall
(3)

3 Results and Discussion

From the perspective of data quality, data collection and processing is important in

machine learning problems. In terms of data collection, the annually updated Allosteric

Database (ASD) provides allosteric proteins and allosteric sites with high resolution, bring-

ing opportunities for allosteric site prediction. The selected proteins are processed by the

geometry-based algorithm, FPocket, to identify pockets, which are further used to predict

allosteric sites. Compared with other web server and open-source pocket detection packages,

FPocket is superior in execution time and the ease to be integrated with other models.

Data imbalance happens in a classification problem where the samples are not equally

distributed per class. In the current study, there are a total of 2123 pockets detected with

133 being labeled as positive (allosteric sites). The positive labels only make up 6.26%

of the dataset, thus leading to an imbalanced data. Data imbalance normally leads to an

unsatisfactory model performance, as the training model could not learn sufficiently from

the limited minority examples.

There are mainly two effective ways, oversampling and undersampling, to handle imbal-

anced dataset. Oversampling expands the size of the minority class by randomly duplicating

existing examples or generating new but similar examples. However, this could results in

overfitting for some machine learning models. Also, in the context of protein allosteric sites,

the generated allosteric sites may not be biologically reasonable. Due to these reasons, ran-
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Figure 1. The ratio between negative and positive labels are tuned. The ratio value was
adjusted from 1 to 10. Model was trained in 10 independent runs for each ratio. The mean
and standard deviation of each metric was calculated. A ratio of 5 is considered reaching a
balance between recall and precision with the highest F1 score.

dom undersampling was used to balance the dataset. Specifically, for each positive label, a

fixed number of negative labels were randomly selected in the same protein.

The ratio between the number of negative and positive labels were tuned with results

plotted in Figure 1. The ratio value was changed from 1 to 10 along with the original data

distribution. Precision, recall and F1 score were calculated for each ratio. A ratio of 5

(number of negative labels : number of positive labels = 5 : 1) reached a balance between

the precision and recall with the highest F1 score.

Feature selection is of fundamental importance in machine learning projects. It enables

faster training time, reduces model complexity and reduces overfitting. Many machine learn-

ing models can benefit from this process with better performance.31 In the current study, fea-

ture selection was conducted through the calculation of feature importance, which is defined

as permutation importance.32 A feature’s importance value indicates the performance drop
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Table 2. Performance indicator values for feature selection. Several features with negative
feature importance were dropped to improve the model performance.

Indicators Original features Tuned features
Precision 0.803 ± 0.063 0.824 ± 0.064

Recall 0.596 ± 0.070 0.647 ± 0.071
F1 Score 0.681 ± 0.071 0.725 ± 0.077

when model making predictions with this feature being randomly shuffled. Higher feature

importance represents a more important role for the model’s performance. As for negative

feature importance, the model suffers from the information introduced by this feature, which

undermines the model performance. Thus, the features with negative contribution will be

removed to achieve a better performance.

As mentioned above, there are 19 numerical features obtained from FPocket. These

features are related with the physical and chemical situations of protein sites. The feature

importance is calculated with mean and standard deviation for each feature with results

listed in Table ??. There are several features (number of alpha spheres, mean local hy-

drophobic density, polarity score, alpha sphere density and center of mass) with negative

feature importance. These features are dropped to improve model performance. The predic-

tion performance before and after dropping these features are listed in Table 2. It is shown

that the values of all three indicators increased.

Stacking is an ensemble algorithm in machine learning. It applies a meta-learning al-

gorithm to learn to combine different machine learning models in the best arrangement to

boost model performance. The main idea of stacking is using predictions of machine learning

models from the previous level as input variables for models on the next level.33 AutoGluon

framework uses a multi-layer stacking with k-fold bagging to reduce model’s variance. The

number of layers and the value of k are heuristically determined within the framework.

The model’s performance under non-stacking and stacking are listed in Table 3. F1 score

was drastically increased through stacking. While the overall performance is improved, the

values of the two indicators (precision and recall) behaved differently. Precision is higher
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Table 3. Fine-tuning results of model stacking. Performance indicators were calculated for
each setting in 10 independent runs.

