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ABSTRACT 

Adenylyl cyclase type 1 is an emerging target for the treatment of chronic pain that is 

downstream on the analgesic pathway from the traditional µ-opioid receptor. AC1 is expressed in 

the central nervous system and critical for signaling in pain sensitization. Behavioral studies have 

revealed AC1 knockout mice exhibit reduced behavioral pain sensitization responses similar to 

morphine administration. AC1, and a closely related isoform AC8, are also implicated to have a 

role in learning and memory signaling processes. However, reports suggest selectively targeting 

AC1 over AC8 may be a viable strategy to eliminate potential deleterious effects on learning and 

memory. Our team has carried out cellular screening for inhibitors of AC1 that yielded a pyrazolyl-

pyrimidinone scaffold with potency comparable to previously published AC1 inhibitors, 

selectivity versus AC8, and improved drug-like physicochemical properties. Structure-activity 

relationship (SAR) studies produced 36 analogs that balanced improvements in potency with 

cellular IC50 values as low as 0.25 µM and selectivity versus AC8. Prioritized analogs were 

selective for AC1 compared to other AC isoforms and other common neurological targets. A 

representative analog was assessed for efficacy in a mouse model of inflammatory pain and 

displayed modest anti-allodynic effects. This series of compounds represents the most potent and 

selective inhibitors of Ca2+/Calmodulin-stimulated AC1 activity to date with reduced off-target 

liabilities and improved drug-like physicochemical properties making them promising lead 

compounds for the treatment of inflammatory pain. 
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INTRODUCTION 

Adenylyl cyclases (ACs) are effector enzymes downstream of various G protein-coupled 

receptors (GPCRs) and ion channels that transduce signals via the catalysis of adenosine 

triphosphate (ATP) to cyclic adenosine 3’,5’-monophosphate (cAMP).1 In line with the many roles 

of the numerous GPCRs and ion channels, modulation of ACs leads to a variety of physiological 

effects dependent on the AC isoform, interaction partners, and tissue localization. Humans encode 

nine membrane-bound ACs that are organized into four groups based on their regulatory 

mechanisms to various intracellular stimuli.2,3 Group 1 ACs include AC1, AC3, and AC8 and are 

characterized by their positive modulation by Ca2+/Calmodulin (CaM) although AC3 is 

conditionally stimulated by this complex and requires the presence of additional G protein 

subunits.4 Group 2 ACs include AC2, AC4, and AC7 and are conditionally activated by G protein 

βγ (Gβγ) subunits.5 Group 3 ACs include AC5 and AC6 and are negatively modulated by Ca2+.6 

Finally, Group 4 contains only AC9, which is the lone isoform relatively insensitive to forskolin, 

an allosteric agonist of ACs. 

Processes such as memory acquisition, drug tolerance and dependence, and chronic pain 

are known to be impacted significantly by ACs.7,8 Although ACs are expressed ubiquitously 

throughout the body, certain isoforms have distinct tissue expression patterns.9 AC1 and AC8 are 

primarily expressed in the central nervous system (CNS) within regions such as, but not limited 

to, the hippocampus and the anterior cingulate cortex (ACC); regions of the brain associated with 

learning, memory and the development of chronic pain.9–12 Evidence suggests AC1 is responsible 

for propagation of inflammatory pain stimuli.13 In vivo studies indicate that injury leads to 

increased postsynaptic Ca2+ influx in the ACC, where Ca2+ forms a complex with CaM that, in 

turn, binds and subsequently activates AC1 to produce cAMP.14,15  In chronic pain, it is suggested 



 4 

that persistent Ca2+ influx causes hyperactivation of AC1 and downstream pain sensitization.16 

Moreover, AC1 knockout (AC1-/-) and AC1/8 double knockout (DKO) mice exhibit nearly 

complete abrogation of behavioral pain response when treated with an inflammatory cocktail, 

complete Freund’s adjuvant (CFA), and display a lack of pain sensitization in a muscle pain 

model.13,17,18 However, both AC1 and AC8 are implicated to play a role in long-term memory and 

long-term potentiation in these brain regions.19–21 In mouse knockout models, DKO mice displayed 

severe impairment to spatial memory acquisition; however, this impairment was mostly absent in 

the AC1-/- mice.19,22–25 

Additionally, ACs propagate signals downstream from the µ-opioid receptor (MOR), a 

well characterized target for analgesic pharmacological therapy. MOR agonists act, in part, by 

negatively regulating AC1.18 Upon agonist stimulation the MOR activates and induces dissociation 

of a heterotrimeric G protein complex comprised of G protein αi (Gαi) and Gβγ subunits. The Gαi 

subunit can then translocate to a membrane bound AC, in this case AC1, and subsequently inhibit 

catalysis and reduce intracellular cAMP levels.26 Additionally, chronic opioid administration leads 

to compensatory neuroadaptation, including upregulation of AC1 to offset the reduced cAMP 

signal and ultimately leading to tolerance and dependence.18,27,28  Moreover, activation of the MOR 

signaling pathway has several undesired side effects, some of which are mediated by recruitment 

of β-arrestins and the release of Gβγ, which can lead to the development of physiological tolerance 

and may also contribute to opioid-induced respiratory depression, respectively.29–31 Furthermore, 

MOR expression is not limited to the brain but is also expressed peripherally, leading to other 

common side effects such as opioid-induced constipation.32 One potential approach under 

investigation to limit these side effects is the development of biased MOR agonists that favor 

signaling through the G protein pathway and reduce the β-arrestin pathway signal.33 Alternatively, 
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our group and others have shown it is possible to target the activity of the downstream AC directly, 

bypassing the MOR entirely.34–36 This strategy would allow for effective inhibition of chronic pain 

through AC inhibition, while avoiding negative side-effects induced by clinically used MOR 

agonists; thus, increasing the therapeutic index. Taken together, the promising genetic evaluation 

coupled with the tissue localization at the key pain center of the brain and its role in analgesic 

response to opioid agonists all suggest AC1 is a promising target for development of novel 

pharmacological modulators for the treatment of chronic pain.  

Based on the aforementioned in vivo genetic data, a key requirement for a suitable AC1 

modulator for chronic pain therapy is that it must be selective for AC1 versus AC8 to avoid the 

potential for memory impairment. Our group and others have since screened and tested for such 

modulators; the resultant known AC1 inhibitors and modulators include the adenosine-based 

SQ22536,37 the adenosine-based NB001,36 the chromone ST034307,34 and the oxadiazole 

AC1006535 (Figure 1). However, each molecule presents drawbacks and challenges for potential 

use as a pharmacotherapeutic agent. SQ22536 is proposed to bind the catalytic site of AC, and 

while it displays cellular potency of >10 µM (IC50) versus AC1 it lacks selectivity versus other 

isoforms including AC5.38 NB001 likewise has only 14-fold selectivity for AC1 versus AC8 in 

cell-based assays. Given that both of these compounds have adenine moieties, there is concern for 

selectivity versus other adenine-binding and ATP-binding proteins that could lead to off-target 

effects in vivo.39 Our group previously published the chromone ST034307, which has a 2.3 µM 

IC50 versus Ca2+/CaM-stimulated AC1 activity in cells with no inhibition of AC8.34 This selective 

modulator was then shown to produce analgesic effects versus inflammatory pain in vivo. Despite 

this activity, the molecule presented significant physicochemical liabilities, namely poor aqueous 

solubility which hampered dosing. Furthermore, SAR was found to be intractable beyond the 
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published data. In the interest of finding a scaffold with tractable SAR and better drug-like 

characteristics, a high-throughput screen was undertaken followed by SAR elucidation of the 

oxadiazole series, yielding the most recent AC1 modulator AC10065.35 This compound inhibited 

AC1-mediated Ca2+/CaM-stimulated cAMP production in cells with an IC50 of 1.4 µM versus AC1 

and 4.1 µM versus AC8, and displayed modest in vivo efficacy in a mouse CFA inflammatory pain 

model.35 However, the oxadiazole series was once again limited in dosing due to the scaffold’s 

poor aqueous solubility. In summation, these current AC1 modulators suggest that AC1 inhibition 

can produce anti-allodynic effects in behavioral animal studies and that isoform selectivity 

between AC1 and AC8 is achievable.  

 

Building upon our previous work, we identified a pyrimidinone scaffold of AC1 

modulators from the same high-throughput screen used to discover the oxadiazole series. These 

pyrimidinone AC1 modulators, represented by hit 1, displayed similar potency as ST034307 and 

AC10065 while maintaining selectivity versus AC8. After resynthesizing and validating these hits, 

they were found to be potent and selective for inhibiting Ca2+/CaM-stimulated AC1 activity over 

AC8, with maximal inhibition versus AC8 of 25-50% at the highest concentrations tested. Our 

team then designed and synthesized the following series of pyrimidinone analogs to elucidate the 

SAR, improve potency versus AC1, and maintain selectivity. Following activity testing a 

prioritized analog was chosen for in vivo testing in the behavioral CFA-inflammatory pain model. 

N

N N

N

NH2

HN

OH O

Cl
O

Cl

Cl
Cl F

O

NN
NH

O

CH3

CF3

N

N N

N

NH2

O

NB001 ST03430
7 

AC10065 SQ22536 

N

NH

O

H3C N N
CH3

HN

O

F

1 

Figure 1. Representative structures of the current state of AC1 inhibitors and pyrimidinone hit 1. 
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Our results detailing the discovery of a sub-micromolar inhibitor of AC1-mediated Ca2+/CaM 

cAMP production with selectivity versus AC8 and other AC isoforms are described below. 

 

RESULTS 

High-throughput screen for the discovery of inhibitors of Ca2+/CaM stimulated activity of AC1 

 

To discover additional potent and selective inhibitors of AC1 activity, our team designed 

and carried out a high-throughput screen of 10,240 compounds from the Life Chemical diversity 

library. Our primary screen sought to identify molecules that inhibit AC1 mediated Ca2+/CaM-

stimulated cAMP production in HEK cells stably expressing AC1 (HEK-AC1). HEK-AC1 cells 

were stimulated with the Ca2+ ionophore A23187 and the accumulation of cellular cAMP levels 

was quantified using a homogenous time resolved fluorescence (HTRF) assay with cAMP 

detection reagents as described previously.34,35 The AC1 inhibitor ST03430734 served as a positive 

control and DMSO as negative control, and the Z’-value for the screening assay was determined 

to be 0.6. The fluorescence values were normalized for cAMP levels of the DMSO (0% inhibition) 

and ST034307 (100% inhibition) controls on each plate, and hits were defined as those compounds 

that exhibited ≥ 90% inhibition of AC1-mediated Ca2+/CaM-stimulated cAMP production at a 

single dose of 10 µM. A total of 480 compounds met this criterion, representing approximately 

5% of the library screened. The 480 compounds were filtered for pan-assay interference 

compounds (PAINS)40,41 of which 200 molecules were identified to contain PAINS-like 

substructures and were triaged.  The remaining 280 hits were clustered into scaffolds with a 

Tanimoto cutoff of 70% similarity. This resulted in nine representative clusters containing, each 

having at least 8 compounds.  
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Two representative hit compounds per cluster were selected to further validate the 

inhibitory effects of each structural scaffold on AC1 activity and counter-screened for AC8-

mediated Ca2+/CaM-stimulated cAMP production. Dose-response curves were generated for each 

compound in HEK-AC1 cells and HEK-AC8 cells to quantify potency and AC8 selectivity. Hits 

were also assessed for cell viability using CellTiter-Glo to eliminate potential false-positives as a 

result of cell toxicity. Four clusters appeared to be false positives and were removed from further 

consideration. An additional cluster was excluded from further analysis because the compounds 

interfered with the fluorescence emission at 620 nm of the cAMP HTRF detection technology. The 

compounds from the remaining four scaffolds showed a dose-dependent inhibitory effect on AC1-

mediated Ca2+/CaM-stimulated cAMP production with IC50 values in the low micromolar range.  

Distinctively, the confirmed hit compounds of two clusters, an oxadiazole scaffold and a 

pyrimidinone scaffold, stood out from the rest of hits as their IC50 values were in the single-digit 

micromolar range and the compounds displayed no apparent toxic effects on the HEK-AC1 cells 

after 2-hour incubation. Results from optimization of the oxadiazole scaffold have since been 

reported leading to the development of AC10065.35 The other single-digit micromolar potency 

scaffold was the pyrimidinone series represented by hit 1 (Figure 1) and the concentration-

response curves for against AC1 and AC8 are presented in Figure 2. 
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Chemistry 

The general structure of the pyrimidinone hit cluster was a 3-ring aromatic scaffold 

comprised of a pyrimidinone, pyrazole, and an amide-coupled phenyl for which a 5-step linear 

synthetic sequence was designed. The pyrimidinone portion of the scaffold (Scheme 1) was 

synthesized via initial cyclocondensation of thiourea and ethyl 3-oxopentanoate to produce 6-ethyl 

thiouracil intermediate (2).42 Intermediate 2 was selectively S-methylated with a slight excess of 

methyl iodide starting at 3 °C and was allowed to warm to room temperature producing 

intermediate 3.43 Nucleophilic substitution of 3 with hydrazine produced intermediate 4.44 This 

intermediate was then heated with 3-aminocrotonitrile and underwent a regioselective cyclization 

creating the pyrazolo-pyrimidinone intermediate 5.45 Finally, after extensive troubleshooting with 

numerous amide coupling protocols including benzoyl chloride and standard amide coupling, a 

procedure adapted from literature46 using fluoro-N,N,N’,N’-bis(tetramethylene)formamidinium 

hexafluorophosphate (BTFFH) to produce sterically minimal benzoyl fluoride intermediates was 

Figure 2. Concentration-response curves for 1 
against AC1 and AC8 (closed blue circles) and AC8 
(open black circles). Black double arrow depicts 
difference in efficacy at AC1 IC90. 
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able furnish low to moderate yields for the final amide products 1, 6, 9–32, 36–40. The 

methoxymethyl containing analog 32 was deprotected to yield the phenol 33. Yields for analogs 

with electron-rich benzoic acids (e.g. 21–26) were below the quantity necessary for biological 

testing, thus further optimization led to a final reaction using lithium bis(trimethylsilyl)amide 

(LiHMDS) pre-activation of the primary amine alongside in situ benzoyl fluoride activation of 

benzoic acids to provide yields sufficient for testing for these more synthetically-challenging 

analogs.  

Several analogs required alternate methods to prepare (Scheme 2). Compound 7 was a 

product of an unintended side reaction with 2-acetoxybenzoic acid, which yielded only the acetyl 

substituted arylamine rather than the intended benzamide coupling product. Compound 8 was 

prepared via traditional HATU amide coupling as the acyl fluoride procedure did not yield the 

intended product. Finally, analogs 34 and 35 were found to be incompatible with either acyl 

fluoride coupling procedure and no desired product was obtained. In the case of 35, according to 

the literature46 carboxylic acids with α-protons were found to be incompatible with the acyl 

fluoride method due to competing ketene generation (despite successful synthesis of later analog 

36). In the case of 34, the electron-donating character of the 4-dimethylamino substituent on the 

carboxylic was likely a contributing factor to the inability to isolate product. This led us to scout 

several amide coupling methods and ultimately the use of a mixed anhydride coupling method 

using propylphosphonic anhydride (T3P)47 was employed to obtain 34 and 35.   
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Scheme 1. Synthetic Route for Analogs 1, 6, 9 – 33, 35 – 40.a 
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92%; (c) hydrazine hydrate (5 equiv), K2CO3 (1 mol %), 2-propanol, 90 °C, 16 h, 41%; (d) 3-aminocrotonitrile (2 equiv), EtOH, 
90 °C to 60 °C, 16 h, 61%; (e) A) BTFFH, DIPEA, DCM, rt to 90 °C, 16 h, 4.1−49%; OR B) 1) LiHMDS, THF, 23 °C, 30 min, 
2) BTFFH, DIPEA, DCM, 23 °C, 30 m; 3) 100 °C, 16 h, 9.8−49%; (f) TFA, DCM, 0 °C, 3 h, 40%. 

 

32, R = OCH2OCH3 33, R = OH 

aReagents and conditions: (a) 2-acetoxybenzoic acid 
(1.5 eq), T3P (2 eq), pyridine (3 eq), 2-MeTHF, 
EtOAc, 100 °C, 12 h, 34%; (b) furan-2-carboxylic 
acid (3 eq), DIPEA (4.2 eq), DMF, 85 °C, 18. H, 
10%; (c) for 34 use 4-(dimethylamino)benzoic acid 
(1.5 eq) and for 35 use 2-(2-fluorophenyl)acetic acid 
(1.5 eq) with T3P (2 eq), base (4 eq), MeCN, HFIP, 
90 °C, 16 h, 3-27%. 

Scheme 2. Synthetic Route for Analogs 7, 8, 34, 35.a 
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Structure-Activity Relationship Studies 

 

All analogs were tested for inhibition of both AC1- and AC8-mediated Ca2+/CaM-

stimulated cAMP production in a cellular assay. For these activity assays, HEK293 cells had 

endogenous AC3 and AC6 isoforms knocked out using CRISPR-Cas9 followed by subsequent 

stable transfection and overexpression of AC1 or AC8 isoforms.48 SAR was informed based on 

potency against AC1-mediated cAMP production.  However, in terms of evaluating selectivity 

against AC8 a simple comparison of IC50 values does not adequately convey this measure.  This 

is because in the concentration-response curves it was observed that inhibition often reaches 

baseline levels for AC1 at the higher molecule concentrations while AC8 is never fully inhibited 

by any analog (representative curves for 1 shown in Figure 2). This indicates that the scaffold 

displays a difference in maximal inhibitory efficacy between isoforms; therefore, merely 

evaluating the AC8 IC50 to assess selectivity is misleading as the IC50 is generated from the relative 

maximum and minimum cAMP signal for AC8. Case in point, analog 1 has a calculated IC50 value 

of 1.6 µM against AC8 even though it clearly is never fully inhibited. Thus, a more accurate 

measure of selectivity for AC1 over AC8 would be the evaluation of the percent inhibition of AC8 

at the IC90 of AC1 activity (Figure 2, black arrow). Therefore, the AC8 activity will be referred to 

in this context. All AC1 IC90s are reported in Table S1 and concentration response curves for all 

molecules against AC1 and AC8 are included in the supporting information. 

Initial hit compound 1 was identified in the primary screen as a potent, selective inhibitor 

of Ca+2/CaM-stimulated AC1 activity. After re-synthesis and validation, it was found to have a 

cellular IC50 of 1.4 µM versus AC1-mediated cAMP production and 46% inhibition versus AC8-

mediated cAMP production at the AC1 IC90. This AC1 potency was comparable to, or an 
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improvement upon, the prior art for AC1 inhibitors and this scaffold was prioritized for 

optimization. Removal of the fluorine to yield unsubstituted phenyl derivative 6 displayed slightly 

reduced potency with an IC50 of 2.4 µM versus AC1. We then evaluated a group of analogs 

containing phenyl ring replacements in compounds 7–9. The phenyl ring was removed leaving an 

acetamide in compound 7, which showed a complete loss of activity against both ACs. Two 

bioisostere substitutions, a furan (8) and a pyridine (9), were assessed next. The furanyl 

substitution 8 was tolerated, albeit with reduced potency (AC1 IC50 value of 6.7 µM), whereas the 

pyridinyl analog 9 displayed similar activity to the phenyl (AC1 IC50 value of 1.2 µM) indicating 

the pyridine may be a suitable replacement for the phenyl without detriment to AC1 activity. 

However, this molecule did exhibit an increase in AC8 activity, as compared to the unsubstituted 

phenyl analog (6) but was comparable to the hit 1. Taken together these analogs suggest optimal 

potency versus AC1 requires at least a 6-membered hydrophobic ring. Based on these data, we 

proceeded to expand the SAR exploring substitutions on the phenyl for modulation of AC1 

potency and selectivity. 

In the first cohort we examined the effects of fluorine, chlorine, and bromine on compound 

activity. No change in activity was observed moving from 2-F in 1 to 3-F in analog 10. However, 

moving the fluorine to the para-position (11) provided roughly 2-fold improvement in AC1 

potency an IC50 value of 0.79 µM while the AC8 activity was relatively unchanged.  Substitution 

for chlorine at either the meta- (12) or para-position (13) yielded modest 2- to 3-fold improvement 

of potency compared to the fluorine containing counterparts with AC1 IC50 values of 0.47 and 0.37 

µM, respectively. No improvement in selectivity versus AC8 was observed as the analogs still 

remained around 50% inhibition at the AC1 IC90 value. The 3-Br analog (14) displayed slightly 

reduced potency toward AC1 (IC50 value of 0.61 µM) compared to the corresponding 3-Cl, 
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however, this analog showed the first boost in selectivity over AC8 with only 15% inhibition of 

the isoform. Attempts were made to synthesize analogs with chlorine or bromine at the ortho 

position, however yields were very low for these reactions and did not provide enough material 

for testing. 

 

 

 

Table 1. Potency and selectivity data for analogs against AC1 and AC8 

 

Cpd R n AC1 IC50 (µM)b AC8 Inhc Cpd R n AC1 IC50 (µM)b AC8 Inhc 

1 2-F 0 1.4 (1.1-1.7) 46% 24 3-C(CH3)3 0 0.88 (0.63-1.25) 25% 

6 H 0 2.4 (1.9-4.6) 0% 25 4-C(CH3)3 0 0.97 (0.64-1.54) 35% 

7 methyla 0 > 30 ND 26 3-phenyl 0 0.25 (0.20-0.32) 37% 

8 2-furana 0 6.7 (4.6-19.0) 20% 27 4-phenyl 0 0.77 (0.53-1.12) 32% 

9 2-pyridinea 0 1.2 (1.0-1.5) 46% 28 3-OCH3 0 1.42 (0.92-2.25) 5% 

10 3-F 0 1.4 (1.1-1.7) 55% 29 4-OCH3 0 0.90 (0.74-1.12) 0% 

11 4-F 0 0.79 (0.63-0.99) 52% 30 3-SCH3 0 0.63 (0.40-0.94) 52% 

12 3-Cl 0 0.47 (0.37-0.61) 48% 31 3-OCH2CH3 0 0.90 (0.73-1.1) 11% 

13 4-Cl 0 0.36 (ND) 53% 32 4-OCH2OCH3 0 4.3 (3.0-6.6) ND 

14 3-Br 0 0.61 (0.46-0.82) 15% 33 4-OH 0 > 60 ND 

15 2-CH3 0 2.2 (1.6-2.9) 11% 34 4-N(CH3)2 0 2.3 (1.2-6.1) 39% 

16 3-CH3 0 0.41 (0.23-0.66) 27% 35 2-F 1 16.3 (ND) ND 

17 4-CH3 0 0.67 (0.44-0.92) 27% 36 3-CH3 1 9.2 (ND) 59% 

18 3-CF3 0 0.68 (0.46-0.97) 41% 37 2-F,3-CH3 0 0.57 (0.35-0.96) 9% 

19 2-CH2CH3 0 3.1 (2.6-3.7) 21% 38 2-F,5-CH3 0 0.54 (0.30-0.84) 17% 

20 3-CH2CH3 0 0.44 (0.24-0.69) 12% 39 3,4-di-CH3 0 0.29 (0.20-0.43) 27% 

21 4-CH2CH3 0 0.39 (0.10-0.65) 19% 40 3,5-di-CH3 0 0.52 (0.32-0.82) 27% 

22 3-CH(CH3)2 0 0.36 (0.24-0.53) 28%      

23 3-cyclopropyl 0 0.81 (0.67-0.97) 17%      

a Indicated groups were benzene ring replacements. b AC1 IC50s calculated from concentration-response curves with inhibitor versus 3 µM 
A23187-stimulated cAMP accumulation in HEK AC1 3/6 KO cell lines (n=3+). c AC1 IC90s were calculated from AC1 concentration-response 
curves and then interpolated through AC8 concentration-response curves (n=2+) and subtracted from 100%. All tabular AC1 IC90 data is 
provided in Table S1. ND = not determined by Prism software due to wide variance or not enough data points at higher concentrations. 
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Next, we evaluated SAR on the phenyl ring with lipophilic alkyl substituents. Similar to 

the halogen series, the ortho substituted analogs were less potent against AC1 compared to the 

meta and para counterparts as illustrated by a 5-fold improvement in AC1 activity when moving 

from the 2-methyl (15, IC50 = 2.2 µM) to the 3-methyl (16, IC50 = 0.41 µM, Table 1 and Figure 

3A). The improvement was more pronounced with the larger ethyl series as the 3-ethyl (20) was 

7-fold more potent against AC1 than the 2-ethyl (19) derivative with IC50 values of 0.44 µM and 

3.1 µM, respectively. Placing the methyl at the para-position (17) slightly reduced AC1 activity 

compared to the meta-methyl 16. In contrast the 4-ethyl derivative 21 was slightly more potent 

than the 3-ethyl nearest neighbor with an AC1 IC50 value of 0.39 µM. This series of six alkyl 

containing analogs appeared to be generally more selective for AC1 over AC8 (11 – 28% AC8 

inhibition) compared to the halogenated analogs (15 – 55%). Interestingly, swapping the 3-methyl 

for 3-trifluoromethyl (18) resulted in a slight reduction of AC1 activity but also reduced the 

selectivity over AC8 to 41%, which was a value closer to those observed for the halogenated 

analogs. Increasing the alkyl branching in this series provided mixed results. For example, moving 

from methyl (16) to ethyl (20) to iso-propyl (22) substitutions at the 3-position were essentially 

equipotent in terms of AC1 activity ranging from 0.36 – 0.44 µM while moving to the quaternary 

carbon with a  3-tert-butyl modification (24) reduced activity 2-fold to 0.88 µM. Moving the bulky 

tert-butyl group to the para-position (25) reduced activity further to 0.97 µM. Additionally, 

cyclization of the iso-propyl to cyclopropyl at the 3-position (23) resulted in more than 2-fold 

reduced AC1 activity at 0.88 µM compared to 0.36 µM for the iso-propyl derivative 22. The 

tertiary and quaternary alkyl substituent also yielded slightly reduced selectivity across the board 

with AC8 values ranging in the 17 – 35% compared to 11 – 27% for the less branched counterparts.  
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Addition of phenyl substituent at the meta-position (26) yielded the most potent AC1 

inhibitor synthesized with an IC50 value of 0.25 µM while moving the phenyl to the para-position 

(27) reduced potency by 3-fold. The improvement on AC1 potency for the 3-phenyl analog 26 also 

led to modest AC8 inhibition with 37% at the AC1 IC90, which was improved from the halogenated 

derivatives but not as selective as the 3-ethyl analog 20. To summarize, it appears that increasing 

lipophilic bulk is generally beneficial to AC1 activity, particularly at the meta-position while it is 

generally not preferred at the para-position.  The increase of alkyl branching or addition of a 

phenyl functional group resulted in slightly increased AC8 inhibition compared to the methyl and 

ethyl analogs, although the AC8 selectivity remained less than 50% inhibition at the AC1 IC90 

concentration for each analog. The best combination of AC1 potency with reduced AC8 inhibition 

appear to be the ethyl derivatives 20 and 21 with AC1 IC50 values of 0.44 and 0.39 µM and AC8 

inhibition of 12% and 19% followed closely by 3-phenyl analog 26 with an AC1 IC50 value of 

0.25 µM and AC8 inhibition of 37%. Dose-response curves for analog 20 are shown in Figure 3B 

and dose-response curves for all analogs are provided in supporting information. 

Next, while the analogs made to this point have exhibited mid-nanomolar levels of potency 

in the cellular assays we observed that aqueous solubility may be a liability for the series despite 

the molecules possessing favorable predicted physicochemical properties from QikProp 

(Schrödinger, LLC; average molecular weight = 354 g/mol and QPLogPo/w = 2.55, full QikProp 

data set provided in a spreadsheet in supporting information). In the interest of improving aqueous 

solubility, we evaluated the SAR for polar substituents on the phenyl ring. The 3-OMe (28) and 4-

OMe (29) displayed AC1 IC50s around 1 µM versus AC1 activity accompanied with much reduced 

AC8 inhibition (5% and 0%, respectively). Replacement of the 3-methoxy group for the 3-

thiomethyl substituent in analog 30 produced a two-fold improvement in AC1 activity but 
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displayed reduced selectivity versus AC8. Compounds containing bulkier polar substituents began 

to display reduced AC1 potency. For example, the 3-ethoxy derivative 31 possessed an AC1 IC50 

value of 0.90 µM while the 4-methoxymethoxyl (32, AC1 IC50 = 4.3 µM) and 4-dimethylamino 

(34, 2.3 µM) substituents all showed reduced AC1 potency. The 4-hydroxy derivative 33 is 

noteworthy as it is the only phenyl-substituted analog in this series that showed no activity at 

concentrations up to 60 µM. This suggests an intolerance of a hydrogen-bond donor at the 4-

position as other polar para-substitutions such as the 4-methoxy (29), 4-methoxymethoxyl (32), 

and 4-dimethylamino (34) still maintained AC1 IC50 < 5 µM.  Nonetheless, polar functional groups 

led to reduced AC1 potency across the entire series. 

To round out the SAR we investigated the addition of a methylene between the carbonyl 

of the amide and the pendent phenyl group on AC activity. Two analogs, 3-F (35) and 3-methyl 

(36) substituted phenyl rings, were combined with the methylene insertion. However, in each case 

it was observed that the methyl insertion reduced AC1 potency by about 10- to 20-fold compared 

to the matched molecular pair for each analog.  

Finally, we synthesized analogs with combined modifications on the phenyl ring. Di-

substituted compounds 37–40 maintain the meta-methyl substituent from compound 16 and 

combined with either a second methyl or a fluorine. Analogs 37, 38, and 40, which maintained the 

meta-methyl in combination with either ortho-fluorine or meta-methyl all remained around 0.50 

µM AC1 potency with low AC8 inhibition profiles. The 3,4-di-methyl analog 39 was the best of 

the combined modification cohort with improved AC1 potency (0.29 µM) compared to the 

respective mono-methyl counterparts as well as maintained the AC8 inhibition at 27%. Dose-

response curves for analogs 38 and 39 shown in Figure 3C and D, all remaining dose-response 

curves are provided in supporting information.  
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To summarize, the SAR for AC1 potency and AC8 selectivity favored small, alkyl 

substituents over halogenated analogs for both activity metrics. Increased alkyl branching 

generally led to both reduced activity against AC1 and selectivity over AC8.  Polar functional 

groups were tolerated but displayed reduced AC1 potency with the exception of the 4-hydroxy, 

which was the only substituted phenyl analog to display a complete loss of AC1 activity. 