Indicators Non-stacking Stacking
Precision 0.824 ± 0.064 0.692 ± 0.077

Recall 0.647 ± 0.071 0.832 ± 0.078
F1 score 0.725 ± 0.077 0.748 ± 0.087

Figure 2. Model performance with different training time. A training time of four was
chosen with high F1 score. There was no significant increase in all three indicators for longer
training time.

than recall in the non-stacking setting while recall is higher than precision in the stacking

setting.

Recall is the fraction of true positive labels being retrieved, and precision is the fraction

of correct predictions on the positive labels. For the purpose of identifying true allosteric

sites, a high value in recall is more desired than a high value in precision, because it is more

desired to retrieve all real allosteric sites and do further computational study than to have

a model that seldom classifies pockets as allosteric sites.

Machine learning models often suffer from underfitting with limited training time. Intu-

itively, increasing the training time leads to the improvement of performance. In order to

fully train each basic classifier, model performance is evaluated with increasing training time

as shown in Figure 2.
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Table 4. Model evaluation and comparison. We applied our model to the test set for
evaluation. PASSer2.0 displays better performance than PASSer and Allosite in all three
performance indicators.

Indicators PASSer2.0 PASSer Allosite2

F1 score 0.790 ± 0.071 0.782 0.761
Precision 0.730 ± 0.063 0.726 0.688

Recall 0.862 ± 0.073 0.847 0.852

Table 5. Probabilities of ranking allosteric sites among the top 3 positions. 89.2% of
allosteric sites appeared among the top 3 positions, higher than the previous results.

Top 1 Top 2 Top 3
PARS13 44% 62% 73%

AlloPred11 57.5% 70.0% NAa

PASSer9 60.7% 81.6% 84.9%
PASSer2.0 62.5% 83.2% 89.2%

a Not available in the reported results.

When the training time was increased from two minutes to four minutes, the performance

indicators increased as expected. However, there was no significant improvement as the

training time was increased to five minutes. In addition, the model tends to be unstable

with higher variance in F1 score. Therefore, the training time was chosen as four minutes.

After refinements described above, we achieved the final model. The model was tested

using the testing set with results listed in Table 4. Compared with the results from Allosite

and PASSer, our model exhibited higher F1 score, precision and recall rates. The relatively

small standard deviation indicates the stability of our model.

It is expected that a powerful machine learning model is capable of ranking allosteric sites

on the top positions. In the current study, we evaluated the ranking power of our models

by calculating the fraction of allosteric sites on the top 1, 2, and 3 positions and compared

it with other models (Table 5). The result indicates that 89.2% of allosteric sites appeared

among the top three positions from all detected pockets in the same protein.

In addition, we tested our model using two proteins that are not included in the selected

90 proteins. These two proteins represent two types of allosteric proteins: dynamics-driven

and conformational-driven. The second PDZ domain (PDZ2) is a typical dynamics-driven
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(A) (B)

Figure 3. Predictions of two proteins that are not included in the training set: (A) AuLOV
(PDB ID: 5DKK); (B) PDZ2 (PDB ID: 3LNY). Red regions are the most probable pockets in
the predictions with probabilities of (A) 95.3% and (B) 46.1% and are also the true allosteric
sites.

protein in human PTP1E protein. PDZ2 undergoes allosteric process upon binding with

peptides.34 The light-oxygen-voltage domain of Phaeodactylum tricornutum Aureochrome

1a (AuLOV) is a conformational-driven allosteric protein.35 AuLOV is a monomer in the

dark state and undergoes dimerization upon blue light perturbation.36 Our prediction model

ranks the allosteric sites of these two proteins as the top 1 with probabilities of 46.1%

and 95.3%, respectively. Both of these results increased through the comparison with the

previous results of 45.1% and 89.5%. This indicates that our model could provide reliable

predictions for conformational-driven allosteric proteins. However, this model needs further

improvement for dynamics-driven allosteric proteins, though is still better than PASSer.

4 Conclusion

Several machine learning based methods have been developed for allosteric site prediction

over the past few years. In this study, we applied an emerging ML technique, automated

machine learning, to further improve protein allosteric sites prediction models. The AutoML
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framework is capable of automating the machine learning model pipeline. The developed

allosteric sites prediction model, PASSer2.0, is superior to many previous studies. It achieved

high values for performance indicators and a good ranking power with a higher percentage

of ranking allosteric sites at top positions.
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