Combined modifications produced mixed results with mid-nanomolar range AC1 potencies but 

slightly improved AC8 selectivity. Several analogs are within a range for AC1 activity and AC8 

potency that would make them reasonable to advance toward in vivo efficacy assays, thus, we 

prioritized analogs 16, 20, 38 and 39 for further evaluation (dose-response curves provided in 

Figure 3). 

  

 

 

 

 

 

 

 

During the course of performing the cAMP accumulation assay in the HEK-AC1 cells we 

routinely assay for molecule toxicity to ensure the measured cAMP levels are descriptive of the 

living cellular environment. Upon initial investigation of the hit 1 there was no apparent cellular 

A B 

C D 

Figure 3. Overlaid AC1 (blue circles) and AC8 (open circles) dose-response 
curves for prioritized analogs 16 (A), 20 (B), 38 (C), 39 (D). 
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toxicity in the HEK cells utilized for the assay. However, to ensure that the molecules did not have 

undesired cytotoxicity we assessed compounds 16, 20, 38, and 39 in the CellTiter-Glo assay when 

incubated with HEK293 cells at 30 µM for 1 hour. Across the group of five analogs there was no 

reduction in cell viability indicating the scaffold is non-toxic to this human cell line (Table S2). 

Analog activity in alternative AC stimulating condition and versus other AC isoforms 

As selectivity is a critical parameter for AC1 inhibitors to be considered for clinical use, 

we examined the activity profile of the pyrimidinone scaffold for potency against other AC 

isoforms (Figure 4, Table S3). Screening versus representative Group I, II, and III AC isoforms 

showed partial inhibition of Ca2+/CaM-stimulated AC8 activity, weak potentiation of Phorbol 12-

myristate 13 acetate (PMA)-stimulated AC2 activity, and no apparent effect on forskolin-

stimulated AC5 activity (Figure 4). This data supports that the scaffold is selective for AC1 against 

not only the Ca2+/CaM-stimulated AC8 but also against AC isoforms that are differentially 

activated.  

 

 

 

 

 

 

 

 

 

 

Figure 4. Inhibitory activity for five analogs against Group-1 ACs, AC1 (blue) and AC8 (white), as well 
as group-2 AC2 (green) and Group-3 AC5 (gray). Y-axis shown as percent stimulation of cAMP 
normalized to 100 % for each isoform. X-axis indicates treatment condition or analog tested. Basal 
indicates cAMP levels prior to stimulation. Stim indicates cAMP levels after stimulation and treated with 
DMSO control. All analogs tested at 10 µM (n = 3+ replicates). Error bars indicate standard error of the 
mean.  
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Activity versus common neurological off-targets 

The original hit (1) and selected analogs (16, 20, and 39) were screened for binding against 

a panel of common neurological off-targets conducted by the National Institute of Mental Health 

Psychoactive Drug Screening Program (PDSP). In total the panel includes 44 targets including 

various GPCRs and ion channels. The molecules were assessed for the ability to displace 

radioligands from each target at a single concentration of 10 µM.  In general, all molecules 

revealed limited significant binding with many neurological targets including the chronic pain 

relevant MOR, DOR, and KOR (Table S4). Molecule 1 was selected for secondary follow-up 

binding assays in dose-response to validate the primary assay binding against four targets with 

elevated mean % binding values: serotonin 2B (5-HT2B), benzodiazepine rat brain site, muscarinic 

acetylcholine-2 receptor, and sigma-2 receptor.  Of the four targets selected for secondary binding 

molecule 1 only displayed binding to 5-HT2B with a Ki value of 1.3 µM while the other three did 

not exhibit displacement of the radioligand at concentrations up to 10 µM in the secondary 

validation.  The same was observed for analog 16 upon secondary dose-response against 5-HT2B 

with a Ki value of 0.9 µM. Both analogs 20 and 39 also displayed primary displacement of the 

radioligand from 5-HT2B at 49 and 32%, respectively. While binding to 5-HT2B may indicate a 

potential undesired off-target liability the binding assays do not assess functional efficacy at the 

receptor.  Thus, all four analogs were further evaluated for functional efficacy against 5-HT2B 

transfected into HEK cells in both agonist and antagonist modes. Non-transfected HEK cells 

served as controls. The compounds displayed no agonist activity against the 5-HT2B receptor for 

Gq stimulation or E-arrestin recruitment in the Tango assay49 that monitors E-arrestin translocation 

(Table S5). Likewise, no antagonist activity was observed in the Gq/Ca2+ assay using a calcium 

sensitive reporter; however, there was consistent inhibitory activity observed in the antagonist 
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Tango assay with IC50 values ranging from 0.42 – 0.60 µM. The somewhat contrasting results in 

the Gq/Ca2+ and E-arrestin antagonist assays are perplexing and may reflect a complex 

pharmacology requiring further study or may be due to compound interference with the Tango 

assay. The latter is supported by data revealing that compounds 20 and 39 that weakly bind the 5-

HT2B receptor (<50% displacement at 10 μM; Table S4), yet inhibit in the Tango assay with 

submicromolar potency.  

Given that four analogs displayed relatively selective profiles from the PDSP the data was 

not collected in full for analog 38, however the molecule was assessed separately for activity 

against the MOR, KOR, and DOR as these are relevant to the pain signaling process. The data 

confirms that analog 38 did not display any significant off-target modulation of the ORs at 10 µM 

(Table S6) similar to 1, 16, 20, and 39. The data as a whole suggests that this compound series is 

not inhibiting AC1 activity through agonism of a known Gi/o-linked GPCR.  

 

 

Activity versus off-target kinases and hERG 

The scaffold was further evaluated for off-target liabilities against the human Ether-á-go-

go related gene (hERG) potassium channel and a select group of kinases. First, the pyrimidinone 

moiety bears resemblance to previously reported kinase inhibitors.50,51 To determine the potential 

liability that off-target kinase inhibition may render we selected four kinases that are earmarked 

by pharmaceutical companies as ‘sentinel representatives’ of kinase families that should be 

assessed for pre-clinical profiling to reduce safety-related drug attrition.52 Analogs 20, 38, and 39 

were selected to be assessed against this small panel for inhibitory activity at a single dose of 10 

µM. We found that analogs 20 and 38 did display inhibition of insulin receptor kinase (IRK) at 



 22 

57% and 64% inhibition, respectively (Table S7). Conversely, analog 39 only exhibited 4% 

inhibition against IRK. For the remaining kinases, analog 20 displayed 28% inhibition versus 

vascular endothelial growth factor receptor-2 (VEGFR2) but did not exhibit any inhibition toward 

leukocyte C-terminal Src kinase (LCK) or Rho-associated coiled-coil containing kinase (ROCK1). 

Analogs 38 and 39 did not inhibit any of the remaining three kinases tested. Therefore, while 

analogs 20 and 38 displayed appreciable activity against IRK the inhibition does not appear to be 

intrinsic to the scaffold as 39 was inactive against these targets. Nevertheless, it would be prudent 

to continue to monitor analog effects on kinases and expand the panel for future studies.  

Finally, both analogs were also evaluated for ability to bind to the hERG potassium channel 

to assess for potential cardiac liability. Analog 20 displayed 0% inhibition of [3H]-astemizole 

binding at a dose of 10 µM while 38 and 39 exhibited 6% and 11% inhibition at the same dose 

(Table S6). No molecule was determined to be a significant hERG binder. 

 

 

In silico and in vitro physicochemical and pharmacokinetic properties of prioritized analogs 

 

This class of molecules did display reduced solubility in aqueous media, thus, we first 

assessed thermodynamic solubility experimentally for the four prioritized analogs using a method 

previously described.53,54 This analysis showed 38 was the most soluble at 33.6 µM in PBS at pH 

7.4 and 25 °C, which is approximately 60-fold higher than the cellular IC50 for inhibition of 

Ca2+/Calmodulin-stimulated AC1 activity. This was followed by 16 (19.5 µM), 20 (10.8 µM) and 

39 (7.6 µM) in decreasing order of solubility (Table 2).   
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Next, as a means to select a candidate for evaluation in an in vivo model for inflammatory 

pain, cheminformatics analysis of physicochemical and pharmacokinetic properties was carried 

out using QikProp (Schrödinger, LLC). Molecules were loaded into Maestro and prepared for 

computational analysis. Using the OPLS3e force field the protonation states at pH 7.4 were 

determined and energy minimization was performed. Since the presumed site of action for our 

compounds is in the CNS we have given consideration to molecular properties that could affect 

blood-brain barrier (BBB) permeability. Several analyses have been published on physicochemical 

properties that drive BBB permeability and in general the consensus is that molecules with 

molecular weight < 400 g/mol and LogP ranging from 2 – 5 have increased probability for CNS 

activity.55–58 The molecular weights of the four prioritized analogs range from 337 g/mol to 355 

g/mol and QPLogPo/w ranged from 2.32 – 2.88 (specific values for selected analogs provided in 

Table 2). Conversely, the Polar Surface Area (PSA) for the analogs is maintained around 100 Å2. 

This may be detrimental to CNS activity as PSA < 90 Å2 is desired for small molecule CNS 

activity56,59 with an ideal range between 40 – 80 Å2.60,61 Related is the hydrogen-bond donors 

(HBD) and acceptors (HBA) counts for the prioritized analogs. The number of HBD (2 for each 

molecule) and HBA (7 for each molecule) are at the upper preferred limit desired for CNS active 

molecules.60  

These properties are combined within QikProp to provide two predictive metrics for  CNS 

permeability that have been benchmarked with experimental data62: 1) the CNS score and 2) 

QPPMDCK. The CNS score is a multiparameter-based metric on a scale of -2 (inactive) to +2 

(active). Based on these calculations, analogs 16, 20, and 39 all are predicted to be CNS inactive 

with values of -2 for each while 38 has a predicted value of 0, indicating at least partial CNS 

activity. Alternatively, Madin-Darby Canine Kidney (MDCK) cells have been shown to be a viable 
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surrogate to assess for BBB permeability.55,63  This is captured in the QPPMDCK apparent 

permeability (Papp) metric where a predicted Papp > 500 nm/sec is desired for CNS activity.  

Analogs 16, 20 and 39 all had QPPMDCK Papp values around 140 nm/sec, which would support 

the reduced CNS score, while 38 was predicted to have a value of 632 nm/sec (Table 2) indicating 

it was the most likely of the cohort to reach the desired site of action. A full data set of QikProp 

metrics for all analogs is provided as a spreadsheet in the supporting information. 

 

Table 2. Predicted and experimentally determined physicochemical and pharmacokinetic metrics 

 
 

 

 

Based on the measured solubility and computational predictions for CNS activity we 

selected analog 38 to be assessed for experimental MDCK permeability. The molecule displayed 

a Papp from apical to basolateral of 22.1 nm/sec, well below the predicted value for QPPMDCK. 

Regardless, even though 38 displays reduced MDCK permeability it is still comparable to, or better 

than, other known CNS active drugs.55,64–66  

As 38 emerged as our lead molecule from this series we performed further cheminformatic 

absorption, metabolism, distribution and excretion (ADME) analysis using pkCSM67 to identify 

potential ADME liabilities. This in silico analysis uses graph-based signatures of molecules to 

compare against training sets of molecules with known ADME properties. This analysis flagged 

Cpd MW (g/mol) QPLogPo/wa  PSA (Å2) CNSb QPPMDCK 
(nm/sec)c 

Solubility (µM)d Papp (nm/sec)e 

Desired 
Ranges 

< 400 2 - 5 < 90 0 – 2 > 500 10x AC1 IC50 - 

16 337 2.32 100.5 -2 141 19.5 nt 
20 351 2.65 100.5 -2 141 10.8 nt 
38 355 2.88 101.4 0 632 33.6 22.1 
39 351 2.57 100.5 -2 140 7.6 nt 

a QikProp metric for predicted octanol/water partition coefficient. b QikProp multiparameter-based predictive metric for molecules CNS activity. 
Ranges from -2 (inactive) to +2 (active). C QikProp predictive metric for apparent MDCK cell permeability. d Thermodynamic solubility in PBS 
at pH 7.4 and 25 °C determined according to previously described protocol.53,54  e Experimental apparent MDCK permeability. 
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the 38 as a potential inhibitor cytochrome P450s (CYP) 1A2 and 3A4 and substrate of CYP3A4 

and CYP2D6. Metabolism and inhibition of CYPs can adversely impact the metabolic profiles of 

the lead molecule and other drugs taken in combination.68  Thus, the effect of small molecules on 

CYPs should be assessed to de-risk the scaffold for lead optimization. To this end, we evaluated 

38 for inhibition at five CYPs that contribute to metabolism of over 50% of marketed drugs.68,69 

The molecule was dosed at a single concentration of 10 µM and evaluated for percent inhibition. 

In contrast to the pkCSM predictions it was found that 38 had no significant inhibition of any of 

the five CYPs tested in this panel (Table 3).  

 

 

% CYP Inhibition at 10 µMa HLM Stability (% remaining) b  
1A2 2C19 2C9 2D6 3A4 15 min 30 min 45 min 60 min t1/2

c CLint
d 

8.7 1.8 -0.2 0.3 -0.9 88.3 67.4 57.5 44.5 51.2 136.7 
 

 

 

Alternatively, we sought to assess the potential for metabolic modification of the molecule 

by quantifying stability in human liver microsomes (HLM).  It was found that compound 38 is 

metabolized in the HLM assay with 88% of molecule remaining at the 15-minute time-point 

followed by steady decline to 45% remaining at the 60-minute timepoint. This analysis yielded a 

half-life (t1/2) of approximately 51 minutes and intrinsic clearance (Clint) of 136.7 µL/min/mg 

(Table 3).  On the basis of the physicochemical, in vitro pharmacokinetic properties and relatively 

benign safety profile against off-targets for analog 38 we chose to move this molecule forward for 

testing in the mechanical allodynia mouse model. 

 

a % inhibition is calculated by subtracting from untreated controls. bHLM = human liver microsome. 
Tested at 37 °C in 0.1 mg/mL HLMs. % remaining is percentage of compound remaining in sample at 
each time point and is average of 2 replicates. c Half-life of molecule in minutes. d Intrinsic clearance 
of molecule from HLMs in µL/min/mg. 

Table 3. In vitro CYP and metabolic profile for analog 38 
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In vivo efficacy of compound 38 in a mouse model for inflammatory pain 

To assess whether 38 could reduce pain sensitization we evaluated the analog in a mouse 

model for inflammatory pain with CFA as previously published.34,35 Compound 38 was injected 

intraperitoneally (i.p.) at a dose of 5.6 mg/kg and was compared to 5.6 mg/kg morphine (positive 

control) and vehicle (negative control). Mechanical allodynia was quantified by von Frey filament 

testing recorded pre-CFA injection (no allodynia), 24-hr post-CFA injection (0 min, allodynia), 

and over a period of 2 hours post-treatment with 38 or morphine. Compound 38 displayed modest, 

yet statistically significant, anti-allodynic effects in this inflammatory pain model at 1-hour post-

treatment compared to the 0 min (allodynic) time point (Figure 5). Morphine produced a more 

pronounced anti-allodynic effect throughout the time course.  

 

 

Figure 5. Anti-allodynic Effect of Compound 38 in the CFA Inflammatory Pain Model. Mechanical 
thresholds were determined using von Frey filaments. Mice were baselined then injected with 10uL of 
50% CFA emulsion into the plantar region of the paw. 24 hours later mice were baselined then injected 
with 5.6 mg/kg morphine or 5.6 mg/kg compound 38. Time-course taken over 2-hour period comparing 
38 to morphine (A) and time-course with statistical analysis for 38 (B). Data represents the mean ± SEM 
of the 50% mechanical threshold (n = 6). Statistical analysis performed using nonparametric One-Way 
ANOVA (Friedman test), Dunn’s post-hoc correction. *p < 0.05 versus 0 min time point. 

A B 
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DISCUSSION 

 

Following our previous reports of selective AC1 inhibitors for chronic pain, we sought to 

discover a scaffold with improved drug-like characteristics and potency while maintaining 

selectivity versus AC8. The same high-throughput screen that identified the prior oxadiazole 

series35 also yielded the pyrazolyl-pyrimidinone scaffold as potent AC1 inhibitors with selectivity 

against AC8 and having higher predicted aqueous solubility. The optimization was multifaceted 

as we sought to improve AC1 potency while maintaining/improving selectivity over AC8. 

However, during the design we were also cognizant of modifications that may improve solubility 

and/or BBB permeability. After SAR optimization of the benzamide moiety, we were able to 

improve potency by 2 – 4-fold across the series of analogs versus Ca2+/CaM-stimulated AC1 

activity while maintaining/improving selectivity versus AC8. The SAR revealed a 6-membered 

aromatic group was preferred on the amide as both the phenyl and 2-pyridine functional groups 

were comparable with low-micromolar potency against AC1. We moved forward with phenyl 

modifications for two reasons: 1) a greater availability of substituted reagents to better explore 

SAR and 2) we wanted to limit the number of heteroatoms in an attempt to improve BBB 

permeability.  Hydrophobic substituents were preferred on the phenyl ring, particularly at the meta- 

or para-positions.  Furthermore, the potent activity of analogs 26 (3-phenyl) and 27 (4-phenyl) 

implies a larger capacity or perhaps flexibility of the putative molecule binding site to 

accommodate flat hydrophobic substitutions. While the increased lipophilicity is generally helpful 

to improve BBB permeability it is typically is detrimental to solubility.55,70 A few analogs that 
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incorporated polar functional groups such as methoxy, hydroxy, and dimethyl amino all resulted 

in reduced potency against AC1 activity compared to the top leads.  

In terms of potency against Ca2+/CaM-stimulated AC8 activity, the halogenated series was 

generally least selective at around 50% AC8 inhibition at the AC1 IC90 with the exception of the 

3-Br derivative at 15% AC8 inhibition. When the substitution was switched to lipophilic alkyl 

functionalities there was an observed drop in AC8 inhibition at the AC1 IC90 for the analogs tested. 

For example, among analogs 15 – 27 containing hydrophobic modifications the AC8 inhibition 

ranged from 11 – 41%. The 3-ethyl (20) and 4-ethyl (21) derivatives were among the most selective 

with AC1 IC50 values of 0.44 µM and 0.39 µM, respectively, paired with sub-20% AC8 inhibition. 

Interestingly, the branched derivatives we slightly less selective than the linear alkyl counterparts.  

Given that the scaffold has three aromatic rings and contains several heteroatoms that could 

partake in both intramolecular and intermolecular hydrogen-bonds we posited that perhaps the low 

solubility of the scaffold may be a function of planarity and high-crystal packing energy.71,72  It 

has previously been observed that introducing contiguous rotatable bonds may reduce crystal 

packing and improve solubility of molecules in aqueous media.71  Thus, analogs 35 and 36 were 

designed to insert a methylene between the amide carbonyl and the pendent phenyl to explore both 

AC1 potency and solubility. Unfortunately, the modification was detrimental to AC potency as 

each analog was at least 10-fold less potent compared to their nearest neighbor analogs without 

the extra methylene. However, qualitatively these analogs were more soluble in aqueous media 

compared to the matched molecular pairs, although exact measurements were not obtained because 

the molecules were inferior in AC1 activity. Nonetheless, for future analog design the strategy of 

reducing planarity of the scaffold may prove useful. Finally, when combinations of substitutions 

were made there was not an improvement in activity versus AC1 that was desired. Regardless, the 
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combined modifications in 38 did project to yield a CNS active analog according to QikProp 

projections. Thus, this molecule, along with three analogs in 16, 20, and 39 that exhibited better 

potency with inferior projected BBB permeability were prioritized for further evaluation in 

downstream assays.  

In addition to AC1 and AC8, the original hit and four prioritized analogs were also tested 

against two other AC sub-families represented by AC2 and AC5. AC2 is a member of the group 

II subfamily and is conditionally activated by GEJ subunits. AC5 is a group III sub-family enzyme 

and is inhibited by Ca2+. It was found that when AC2 is activated by PMA that the scaffold 

generally potentiates AC2 activity by up to 50%, although analog 38 displayed the relatively little 

potentiation. This phenomenon has been previously observed for other AC1 inhibitors reported by 

our group34,35 and at this point it is difficult to posit what this may mean physiologically, if 

anything, as there is very little understood about AC2 activity in vivo. AC2 is expressed in the 

brain, lung, skeletal muscle and heart yet there is very little understood about its physiological 

function and a lack of animal knockout models and selective inhibitors has kept the function 

elusive.3,34 As for AC5 activity the scaffold appeared to have no modulatory effects against this 

enzyme that differed from the DMSO-treated controls. Therefore, the pyrimidinone scaffold 

appears to be selective for targeting AC1 over other isoforms.  

Little is known about the scaffold at this point from an off-target perspective. The pyrazole-

pyrimidine substructure has been recently reported in only one other manuscript to possess anti-

leishmania properties via promoting microtubule polymerization.73 Moreover, three analogs tested 

for activity against four human kinases relevant to off-target toxicity displayed moderate-to-no 

inhibition at a single dose of 10 µM. This would suggest that kinase inhibition may not preclude 

this scaffold from advancement, however, the kinases tested are not exhaustive and additional 
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experiments are necessary to understand the potential impact the molecules may have on the 

human kinome. Additionally, even though AC8 maintains significant residual activity at higher 

concentrations of inhibitor we still do not know if this will be sufficient to alleviate potential 

learning deficits similar to those observed in the AC1 and AC8 double knockout mice. Further 

analysis in learning and behavior assays are required to fully investigate any potential impact, or 

lack thereof, on learning and memory.  

  With the combined data showing the analog 38 displayed mid-nanomolar AC1 

potency with sub-20% AC8 inhibition, little modulation at other AC isoforms, and had the best 

overall predicted and measured physicochemical and MDCK permeability metrics it was 

prioritized for testing in an in vivo CFA mouse model for inflammatory pain. The analog did 

display modest, yet significant, anti-allodynic properties in this model at the 1-hour timepoint. The 

results are promising for the scaffold as we believe there are still alterations to be made for 

improvement of the physicochemical and pharmacokinetic properties of the molecules. For 

example, mice were dosed i.p. which may reduce the amount of molecule that enters circulation at 

the site of action. Solubility improvements should provide a means to increase testable doses. 

Exploration of SAR at other parts of the scaffold may provide openings for improving BBB 

permeability. The investigation of this scaffold is only at the beginning stages with much yet to 

learn about the SAR and potentially how the molecules interact with the target intracellularly that 

could provide further ideas for analog design. Regardless, the pyrazolo-pyrimidine scaffold 

represents a previously unreported class of AC1 inhibitors that may have potential for treatment 

or aid in validation of AC1 inhibition as a viable therapeutic strategy for inflammatory pain and to 

provide alternatives to opioid analgesics. 
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CONCLUSION 

 A cell-based high-throughput screen identified the pyrazolo-pyrimidine scaffold with 

inhibitory activity against Ca2+/CaM-stimulated AC1 cAMP production. A ligand-based SAR 

optimization campaign, with 36 novel analogs, explored modifications to the benzamide portion 

of the scaffold to improve AC1 inhibitory activity and improve selectivity over the closely related 

AC8.  It was observed that hydrophobic substitutions on the phenyl ring at both the meta- and 

para-positions provided IC50 values as low as 0.25 µM with reduced activity against AC8. 

Prioritized analogs based on potency, selectivity, solubility and predicted BBB permeability were 

further evaluated at additional AC isoforms. The molecules were observed to potentiate AC2 

activity but did not display any modulatory effect against AC5. Additionally, the prioritized 

analogs were largely inactive at all opioid receptors and against selected kinases. Finally, when 

evaluated in a murine CFA model for inflammatory pain analog 38 displayed modest anti-

allodynic properties with a significant effect at the 1-hour post-treatment time point, demonstrating 

the potential of the scaffold for relieving pain. Further studies will focus on improvement of 

physicochemical and pharmacokinetic properties while maintaining AC1 potency and selectivity 

to enhance in vivo efficacy.  

 

 

EXPERIMENTAL SECTION 

 

Chemistry 
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General Methods. Purity of all final compounds was ascertained via HPLC on an Agilent 1200 

series chromatograph >95%. Chromatographic methods utilized include a ThermoScientific 

Hypersil GOLD C-18 4.5 X 250 mm, 3 µm column, UV detection at a wavelength of 254 nm, 

flow-rate set to 1.0 mL/min, and with an acetonitrile: water gradient from 5% to 95% acetonitrile 

over 12 minutes with a 3 min hold time at 95%. Both acetonitrile and water contained 0.1% v/v 

formic acid. Mass spectrometry was obtained on an Advion CMS-L Compact Mass Spectrometer 

with an APCI or ESI source on normal or low fragmentation settings. 1H and 13C NMR spectra 

were recorded on either a Bruker DRX500 spectrometer or a Bruker AVIII in CDCl3, DMSO-d6, 

or Methanol-d4 with internal standard of TMS at 0.05% v/v. Chemical shifts (δ) reported below 

are as parts per million (ppm) and the coupling constants are reported as follows: s=singlet, 

d=doublet, t=triplet, q=quartet, p=pentet, h=hextet, hept=heptet, dd=doublet of doublets, 

ddd=doublet of doublet of doublets, m=multiplet. Protocols for each compound are detailed below. 

Compounds were prepared according to scheme 1 and protocol is detailed below for compound 1. 

All other compound synthesis and characterization data is provided in the supporting information. 

 

6-Ethyl-2-thioxo-2,3-dihydropyrimidin-4(1H)-one (2). To a 250 mL round bottom flask equipped 

with stirbar, thiourea (5.99g, 78.7 mmol, 1 eq.) and potassium hydroxide (5.10 g, 90.9 mmol, 1.2 

eq.) were added. The powders are then suspended with 60 mL of 200 proof ethanol and the mixture 

is heated while stirring to 75 °C. To this stirring mixture, ethyl 3-oxopentanoate (12.5 mL, 87.6 

mmol, 1.11 eq.) is added in one portion. The flask was then sealed with a glass stopper and the 

solution is heated at 85°C overnight. White solid began crashing out of solution quickly, with the 

solution appearing orange/pink. After 16 hours, the suspension is removed from heat and allowed 

to slowly return to room temperature. The suspension was concentrated on in vcauo to remove 
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about half of the volume of ethanol (~30 mL ethanol remaining). To this suspension, deionized 

water was added slowly while stirring until the mixture turns completely clear. The solution was 

then slowly neutralized while stirring by adding concentrated HCl (12 N in water) and diluted 

NaOH (1.0 N in water) to pH 7.0. As the solution approaches neutral pH, white solid should begin 

crashing out of solution. Once the mixture was neutralized, the suspension was filtered and washed 

with water. The white powder was then allowed to dry on filter paper under suction before being 

transferred to a vial and placed on hi-vac. The resultant powder 2 was collected and taken forward 

without further purification (7.46 g, 47.8 mmol, 61% yield). 1H NMR (500 MHz, Methanol-d4) δ 

5.70 (s, 1H), 2.43 (q, J = 7.5 Hz, 2H), 1.21 (t, J = 7.5 Hz, 3H). 

6-Ethyl-2-(methylthio)pyrimidin-4(1H)-one (3). Intermediate 2 (7.46 g, 47.8 mmol, 1 eq.) was 

added to a 250 mL round bottom flask equipped with stirbar. In a separate container, sodium 

hydroxide (2.10 g, 52.6 mmol, 1.1 eq.) was added and dissolved via sonication in 30 mL of water. 

This sodium hydroxide solution was then added slowly while stirring to the round bottom flask 

with 2. The combined solutions were allowed to stir for 30 minutes at room temperature. After 30 

minutes the solution was placed in an ice water bath (0°C) for 5 minutes (note: some solid may 

fall out of solution). To this stirring mixture in the ice bath was added iodomethane (3.57 mL, 57.3 

mmol, 1.2 eq.). The mixture was stirred rapidly to ensure distribution of iodomethane and allowed 

to stir overnight inside the ice water bath as it slowly warmed to room temperature.  After 16 hours 

the suspension was immediately filtered, washed with ice water and allowed to dry for 15 minutes 

on filter paper before transfer to hi-vac, yielding a white powder 3 was taken forward without 

further purification (7.48 g, 44.0 mmol, 92%). 1H NMR (500 MHz, DMSO-d6) δ 12.50 (s, 1H), 

5.90 (s, 1H), 2.44 (s, 3H), 2.39 (q, J = 7.4 Hz, 2H), 1.09 (t, J = 7.5 Hz, 3H). 
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6-Ethyl-2-hydrazineylidene-2,3-dihydropyrimidin-4(1H)-one (4). To a 250 mL round bottom flask 

equipped with stirbar 3 (7.48 g, 44.0 mmol, 1 eq.), potassium carbonate (61.2 mg, 443 μmol, 1 

mol %), and 30 mL of 2-propanol were added. To this stirring mixture, hydrazine hydrate (10.6 

mL, 219 mmol, 5 eq., 64% hydrazine) was added in one portion. The vessel is tightly sealed with 

a glass stopper and heated to 80°C for 5 hours and then lowered to 60°C for 18 hours. The reaction 

was cooled briefly on ice and the precipitate was filtered and washed with 1 mL volumes of diethyl 

ether (3 times) and methanol (3 times). The resultant off-white powder was then dried on hi-vac 

to yield 4 without further purification (2.78 g, 18.0 mmol, 41%).1H NMR (500 MHz, DMSO-d6) 

δ 8.45 (s, 1H), 5.36 (s, 1H), 4.51 (s, 2H), 2.27 (q, J = 7.5 Hz, 2H), 1.08 (t, J = 7.5 Hz, 3H). 

2-(5-Amino-3-methyl-1H-pyrazol-1-yl)-6-ethylpyrimidin-4(1H)-one (5). Intermediate 4 (2.78 g, 

18.0 mmol, 1 eq.) and 3-aminocrotonitrile (2.96 g, 36.1 mmol, 2 eq.) were added to a 250 mL 

round bottom flask equipped with stirbar and then suspended in 30 mL of 200 proof ethanol. The 

vessel is sealed with a rubber stopper and vented with a 20G needle. The mixture is heated at 90°C 

for 4 hours then 60°C for 16 hours. The reaction was allowed to return to room temperature while 

stirring then chilled to 3 °C inside a refrigerator. A precipitate was then filtered and washed in 

sequential order with portions of hexanes (3 x 10 mL), ethanol (3 x 10 mL), methanol (3 x 10 mL), 

and DCM (3 x 10 mL). The resultant powder was then allowed to dry on filter before transfer to 

hi-vac to yield 5 no further purification (2.49 g, 11.1 mmol, 61%).1H NMR (500 MHz, DMSO-d6) 

δ 11.47 (s, 1H), 6.90 (s, 2H), 5.98 (s, 1H), 5.27 (s, 1H), 2.52 (q, J = 7.6 Hz, 2H), 2.09 (s, 3H), 1.16 

(t, J = 7.5 Hz, 3H). APCI-MS: m/z 220.1 [M+H]+. 

General Procedure A for Amide Coupling 
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N-(1-(6-ethyl-4-oxo-1,4-dihydropyrimidin-2-yl)-3-methyl-1H-pyrazol-5-yl)-2-fluorobenzamide 

(1). Acyl fluoride amide coupling is adapted from a previously reported procedure.46 To an oven-

dried microwave vial equipped with stirbar and intermediate 5 (0.23 mmol, 1 eq.) was added. The 

vial was sealed tightly and evacuated under vacuum then recharged under argon atmosphere three 

times. To an second oven-dried microwave vial was added 2-fluorobenzoic acid (0.083 g, 0.59 

mmol, 1.3 eq.) and fluoro-N,N,N′,N′-bis(tetramethylene)formamidinium hexafluorophosphate 

(BTFFH) (0.22 g, 0.68 mmol, 1.5 eq.). The vial was then sealed and evacuated with argon three 

times followed by addition of dry dichloromethane (DCM) (880 μL) and N,N-

diisopropylethylamine (DIPEA) (100 μL, 0.57 mmol, 2.5 eq.).  The mixture was allowed to stir 

for 30 minutes under argon to prepare the acyl fluoride. After 30 minutes the crude acyl fluoride 

solution was withdrawn from the second vial and injected dropwise into the vial containing 

intermediate 5 while stirring. The vial was then heated for 16 hours in a sandbath at 100 °C. 

The reaction was then quenched with 1 mL deionized water, agitated vigorously, and then 

allowed to stir at room temperature for 15 minutes. The vial’s contents were then transferred to a 

separatory flask and diluted with 10 mL DCM and 10 mL 1% aqueous HCl. The organic layer was 

separated and the aqueous layer was extracted with a second portion of DCM. The combined 

organic layers were then washed sequentially with equal volumes of 1% aqueous HCl, saturated 

sodium bicarbonate solution, and brine. The resultant organic layer was dried with MgSO4, filtered 

and concentrated in vacuo. The mixture was concentrated then suspended in 1-2 mL of ethyl 

acetate to provide a suspension. The suspension was filtered and washed with ethyl acetate then 

dried to yield 1 as a white powder (0.059 g, 0.17 mmol, 38%) as a white solid. 1H NMR (800 MHz, 

CDCl3) δ 12.36 (s, 1H), 10.33 (s, 1H), 8.15 (t, J = 7.8, 3.9 Hz, 1H), 7.58 (q, J = 7.1 Hz, 1H), 7.34 

(t, J = 7.6 Hz, 1H), 7.21 (dd, 1H), 6.97 (s, 1H), 6.09 (s, 1H), 2.63 (q, J = 7.6 Hz, 2H), 2.31 (s, 3H), 
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1.24 (t, J = 7.6 Hz, 3H). 13C NMR (201 MHz, CDCl3) δ 169.0, 161.2, 160.4 (d, 1J = 250.2 Hz), 

159.8, 153.7, 148.3, 140.4, 134.5 (d, 3J = 9.1 Hz), 132.4, 125.1 (d, 4J = 3.2 Hz), 120.6 (d, 3J = 11.6 

Hz), 116.2 (d, 2J = 23.8 Hz), 107.6, 100.2, 30.1, 14.2, 12.2. APCI-MS(+): m/z 342.2 [M+H]+. 

APCI-MS(-): m/z 340.0 [M-H]-. HPLC retention time: 12.691 min. HPLC purity 99.50%.  

 

General Procedure B for Amide Coupling (shown for 14). 

3-Bromo-N-(1-(4-ethyl-6-oxo-1,6-dihydropyrimidin-2-yl)-3-methyl-1H-pyrazol-5-yl)benzamide 

(14).  To an oven-dried microwave vial was added intermediate 5 (0.050 g, 0.23 mmol, 1 eq.) 

followed by evacuation under vacuum and flushing with argon three times. To this vial was added 

LiHMDS 1.0 M in THF (1.03 mL, 1.03 mmol, 4.5 eq.) was then added dropwise. The mixture was 

allowed to stir at room temperature for 30 minutes.   

 The acyl fluoride generation proceeds as described in General Procedure A in a separate 

microwave vial using 3-bromobenzoic acid (0.060 g, 0.30 mmol), BTFFH (0.11 g, 0.34 mmol), 

DIPEA (100 µL, 0.57 mmol), and DCM (0.5 mL). The activated amino-pyrazole solution from the 

first vial is then added dropwise to the crude acyl fluoride solution in the second vial and stirred at 

80 °C for 18 hours. The reaction proceeded to be worked up the same as described in General 

Procedure A to provide 14 as a white solid (0.026 g, 0.064 mmol, 28%). 1H NMR (800 MHz, 

CDCl3) δ 12.43 (s, 1H), 10.31 (s, 1H), 8.07 (s, 1H), 7.96 (d, J = 8.0 Hz, 1H), 7.74 (d, J = 7.9 Hz, 

1H), 7.42 (t, J = 7.9 Hz, 1H), 6.87 (s, 1H), 6.11 (s, 1H), 2.71 (q, J = 7.5 Hz, 2H), 2.32 (s, 3H), 1.30 

(t, J = 7.6 Hz, 3H). 13C NMR (201 MHz, CDCl3) δ 168.0, 161.9, 160.9, 154.1, 148.7, 140.8, 135.7, 

135.1, 130.6, 129.8, 126.5, 123.0, 107.7, 99.2, 30.8, 14.2, 12.3. APCI-MS(+): m/z 401.9, 403.9 
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[M+H]+. APCI-MS(-): m/z 399.8, 401.8 [M-H]. HPLC retention time: 13.539 min. HPLC purity 

95.3%. 

N-(1-(6-Ethyl-4-oxo-1,4-dihydropyrimidin-2-yl)-3-methyl-1H-pyrazol-5-yl)benzamide (6). 

Prepared using general procedure A with benzoic acid (0.036 g, 0.30 mmol), BTFFH (0.11 g, 0.34 

mmol), DCM (440 μL), DIPEA (180 μL, 1.0 mmol), and 5 (0.050 g, 0.23 mmol) to produce 6 

(0.017 mg, 0.052 mmol, 23%) as a white solid. 1H NMR (500 MHz, CDCl3) δ 12.38 (s, 1H), 10.33 

(s, 1H), 7.98 (d, J = 7.1 Hz, 2H), 7.64 – 7.59 (m, 1H), 7.53 (t, J = 7.3 Hz, 2H), 6.88 (s, 1H), 6.10 

(s, 1H), 2.65 (q, J = 7.5 Hz, 2H), 2.31 (s, 3H), 1.29 (t, J = 7.5 Hz, 3H). 13C NMR (126 MHz, 

CDCl3) δ 167.9, 163.4, 160.8, 154.0, 148.6, 141.0, 133.1, 132.6, 128.8, 127.2, 107.6, 98.9, 30.5, 

14.1, 12.2. APCI-MS(+): m/z 324.1 [M+H]+. APCI-MS(-): m/z 322.0 [M-H]-. HPLC retention 

time: 12.422 min. HPLC purity 98.6%. 

N-(1-(6-Ethyl-4-oxo-1,4-dihydropyrimidin-2-yl)-3-methyl-1H-pyrazol-5-yl)acetamide (7). 

Intermediate 5 (0.025 g, 0.11 mmol, 1 eq) was suspended in 2-MeTHF (500 μL) inside a 

microwave vial. Acetylsalicylic acid (0.031 g, 0.17 mmol, 1.5 eq) and pyridine (30 μL, 0.33 mmol, 

3 eq) were added to the stirring mixture. Finally, propylphosphonic anhydride (T3P) (0.15 g 50% 

w/w in EtOAc, 0.23 mmol, 2 eq) was added to the mixture which was then immediately sealed. 

The vial was then heated to 100°C in a Biotage Initiator microwave for 12 hours. After cooling, 

the mixture was diluted with deionized water and agitated vigorously. The aqueous layer was then 

extracted with an equal volume of DCM. The organic layer was then collected, dried with MgSO4, 

and concentrated in vacuo. It was then further purified via normal phase flash chromatography (2-

6% v/v MeOH in DCM). Fractions containing product were concentrated and dried on hi-vac 

yielding 7 (0.010 g, 0.039 mmol, 34%) as an off-white solid. 1H NMR (800 MHz, CDCl3) δ 11.53 

(s, 1H), 10.25 (s, 1H), 6.72 (s, 1H), 6.07 (s, 1H), 2.61 (q, J = 7.6 Hz, 2H), 2.27 (s, 3H), 2.24 (s, 



 38 

3H), 1.30 (t, J = 7.6 Hz, 3H). 13C NMR (201 MHz, CDCl3) δ 167.8, 166.3, 160.9, 154.0, 148.6, 

140.7, 107.8, 98.9, 30.3, 24.3, 14.2, 11.9. APCI-MS(+): m/z 262.0 [M+H]+. APCI-MS(-): m/z 

259.9 [M-H]-. HPLC retention time: 10.065 min. HPLC purity 98.9%. 

N-(1-(6-Ethyl-4-oxo-1,4-dihydropyrimidin-2-yl)-3-methyl-1H-pyrazol-5-yl)furan-2-carboxamide 

(8). Furan-2-carboxylic acid (0.031 g, 0.27 mmol, 3 eq) and DIPEA (0.050 g, 0.38 mmol, 4.2 

eq) were dissolved in DMF (0.9 mL) and allowed to stir at room temperature for 10 minutes. Next, 

2-(3H-[1,2,3]triazolo[4,5-b]pyridin-3-yl)-1,1,3,3-tetramethylisouronium hexafluorophosphate(V) 

(0.11 g, 0.29 mmol, 3.2 eq) was added to the vial. This solution was allowed to stir for 1 hour at 

room temperature. After 1 hour intermediate 5 (0.020 g, 0.091 mmol, 1 eq) was added and the 

solution was brought to 85 °C then stirred for 18 hours. Work-up was the same as general 

procedure A, yielding 8 as a white solid (0.003 g, 0.009 mmol, 10%). 1H NMR (800 MHz, CDCl3) 

δ 12.51 (s, 1H), 10.27 (s, 1H), 7.56 (d, J = 1.7 Hz, 1H), 7.33 (d, J = 3.5 Hz, 1H), 6.85 (s, 1H), 6.64 

(dd, J = 3.5, 1.7 Hz, 1H), 6.12 (s, 1H), 2.71 (q, J = 7.6 Hz, 2H), 2.32 (s, 3H), 1.40 (t, J = 7.6 Hz, 

3H). 13C NMR (201 MHz, CDCl3) δ 168.4, 161.0, 154.3, 154.0, 148.5, 147.2, 144.7, 140.3, 116.4, 

113.0, 107.8, 99.0, 30.6, 14.2, 12.2. APCI-MS(+): m/z 314.3 [M+H]+. APCI-MS(-): m/z 312.1 

[M-H]-. HPLC retention time: 11.686 min. HPLC purity 97.9%. 

 

N-(1-(6-Ethyl-4-oxo-1,4-dihydropyrimidin-2-yl)-3-methyl-1H-pyrazol-5-yl)picolinamide (9). 

Prepared using general procedure A with picolinic acid (0.037 g, 0.30 mmol, 1.3 eq), BTFFH (0.11 

g, 0.34 mmol, 1.5 eq), DCM (0.5 mL), DIPEA (180 μL, 1.0 mmol, 4.3 eq), and (5) (0.0500 g, 0.23 

mmol, 1 eq) to produce 9 (0.036 g, 0.11 mmol, 48%) as a tan solid. 1H NMR (800 MHz, CDCl3) 

δ 13.48 (s, 1H), 10.26 (s, 1H), 8.64 (ddd, J = 4.7, 1.7, 0.9 Hz, 1H), 8.28 (dt, J = 7.8, 1.1 Hz, 1H), 
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7.94 (td, J = 7.7, 1.7 Hz, 1H), 7.53 (ddd, J = 7.5, 4.7, 1.2 Hz, 1H), 6.93 (s, 1H), 6.11 (s, 1H), 2.77 

(q, J = 7.6 Hz, 2H), 2.32 (s, 3H), 1.43 (t, J = 7.6 Hz, 3H). 13C NMR (201 MHz, CDCl3) δ 169.1, 

161.9, 161.3, 153.8, 148.9, 148.3, 148.2, 140.6, 137.7, 127.0, 123.0, 107.7, 99.0, 30.7, 14.2, 12.3. 

APCI-MS(+): m/z 325.1 [M+H]+. APCI-MS(-): m/z 323.0 [M-H]-. HPLC retention time: 12.473 

min. HPLC purity 95.1%.  

N-(1-(6-Ethyl-4-oxo-1,4-dihydropyrimidin-2-yl)-3-methyl-1H-pyrazol-5-yl)-3-fluorobenzamide 

(10). Prepared using general procedure A with 3-fluorobenzoic acid (0.046 g, 0.30 mmol,1.3 eq), 

BTFFH (0.11 g, 0.34 mmol, 1.5 eq), DCM (440 μL), DIPEA (180 μL, 1.0 mmol, 4.3. eq), and 5 

(0.050 g, 0.23 mmol, 1 eq). Required additional purification via normal phase flash 

chromatography (DCM:MeOH, 10% MeOH isocratic) to produce 10 (0.009 g, 0.003 mmol, 11%) 

as a white solid. 1H NMR (800 MHz, CDCl3) δ 12.43 (s, 1H), 10.29 (s, 1H), 7.78 (d, J = 7.7 Hz, 

1H), 7.68 (dt, J = 9.2, 1.9 Hz, 1H), 7.52 (td, J = 8.0, 5.4 Hz, 1H), 7.32 (td, J = 8.2, 2.6 Hz, 1H), 

6.88 (s, 1H), 6.11 (s, 1H), 2.67 (q, J = 7.5 Hz, 2H), 2.32 (s, 3H), 1.30 (t, J = 7.6 Hz, 3H). 13C NMR 

(201 MHz, CDCl3) δ 167.9, 162.9 (d, 1J = 248.5 Hz), 162.1, 160.8, 154.2, 148.8, 140.8, 135.5 (d, 

3J = 7.1 Hz), 130.7 (d, 3J = 7.9 Hz), 123.0, 119.8 (d, 2J = 21.1 Hz), 114.5 (d, 2J = 23.1 Hz), 107.8, 

99.2, 30.7, 14.2, 12.3. APCI-MS(+): 342.1 [M+H]+. APCI-MS(-): 340.0 [M-H]-. HPLC retention 

time: 12.844 min. HPLC purity 99.1%.  

N-(1-(6-Ethyl-4-oxo-1,4-dihydropyrimidin-2-yl)-3-methyl-1H-pyrazol-5-yl)-4-fluorobenzamide 

(11). Prepared using general procedure A with 4-fluorobenzoic acid (0.046 g, 0.30 mmol, 1.3 eq), 

BTFFH (0.11 g, 0.34 mmol,  1.5 eq), DCM (0.5 mL), DIPEA (180 μL, 1.0 mmol, 4.3 eq), and 5 

(0.050 g, 0.23 mmol, 1 eq) to produce 11 (0.020 g, 0.057 mmol, 25%) as a white solid. 1H NMR 

(800 MHz, CDCl3) δ 12.35 (s, 1H), 10.30 (s, 1H), 8.01 – 7.98 (m, 2H), 7.23 – 7.19 (m, 2H), 6.87 

(s, 1H), 6.11 (s, 1H), 2.64 (q, J = 7.6 Hz, 2H), 2.31 (s, 3H), 1.30 (t, J = 7.5 Hz, 3H). 13C NMR (201 
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MHz, CDCl3) δ 167.8, 165.5 (d, 1J = 254.5 Hz), 162.4, 160.8, 154.2, 148.8, 141.0, 129.7 (d, 3J = 

9.1 Hz), 129.5, 116.1 (d, 2J = 22.1 Hz), 107.8, 99.0, 30.7, 14.2, 12.3. APCI-MS(+): 342.1 [M+H]+. 

APCI-MS(-): 340.0 [M-H]-. HPLC retention time: 12.722 min. HPLC purity 99.1%. 

 

N-(1-(6-Ethyl-4-oxo-1,4-dihydropyrimidin-2-yl)-3-methyl-1H-pyrazol-5-yl)-3-chlorobenzamide 

(12). Prepared using general procedure A with 3-chlorobenzoic acid (0.046 g, 0.30 mmol, 1.3 eq), 

BTFFH (0.11 g, 0.34 mmol, 1.5 eq), DCM (0.5 mL), DIPEA (180 μL, 1.0 mmol, 4.3 eq), and 5 

(0.050 g, 0.23 mmol, 1 ew) to produce 12 (0.019 g, 0.053 mmol, 23%) as a white solid. 1H NMR 

(800 MHz, CDCl3) δ 12.45 (s, 1H), 10.30 (s, 1H), 7.93 – 7.90 (m, 2H), 7.59 (d, J = 8.0 Hz, 1H), 

7.49 (t, J = 7.8 Hz, 1H), 6.88 (s, 1H), 6.11 (s, 1H), 2.70 (q, J = 7.5 Hz, 2H), 2.32 (s, 3H), 1.30 (t, J 

= 7.5 Hz, 3H). 13C NMR (201 MHz, CDCl3) δ 168.0, 162.0, 160.8, 154.1, 148.8, 140.8, 135.1, 

134.9, 132.7, 130.4, 127.0, 125.9, 107.8, 99.2, 30.7, 14.2, 12.3. APCI-MS(+): m/z 360.1, 358.1 

[M+H]+. APCI-MS(-): m/z 357.9, 355.9 [M-H]-. HPLC retention time: 13.470 min. HPLC purity 

98.1%.  

N-(1-(6-Ethyl-4-oxo-1,4-dihydropyrimidin-2-yl)-3-methyl-1H-pyrazol-5-yl)-4-chlorobenzamide 

(13).  Prepared using general procedure A with 4-chlorobenzoic acid (0.046 g, 0.30 mmol, 1.3 eq), 

BTFFH (0.11 g, 0.34 mmol, 1.5 eq), DCM (0.5 mL), DIPEA (180 μL, 1.0 mmol, 4.3 eq), and 5 

(0.050 g, 0.23 mmol, 1 eq) to produce 13 (0.027 g, 0.075 mmol, 33%) as a white solid. 1H NMR 

(800 MHz, CDCl3) δ 12.38 (s, 1H), 10.30 (s, 1H), 7.92 (dt, J = 8.7, 2.0 Hz, 2H), 7.51 (dt, J = 8.7, 

2.0 Hz, 2H), 6.87 (s, 1H), 6.11 (s, 1H), 2.64 (q, J = 7.5 Hz, 2H), 2.31 (s, 3H), 1.30 (t, J = 7.5 Hz, 

3H). 13C NMR (201 MHz, CDCl3) δ 167.8, 162.4, 160.8, 154.2, 148.8, 140.9, 139.2, 131.6, 129.2, 
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128.7, 107.8, 99.1, 30.7, 14.2, 12.3. APCI-MS(+): m/z 360.1, 358.1 [M+H]+. APCI-MS(-): m/z 

358.0, 355.9 [M-H]-. HPLC retention time: 13.357 min. HPLC purity 100%. 

N-(1-(6-Ethyl-4-oxo-1,4-dihydropyrimidin-2-yl)-3-methyl-1H-pyrazol-5-yl)-2-methylbenzamide 

(15). Prepared using general procedure A with 2-methylbenzoic acid (0.040 g, 0.30 mmol, 1.3 eq), 

BTFFH (0.11 g, 0.34 mmol, 1.5 eq), DCM (0.5 mL), DIPEA (180 μL, 1.0 mmol, 4.3 eq), and 5 

(0.050 g, 0.23 mmol) to produce 15 (0.006 g, 0.02 mmol, 8%) as a white solid. 1H NMR (800 

MHz, CDCl3) δ 12.01 (s, 1H), 10.27 (s, 1H), 7.62 (d, J = 7.6 Hz, 1H), 7.42 (t, J = 7.5 Hz, 1H), 7.32 

(d, J = 7.6 Hz, 1H), 7.29 (t, J = 7.5 Hz, 1H), 6.89 (s, 1H), 6.05 (s, 1H), 2.58 (s, 3H), 2.46 (q, J = 

7.5 Hz, 2H), 2.31 (s, 3H), 1.10 (t, J = 7.6 Hz, 3H). 13C NMR (201 MHz, CDCl3) δ 168.1, 165.7, 

160.9, 154.1, 148.6, 141.0, 138.2, 134.2, 131.9, 131.3, 126.8, 125.9, 107.7, 98.8, 30.3, 20.4, 14.2, 

11.9. APCI-MS(+): m/z 338.2 [M+H]+. APCI-MS(-): m/z 336.1 [M-H]-. HPLC retention time: 

12.897 min. HPLC purity 97.5%. 

N-(1-(6-Ethyl-4-oxo-1,4-dihydropyrimidin-2-yl)-3-methyl-1H-pyrazol-5-yl)-3-methylbenzamide 

(16). Prepared using general procedure A with 3-methylbenzoic acid (0.040 g, 0.30 mmol, 1.3 eq), 

BTFFH (0.11 g, 0.34 mmol, 1.5 eq), DCM (0.5 mL), DIPEA (180 μL, 1.0 mmol), and 5 (0.050 g, 

0.23 mmol) to produce 16 (0.015 g, 0.044 mmol, 19%) as a white solid. 1H NMR (800 MHz, 

CDCl3) δ 12.30 (s, 1H), 10.32 (s, 1H), 7.80 – 7.77 (m, 2H), 7.43 – 7.40 (m, 2H), 6.89 (s, 1H), 6.10 

(s, 1H), 2.67 (q, J = 7.5 Hz, 2H), 2.46 (s, 3H), 2.31 (s, 3H), 1.29 (t, J = 7.6 Hz, 3H). 13C NMR (201 

MHz, CDCl3) δ 168.0, 163.7, 160.9, 154.2, 148.7, 141.2, 138.8, 133.5, 133.2, 128.8, 127.8, 124.6, 

107.7, 99.0, 30.7, 21.3, 14.2, 12.3. APCI-MS(+): m/z 338.2 [M+H]+. APCI-MS(-): m/z 336.1 [M-

H]-. HPLC retention time: 13.084 min. HPLC purity 96.6%. 
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N-(1-(6-Ethyl-4-oxo-1,4-dihydropyrimidin-2-yl)-3-methyl-1H-pyrazol-5-yl)-4-methylbenzamide 

(17). Prepared using general procedure A with 4-methylbenzoic acid (0.040 g, 0.30 mmol, 1.3 eq), 

BTFFH (0.11 g, 0.34 mmol, 1.3 eq), DCM (0.5 mL), DIPEA (180 μL, 1.0 mmol, 4.3 eq), and 5 

(0.050 g, 0.23 mmol) to produce 17 (0.033 g, 0.097 mmol, 43%) as a white solid. 1H NMR (800 

MHz, CDCl3) δ 12.31 (s, 1H), 10.31 (s, 1H), 7.87 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 8.3 Hz, 2H), 

6.87 (s, 1H), 6.10 (s, 1H), 2.66 (q, J = 7.6 Hz, 2H), 2.45 (s, 3H), 2.31 (s, 3H), 1.31 (t, J = 7.6 Hz, 

3H). 13C NMR (201 MHz, CDCl3) δ 168.1, 163.5, 160.9, 154.2, 148.8, 143.5, 141.2, 130.4, 129.6, 

127.3, 107.6, 98.9, 30.7, 21.6, 14.2, 12.3. APCI-MS(+): m/z 338.2 [M+H]+. APCI-MS(-): m/z 

336.0 [M-H]-. HPLC retention time: 13.039 min. HPLC purity 96.6%.  

N-(1-(4-Ethyl-6-oxo-1,6-dihydropyrimidin-2-yl)-3-methyl-1H-pyrazol-5-yl)-3-(trifluoromethyl) 

benzamide (18). Prepared using general procedure A with 3-(trifluoromethyl)benzoic acid (0.056 

g, 0.30 mmol, 1.3 eq), BTFFH (0.11 g, 0.34 mmol, 1.5 eq), DCM (0.5 mL), DIPEA (180 μL, 1.0 

mmol, 4.3 eq), and 5 (0.050 g, 0.23 mmol, 1 eq) to produce 18 (0.021 g, 0.052 mmol, 23%) as a 

white solid. 1H NMR (800 MHz, CDCl3) δ 12.45 (s, 1H), 10.31 (s, 1H), 8.22 (d, J = 7.8 Hz, 1H), 

8.18 (s, 1H), 7.89 (d, J = 7.8 Hz, 1H), 7.70 (t, J = 7.8 Hz, 1H), 6.92 (s, 1H), 6.11 (s, 1H), 2.65 (q, 

J = 7.7 Hz, 2H), 2.33 (d, J = 2.6 Hz, 3H), 1.25 (t, J = 7.5 Hz, 3H). 13C NMR (201 MHz, CDCl3) δ 

168.0, 162.0, 160.8, 154.1, 148.7, 140.7, 134.1, 131.5 (q, 2J = 33.0 Hz), 131.2, 129.7, 129.3, 123.7, 

123.6 (q, 1J = 271.0 Hz), 107.7, 99.5, 30.6, 14.2, 12.1. APCI-MS(+): m/z 392.2 [M+H]+, 252.1, 

220.1. APCI-MS(-): m/z 390.0 [M-H]-. HPLC retention time: 13.454 min. HPLC purity 96.5%. 

N-(1-(6-Ethyl-4-oxo-1,4-dihydropyrimidin-2-yl)-3-methyl-1H-pyrazol-5-yl)-2ethylbenzamide 

(19). Prepared using general procedure A with 2-ethylbenzoic acid (0.045 g, 0.30 mmol, 1.3 eq), 

BTFFH (0.11 g, 0.34 mmol, 1.5 eq), DCM (0.5 mL), DIPEA (180 μL, 1.0 mmol, 4.3 eq), and 5 

(0.050 g, 0.23 mmol, 1 eq) to produce 19 (0.004 g, 0.012 mmol, 5%) as a white solid. 1H NMR 
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(800 MHz, CDCl3) δ 11.99 (s, 1H), 10.28 (s, 1H), 7.58 (d, J = 7.6 Hz, 1H), 7.46 (t, J = 7.6 Hz, 

1H), 7.35 (d, J = 7.6 Hz, 1H), 7.28 (t, J = 7.5 Hz, 1H), 6.89 (s, 1H), 6.04 (s, 1H), 2.93 (q, J = 7.5 

Hz, 2H), 2.43 (q, J = 7.7 Hz, 2H), 2.31 (s, 3H), 1.27 (t, J = 7.5 Hz, 3H), 1.06 (t, J = 7.6 Hz, 3H). 

13C NMR (201 MHz, CDCl3) δ 168.1, 165.8, 161.0, 154.1, 148.6, 144.2, 141.0, 134.1, 131.3, 

130.3, 126.8, 125.9, 107.7, 98.8, 30.3, 26.6, 16.0, 14.2, 11.8. APCI-MS(+): m/z 352.2 [M+H]+. 

APCI-MS(-): m/z 350.1 [M-H]+. HPLC retention time: 8.823 min (elution was 9 min gradient + 3 

min 95% hold). HPLC purity 96.3%. 

N-(1-(6-Ethyl-4-oxo-1,4-dihydropyrimidin-2-yl)-3-methyl-1H-pyrazol-5-yl)-3-ethylbenzamide 

(20). Prepared using general procedure A with 3-ethylbenzoic acid (0.045 g, 0.30 mmol, 1.3 eq), 

BTFFH (0.11 g, 0.34 mmol, 1.5 eq), DCM (0.5 mL), DIPEA (180 μL, 1.0 mmol, 4.3 eq), and 5 

(0.050 g, 0.23 mmol, 1 eq) to produce 20 (0.009 g, 0.024 mmol, 11%) as a white solid. 1H NMR 

(800 MHz, CDCl3) δ 12.29 (s, 1H), 10.32 (s, 1H), 7.81 (s, 1H), 7.78 (dt, J = 6.9, 1.9 Hz, 1H), 7.46 

– 7.43 (m, 2H), 6.90 (s, 1H), 6.10 (s, 1H), 2.75 (q, J = 7.7 Hz, 2H), 2.66 (q, J = 7.6 Hz, 2H), 2.31 

(s, 3H), 1.30 (t, J = 7.8 Hz, 3H), 1.28 (t, J = 7.7 Hz, 3H). 13C NMR (201 MHz, CDCl3) δ 168.0, 

163.8, 160.9, 154.2, 148.7, 145.3, 141.2, 133.3, 132.3, 128.9, 127.0, 124.6, 107.6, 99.0, 30.7, 28.9, 

15.6, 14.2, 12.3. APCI-MS(+): m/z 352.2 [M+H]+. APCI-MS(-): m/z 350.1 [M-H]-. HPLC 

retention time: 13.557 min. HPLC purity 95.8%. 

N-(1-(6-Ethyl-4-oxo-1,4-dihydropyrimidin-2-yl)-3-methyl-1H-pyrazol-5-yl)-4-ethylbenzamide 

(21). Prepared using general procedure A with 4-ethylbenzoic acid (0.045 g, 0.30 mmol, 1.3 eq), 

BTFFH (0.11 g, 0.34 mmol, 1.5 eq), DCM (0.5 mL), DIPEA (180 μL, 1.0 mmol, 4.3 eq), and 5 

(0.050 g, 0.23 mmol, 1 eq) to produce 21 (0.020 g, 0.057 mmol, 25%) as a white solid. 1H NMR 

(800 MHz, CDCl3) δ 12.31 (s, 1H), 10.31 (s, 1H), 7.90 (d, J = 8.2 Hz, 2H), 7.35 (d, J = 8.0 Hz, 

2H), 6.88 (s, 1H), 6.10 (s, 1H), 2.75 (q, J = 7.7 Hz, 2H), 2.67 (q, J = 7.5 Hz, 2H), 2.31 (s, 3H), 1.31 
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(t, J = 7.6 Hz, 3H), 1.29 (t, J = 7.7 Hz, 3H). 13C NMR (201 MHz, CDCl3) δ 168.1, 163.5, 160.9, 

154.2, 149.7, 148.8, 141.3, 130.6, 128.4, 127.4, 107.7, 98.9, 30.7, 28.9, 15.2, 14.2, 12.3. APCI-

MS(+): m/z 352.2 [M+H]+. APCI-MS(-): m/z 350.1 [M-H]-. HPLC retention time: 13.531 min. 

HPLC purity 95.3%. 

 

N-(1-(6-Ethyl-4-oxo-1,4-dihydropyrimidin-2-yl)-3-methyl-1H-pyrazol-5-yl)-3-isopropyl 

benzamide (22). Prepared using general procedure A with 3-isopropylbenzoic acid (0.049 g, 0.30 

mmol, 1.3 eq), BTFFH (0.11 g, 0.34 mmol, 1.5 eq), DCM (0.5 mL), DIPEA (180 μL, 1.0 mmol, 

4.3 eq), and 5 (0.050 g, 0.23 mmol, 1 eq) to produce 22 (0.003 g, 0.009 mmol, 4%) as a white 

solid. 1H NMR (800 MHz, CDCl3) δ 12.27 (s, 1H), 10.31 (s, 1H), 7.86 (s, 1H), 7.76 (d, J = 7.7 Hz, 

1H), 7.49 (d, J = 7.5 Hz, 1H), 7.44 (t, J = 7.6 Hz, 1H), 6.90 (s, 1H), 6.10 (s, 1H), 3.00 (hept, J = 

7.0 Hz, 1H), 2.66 (q, J = 7.5 Hz, 2H), 2.32 (s, 3H), 1.31 (d, J = 6.9 Hz, 6H), 1.28 (t, J = 7.6 Hz, 

3H). 13C NMR (201 MHz, CDCl3) δ 168.1, 163.9, 160.9, 154.1, 150.1, 148.7, 141.2, 133.3, 130.7, 

128.8, 126.1, 124.4, 107.6, 99.0, 34.3, 30.7, 23.9, 14.2, 12.3. APCI-MS(+): m/z 366.2 [M+H]+. 

APCI-MS(-): m/z 364.1 [M-H]-. HPLC retention time: 13.911 min. HPLC purity 95.9%. 

N-(1-(4-Ethyl-6-oxo-1,6-dihydropyrimidin-2-yl)-3-methyl-1H-pyrazol-5-yl)-3-

cyclopropylbenzamide (23).  Prepared using general procedure B using 3-cyclopropylbenzoic acid 

(0.048 g, 0.30 mmol, 1.3 eq), BTFFH (0.11 g, 0.34 mmol, 1.5 eq), 5 (0.050 g, 0.23 mmol, 1 eq), 

DIPEA (100 µL, 0.57 mmol, 2.5 eq), LiHMDS 1.0 M in THF (1.03 mL, 1.03 mmol, 4.5 eq), and 

DCM (0.5 mL) to produce 23 (0.013 g, 0.035 mmol, 15%). 1H NMR (800 MHz, CDCl3) δ 12.29 

(s, 1H), 10.25 (s, 1H), 7.75 (s, 1H), 7.71 (d, J = 7.6 Hz, 1H), 7.39 (t, J = 7.7 Hz, 1H), 7.27 (d, J = 

7.7 Hz, 1H), 6.89 (s, 1H), 6.10 (s, 1H), 2.67 (q, J = 7.6 Hz, 2H), 2.31 (s, 3H), 2.01 – 1.96 (m, 1H), 



 45 

1.28 (t, J = 7.6 Hz, 3H), 1.06 – 1.02 (m, 2H), 0.80 – 0.77 (m, 2H). 13C NMR (201 MHz, CDCl3) δ 

168.1, 163.8, 160.9, 154.1, 148.7, 145.3, 141.1, 133.2, 129.7, 128.7, 125.6, 124.0, 107.6, 99.0, 

30.7, 15.4, 14.2, 12.3, 9.4. APCI-MS(+): m/z 364.1 [M+H]+. APCI-MS(-): m/z 361.9 [M-H]-. 

HPLC retention time: 13.449 min. HPLC purity 95.7%. 

N-(1-(4-Ethyl-6-oxo-1,6-dihydropyrimidin-2-yl)-3-methyl-1H-pyrazol-5-yl)-3-tert-

butylbenzamide (24). Prepared using general procedure B using 3-tert-butylbenzoic acid (0.053 g, 

0.30 mmol, 1.3 eq), BTFFH (0.11 g, 0.34 mmol, 1.5 eq), 5 (0.050 g, 0.23 mmol, 1 eq), DIPEA 

(100 µL, 0.57 mmol, 2.5 eq), LiHMDS 1.0 M in THF (1.03 mL, 1.03 mmol, 4.5 eq), and DCM 

(0.5 mL) to produce 24 an off-white powder (0.009 g, 0.022 mmol, 10%). 1H NMR (800 MHz, 

CDCl3) δ 12.24 (s, 1H), 10.26 (s, 1H), 8.09 (s, 1H), 7.68 (d, J = 7.7 Hz, 1H), 7.64 (d, J = 7.8 Hz, 

1H), 7.43 (t, J = 7.7 Hz, 1H), 6.90 (s, 1H), 6.10 (s, 1H), 2.64 (q, J = 7.6 Hz, 2H), 2.32 (s, 3H), 1.38 

(s, 9H), 1.27 (t, J = 7.6 Hz, 3H). 13C NMR (201 MHz, CDCl3) δ 168.1, 164.2, 160.9, 154.1, 152.6, 

148.7, 141.2, 133.1, 129.9, 128.3, 125.4, 123.3, 107.6, 99.0, 35.0, 31.2, 30.7, 14.2, 12.2. APCI-

MS(+): m/z 380.0 [M+H]+. APCI-MS(-): m/z 378.0 [M-H]-. HPLC retention time: 14.111 min. 

HPLC purity 98.7%. 

N-(1-(4-Ethyl-6-oxo-1,6-dihydropyrimidin-2-yl)-3-methyl-1H-pyrazol-5-yl)-4-tert-

butylbenzamide (25). Prepared using general procedure B using 4-tert-butylbenzoic acid (0.053 g, 

0.30 mmol, 1.3 eq), BTFFH (0.11 g, 0.34 mmol, 1.5 eq), 5 (0.05 g, 0.23 mmol, 1 eq), DIPEA (100 

µL, 0.57 mmol, 2.5 eq), LiHMDS 1.0 M in THF (1.03 mL, 1.03 mmol, 4.5 eq), and DCM (0.5 

mL) to produce 25 an off-white powder (0.021 g, 0.056 mmol, 25%). 1H NMR (800 MHz, CDCl3) 

δ 12.30 (s, 1H), 10.30 (s, 1H), 7.92 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 8.0 Hz, 2H), 6.89 (s, 1H), 6.11 

(s, 1H), 2.68 (q, J = 7.5 Hz, 2H), 2.31 (s, 3H), 1.37 (s, 9H), 1.32 (t, J = 7.5 Hz, 3H). 13C NMR (201 

MHz, CDCl3) δ 168.1, 163.4, 161.0, 156.6, 154.2, 148.8, 141.2, 130.3, 127.2, 125.8, 107.7, 98.9, 
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35.1, 31.1, 30.7, 14.2, 12.3. APCI-MS(+): m/z 380.1 [M+H], 338.1, 299.0, 240.1, 220.0, 161.0. 

APCI-MS(-): m/z 377.9 [M-H]. HPLC retention time: 14.124 min. HPLC purity 97.8%. 

N-(1-(4-Ethyl-6-oxo-1,6-dihydropyrimidin-2-yl)-3-methyl-1H-pyrazol-5-yl)-[1,1'-biphenyl]-3-

carboxamide (26). Prepared using general procedure B using biphenyl-3-carboxylic acid (0.059 g, 

0.30 mmol, 1.3 eq), BTFFH (0.11 g, 0.34 mmol, 1.5 eq), 5 (0.050 g, 0.23 mmol, 1 eq), DIPEA 

(100 µL, 0.57 mmol, 2.5 eq), LiHMDS 1.0 M in THF (1.03 mL, 1.03 mmol, 4.5 eq), and DCM 

(0.5 mL) to produce 26 as an off-white powder (0.021 g, 0.053 mmol, 23%). 1H NMR (800 MHz, 

CDCl3) δ 12.41 (s, 1H), 10.29 (s, 1H), 8.15 (s, 1H), 7.97 (d, J = 7.6 Hz, 1H), 7.81 (d, J = 7.8 Hz, 

1H), 7.62 – 7.59 (m, 3H), 7.48 (t, J = 7.5 Hz, 2H), 7.42 (t, J = 7.2 Hz, 1H), 6.92 (s, 1H), 6.04 (s, 

1H), 2.43 (q, J = 7.5 Hz, 2H), 2.32 (s, 3H), 1.03 (t, J = 7.5 Hz, 3H). 13C NMR (201 MHz, CDCl3) 

δ 168.1, 163.5, 160.9, 154.1, 148.7, 142.5, 141.1, 140.1, 133.8, 131.5, 129.4, 129.0, 128.0, 127.3, 

126.1, 126.1, 107.5, 99.1, 30.6, 14.2, 11.9. APCI-MS(+): m/z 400.0 [M+H]+. APCI-MS(-): m/z 

397.9 [M-H]-. HPLC retention time: 13.921 min. HPLC purity 98.4%. 

N-(1-(4-Ethyl-6-oxo-1,6-dihydropyrimidin-2-yl)-3-methyl-1H-pyrazol-5-yl)-[1,1'-biphenyl]-4-

carboxamide (27). Prepared using general procedure B using biphenyl-4-carboxylic acid (0.059 g, 

0.30 mmol, 1.3 eq), BTFFH (0.11 g, 0.34 mmol, 1.5 eq), 5 (0.050 g, 0.23 mmol, 1 eq), DIPEA 

(100 µL, 0.57 mmol, 2.5 eq), LiHMDS 1.0 M in THF (1.03 mL, 1.03 mmol, 4.5 eq), and DCM 

(0.5 mL) to produce 27 as an off-white powder (0.045 g, 0.11 mmol, 49%). 1H NMR (800 MHz, 

CDCl3) δ 12.41 (s, 1H), 10.30 (s, 1H), 8.05 (d, J = 7.9 Hz, 2H), 7.74 (d, J = 7.9 Hz, 2H), 7.65 (d, 

J = 7.8 Hz, 2H), 7.50 (t, J = 7.5 Hz, 2H), 7.43 (t, J = 7.5 Hz, 1H), 6.91 (s, 1H), 6.11 (s, 1H), 2.69 

(q, J = 7.5 Hz, 2H), 2.32 (s, 3H), 1.32 (t, J = 7.5 Hz, 3H). 13C NMR (201 MHz, CDCl3) δ 168.0, 

163.3, 160.9, 154.2, 148.8, 145.6, 141.2, 139.6, 131.8, 129.0, 128.4, 127.9, 127.5, 127.3, 107.7, 
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99.0, 30.7, 14.2, 12.3. APCI-MS(+): m/z 400.0 [M+H]+. APCI-MS(-): m/z 397.9 [M-H]-. HPLC 

retention time: 13.911 min. HPLC purity 99.4% 

N-(1-(6-Ethyl-4-oxo-1,4-dihydropyrimidin-2-yl)-3-methyl-1H-pyrazol-5-yl)-3-methoxybenzamide 

(28). Prepared using general procedure A with 3-methoxybenzoic acid (0.045 g, 0.30 mmol, 1.3 

eq), BTFFH (0.1080 g, 0.3416 mmol, 1.5 eq), DCM (0.5 mL), DIPEA (180 μL, 1.0 mmol, 4.3 eq), 

and 5 (0.0500 g, 0.228 mmol, 1 eq) to produce 28 (0.028 g, 0.078 mmol, 34%) as a white solid. 

1H NMR (800 MHz, CDCl3) δ 12.34 (s, 1H), 10.33 (s, 1H), 7.54 (s, 1H), 7.49 (d, J = 7.7 Hz, 1H), 

7.41 (t, J = 7.9 Hz, 1H), 7.13 (d, J = 8.3 Hz, 1H), 6.86 (s, 1H), 6.09 (s, 1H), 3.88 (s, 3H), 2.65 (q, 

J = 7.6 Hz, 2H), 2.30 (s, 3H), 1.28 (t, J = 7.6 Hz, 3H).  13C NMR (201 MHz, CDCl3) δ 168.1, 

163.3, 160.9, 160.2, 154.1, 148.7, 141.1, 134.6, 129.8, 118.8, 118.3, 113.4, 107.7, 98.9, 55.6, 30.6, 

14.2, 12.3. APCI-MS(+): m/z 354.1 [M+H]+. APCI-MS(-): m/z 352.0 [M-H]-. HPLC retention 

time: 12.600 min. HPLC purity 99.2%. 

N-(1-(6-Ethyl-4-oxo-1,4-dihydropyrimidin-2-yl)-3-methyl-1H-pyrazol-5-yl)-4-methoxybenzamide 

(29). Prepared using general procedure A with 4-methoxybenzoic acid (0.045 g, 0.30 mmol, 1.3 

eq), BTFFH (0.11 g, 0.34 mmol, 1.5 eq), DCM (0.5 mL), DIPEA (180 μL, 1.0 mmol, 4.3 eq), and 

5 (0.050 g, 0.23 mmol, 1 eq) to produce 29 (0.029 g, 0.083 mmol, 36%) as a white solid. 1H NMR 

(800 MHz, CDCl3) δ 12.25 (s, 1H), 10.31 (s, 1H), 7.94 (d, J = 8.8 Hz, 2H), 7.00 (d, J = 8.9 Hz, 

2H), 6.86 (s, 1H), 6.10 (s, 1H), 3.90 (s, 3H), 2.66 (q, J = 7.5 Hz, 2H), 2.30 (s, 3H), 1.31 (t, J = 7.6 

Hz, 3H). 13C NMR (201 MHz, CDCl3) δ 168.0, 163.2, 163.1, 160.9, 154.2, 148.8, 141.4, 129.3, 

125.5, 114.1, 107.6, 98.7, 55.6, 30.7, 14.2, 12.3. APCI-MS(+): m/z 354.2 [M+H]+. APCI-MS(-): 

m/z 352.1 [M-H]-. HPLC retention time: 12.451 min. HPLC purity 98.8%. 
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N-(1-(4-ethyl-6-oxo-1,6-dihydropyrimidin-2-yl)-3-methyl-1H-pyrazol-5-yl)-3-(methylthio) 

benzamide (30). Prepared using general procedure A with 3-(methylthio)benzoic acid (0.050 g, 

0.30 mmol, 1.3 eq), BTFFH (0.1080 g, 0.3416 mmol, 1.5 eq), DCM (0.5 mL), DIPEA (180 μL, 

1.0 mmol, 4.3 eq), and 5 (0.050 g, 0.23 mmol, 1 eq) to produce 30 (0.026 g, 0.072 mmol, 31%) as 

a white solid. 1H NMR (800 MHz, CDCl3) δ 12.37 (s, 1H), 10.30 (s, 1H), 7.86 (t, J = 1.8 Hz, 1H), 

7.71 (dt, J = 7.4, 1.5 Hz, 1H), 7.46 (dt, J = 7.9, 1.5 Hz, 1H), 7.44 (t, J = 7.8 Hz, 1H), 6.88 (s, 1H), 

6.10 (s, 1H), 2.69 (q, J = 7.5 Hz, 2H), 2.55 (s, 3H), 2.31 (s, 3H), 1.29 (t, J = 7.5 Hz, 3H). 13C NMR 

(201 MHz, CDCl3) δ 168.1, 163.1, 160.9, 154.1, 148.7, 141.0, 140.4, 133.8, 130.1, 129.2, 125.5, 

123.6, 107.7, 99.1, 30.8, 15.8, 14.2, 12.3. APCI-MS(+): m/z 392.2 [M+Na]+, 370.2 [M+H]+. APCI-

MS(-): m/z 390.0 [M+Na-2H]-, 368.1 [M-H]-. HPLC retention time: 13.222 min. HPLC purity 

97.3%.  

N-(1-(4-Ethyl-6-oxo-1,6-dihydropyrimidin-2-yl)-3-methyl-1H-pyrazol-5-yl)-3-ethoxybenzamide 

(31). Prepared using general procedure A using 3-ethoxybenzoic acid (0.049 g, 0.30 mmol, 1.3 

eq), BTFFH (0.11 g, 0.34 mmol, 1.5 eq), DCM (0.5 mL), DIPEA (180 μL, 1.0 mmol, 4.3 eq), and 

5 (0.050 g, 0.23 mmol, 1 eq) to produce 31 as an off-white powder (0.004 g, 0.01 mmol, 5%). 1H 

NMR (800 MHz, CDCl3) δ 12.38 (s, 1H), 10.31 (s, 1H), 7.55 (s, 1H), 7.52 (d, J = 7.2 Hz, 1H), 

7.42 (t, J = 7.9 Hz, 1H), 7.13 (dd, J = 8.3, 2.5 Hz, 1H), 6.89 (s, 1H), 6.11 (s, 1H), 4.13 (q, J = 6.9 

Hz, 2H), 2.69 (q, J = 7.6 Hz, 2H), 2.33 (s, 3H), 1.46 (t, J = 7.0 Hz, 3H), 1.30 (t, J = 7.5 Hz, 3H). 

13C NMR (201 MHz, CDCl3) δ 168.1, 163.3, 160.9, 159.5, 154.0, 148.6, 141.0, 134.5, 129.7, 

118.8, 118.6, 113.9, 107.6, 98.9, 63.7, 30.5, 14.7, 14.2, 12.2. APCI-MS(+): m/z 368.4 [M+H]+. 

APCI-MS(-): m/z 366.3 [M-H]-. HPLC retention time: 13.222 min. HPLC purity 97.1%.  

N-(1-(6-Ethyl-4-oxo-1,4-dihydropyrimidin-2-yl)-3-methyl-1H-pyrazol-5-yl)-4-(methoxymethoxy) 

benzamide (32). Prepared using general procedure A with 4-(methoxymethoxy)benzoic acid 
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(0.054 g, 0.30 mmol, 1.3 eq), BTFFH (0.11 g, 0.34 mmol, 1.5 eq), DCM (0.5 mL), DIPEA (180 

μL, 1.0 mmol, 4.3 eq), and 5 (0.050 g, 0.23 mmol, 1 eq) to produce 32 (0.015 g, 0.039 mmol, 17%) 

as a white solid. 1H NMR (800 MHz, CDCl3) δ 12.27 (s, 1H), 10.30 (s, 1H), 7.94 (d, J = 8.3 Hz, 

2H), 7.14 (d, J = 8.5 Hz, 2H), 6.87 (s, 1H), 6.11 (s, 1H), 5.26 (s, 2H), 3.51 (s, 3H), 2.66 (q, J = 7.5 

Hz, 2H), 2.30 (s, 3H), 1.31 (t, J = 7.5 Hz, 3H). 13C NMR (201 MHz, CDCl3) δ 168.1, 163.0, 160.8, 

154.2, 148.8, 141.3, 129.2, 126.5, 116.1, 107.6, 98.8, 94.2, 56.3, 30.7, 29.7, 14.2 (d, J = 18.6 Hz), 

12.3. APCI-MS(+): m/z 384.1 [M+H]+. APCI-MS(-): m/z 382.0 [M-H]-. HPLC retention time: 

12.392 min. HPLC purity 97.6%. 

N-(1-(6-Ethyl-4-oxo-1,4-dihydropyrimidin-2-yl)-3-methyl-1H-pyrazol-5-yl)-4-hydroxybenzamide 

(33). Compound 30 (0.015 g, 0.039 mmol) was dissolved in DCM (5 mL) and allowed to cool to 

0°C in an ice water bath. To this solution, excess trifluoroacetic acid (TFA) was added. It was 

allowed to stir for 3 hours at 0°C. The solution was concentrated on rotavapor, resuspended with 

hexanes, then filtered to produce 33 as a white solid (0.006 g, 0.02 mmol, 40%). 1H NMR (800 

MHz, DMSO-d6) δ 12.53 (s, 1H), 10.35 (s, 1H), 7.82 (d, J = 8.2 Hz, 2H), 6.93 (d, J = 8.3 Hz, 2H), 

6.74 (s, 1H), 6.29 (s, 1H), 2.68 (q, J = 7.8 Hz, 2H), 2.26 (s, 3H), 1.20 (t, J = 7.6 Hz, 3H). 13C NMR 

(201 MHz, DMSO-d6) δ 162.8, 162.0, 151.9, 141.3, 129.7, 124.2, 116.0, 97.7, 30.2, 14.4, 12.9. 

APCI-MS(+): m/z 340.2 [M+H]+. APCI-MS(-): m/z 452.0 [M+TFA-H]-, 338.0 [M-H]-. HPLC 

retention time: 10.822 min. HPLC purity 99.4%. 

N-(1-(6-Ethyl-4-oxo-1,4-dihydropyrimidin-2-yl)-3-methyl-1H-pyrazol-5-yl)-4-(dimethylamino) 

benzamide (34). The procedure for 34 was modified from a previous literature protocol.47 4-

(Dimethylamino)benzoic acid (0.057 g, 0.34 mmol, 1.5 eq) was added to a 0.5-2 mL microwave 

vial and sealed and then flushed repeatedly with argon. T3P (290 µL 50% w/w in MeCN, 0.46 
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mmol, 2 eq) and pyridine (0.072 g, 74 µL, 0.91 mmol, 4 eq) were then added sequentially, and the 

vial was heated to 60°C for one hour. 

In a separate vial, 5 (0.050 g, 0.23 mmol, 1 eq) was dissolved in 1,1,1,3,3,3-hexafluoro-2-

propanol (HFIP) (200 µL) and added dropwise to the first microwave vial. The mixture was then 

heated to 80°C for 24 hours. It was then cooled to room temperature and quenched with 1 mL of 

DI H2O. The mixture was transferred to a separatory flask and diluted with 20 mL DCM and 20 

mL 1% aqueous HCl. The organic layer was collected and the aqueous layer was again extracted 

with 20 mL DCM. The combined organic layers were then washed with saturated NaHCO3 and 

brine sequentially. The organic layer was dried with MgSO4, filtered, and concentrated on rotavap. 

The resultant film was resuspended with hexanes to remove residual DCM to yield powder. This 

powder was suspended with 1-2 mL EtOAc and filtered to produce 34 as an off-white powder 

(0.023 g, 0.062 mmol, 27%). 1H NMR (800 MHz, CDCl3) δ 12.11 (s, 1H), 10.31 (s, 1H), 7.86 (d, 

J = 8.9 Hz, 2H), 6.84 (s, 1H), 6.70 (d, J = 8.8 Hz, 2H), 6.09 (s, 1H), 3.08 (s, 6H), 2.69 (q, J = 7.5 

Hz, 2H), 2.29 (s, 3H), 1.33 (t, J = 7.6 Hz, 3H). 13C NMR (201 MHz, CDCl3) δ 168.2, 163.6, 161.0, 

154.2, 153.1, 148.8, 141.8, 129.0, 119.6, 111.0, 107.5, 98.3, 40.1, 30.7, 14.2, 12.4. APCI-MS(+): 

m/z 367.2 [M+H]+. APCI-MS(-): m/z 365.1 [M-H]-. HPLC retention time: 12.590 min. HPLC 

purity 96.2%. 

N-(1-(6-Ethyl-4-oxo-1,4-dihydropyrimidin-2-yl)-3-methyl-1H-pyrazol-5-yl)-2-(2-fluorophenyl) 

acetamide (35). Procedure was adapted from previously reported literature.47 2-(2-

fluorophenyl)acetic acid (0.053 g, 0.34 mmol, 1.5 eq) and DIPEA (0.16 mL, 0.91 mmol, 4 eq) 

were added to a thick-walled 0.5-2 mL Biotage microwave vial equipped with stirbar and the vial 

was sealed. The vial was then purged and flushed with Argon repeatedly. The vial was placed in a 

90°C sandbath and T3P (320 uL 50% w/w in MeCN, 0.48 mmol, 2 eq) was added dropwise to the 
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stirring mixture. This mixture was allowed to stir for 1-2 hours at 90°C. In a separate vial, 5 (0.050 

g, 0.23 mmol, 1 eq) was added and then dissolved in 200 uL of HFIP. This solution was then added 

dropwise to the sealed microwave vial. The vial was then allowed to stir at 90°C overnight. 

The following morning, the vial was allowed to come to room temperature and then 1 mL 

of aqueous 10% potassium carbonate solution was added to the vial and briefly agitated. It was 

allowed to stir at room temperature for at least 1 hour at room temperature. It was then transferred 

to a separatory flask and diluted with 15 mL of 10% potassium carbonate solution. Two liquid-

liquid extractions were performed with equal volumes of DCM. The organic layers were collected 

and combined and then washed twice with equal volumes (25-30 mL) of 1% HCl and then once 

with brine. The organic layer was then collected, dried with MgSO4, filtered, and then concentrated 

on rotavapor yielding a colored powder, film, or clear liquid. This film was diluted with a small 

volume of DCM and injected onto flash column and then eluted with an ethyl acetate gradient in 

hexanes. Fractions identified via APCI MS were then collected and dried to produce 35 as a white 

powder (0.003 g, 7 µmol, 3%). 1H NMR (800 MHz, CDCl3) δ 11.55 (s, 1H), 10.23 (s, 1H), 7.40 

(t, J = 7.7 Hz, 1H), 7.35 – 7.30 (m, 1H), 7.17 (t, J = 7.5 Hz, 1H), 7.11 (t, J = 9.1 Hz, 1H), 6.77 (s, 

1H), 6.05 (s, 1H), 3.81 (s, 2H), 2.44 (q, J = 7.5 Hz, 2H), 2.26 (s, 3H), 1.24 (t, J = 7.4 Hz, 3H). 13C 

NMR (201 MHz, CDCl3) δ 168.3, 166.5, 160.9, 160.9 (d, 1J = 246.2 Hz), 153.7, 148.3, 140.4, 

131.5, 129.6 (d, 3J = 8.1 Hz), 124.6 (d, 4J = 3.5 Hz), 120.9 (d, 2J = 15.7 Hz), 115.6 (d, 2J = 21.6 

Hz), 107.5, 99.3, 37.6, 30.1, 14.1, 12.0. APCI-MS(+): m/z 356.4 [M+H]+. APCI-MS(-): m/z 354.3 

[M-H]-. HPLC retention time: 12.254 min. HPLC purity 97.6%.  

N-(1-(6-Ethyl-4-oxo-1,4-dihydropyrimidin-2-yl)-3-methyl-1H-pyrazol-5-yl)-2-(m-tolyl)acetamide 

(36). Prepared using general procedure A using 2-(m-tolyl)acetic acid (0.045 g, 0.30 mmol, 1.3 

eq), BTFFH (0.11 g, 0.34 mmol, 1.5 eq), DCM (0.5 mL), DIPEA (180 μL, 1.0 mmol, 4.3 eq), and 



 52 

5 (0.050 g, 0.23 mmol, 1 eq). Instead of purification via filtration, product was purified via normal 

phase flash column with an ethyl acetate gradient in hexanes to produce 36 as an off-white powder 

(0.018 g, 0.051 mmol, 22%). 1H NMR (800 MHz, CDCl3) δ 11.35 (s, 1H), 10.19 (s, 1H), 7.25 (t, 

J = 7.5 Hz, 1H), 7.14 – 7.11 (m, 3H), 6.77 (s, 1H), 6.00 (s, 1H), 3.75 (s, 2H), 2.35 (s, 3H), 2.30 (q, 

J = 7.5 Hz, 2H), 2.25 (s, 3H), 1.19 (t, J = 7.5 Hz, 3H). 13C NMR (201 MHz, CDCl3) δ 168.3, 167.9, 

161.0, 153.8, 148.4, 140.6, 138., 133.5, 130., 129.0, 128.5, 126.3, 107.4, 99.2, 44.9, 30.2, 21.4, 

14.1, 12.1. APCI-MS(+): m/z 352.2 [M+H]+. APCI-MS(-): m/z 350.1 [M-H]-. HPLC retention 

time: 12.696 min. HPLC purity 99.4%.  

N-(1-(4-Ethyl-6-oxo-1,6-dihydropyrimidin-2-yl)-3-methyl-1H-pyrazol-5-yl)-2-fluoro-3-methyl 

benzamide (37). Prepared using general procedure A using 2-fluoro-3-methylbenzoic acid (0.046 

g, 0.30 mmol, 1.3 eq), BTFFH (0.11 g, 0.34 mmol, 1.5 eq), DCM (0.5 mL), DIPEA (180 μL, 1.0 

mmol, 4.3 eq), and 5 (0.050 g, 0.23 mmol, 1 eq) to produce 37 as an off-white powder (0.023 g, 

0.066 mmol, 29%). 1H NMR (800 MHz, CDCl3) δ 12.39 (d, J = 9.4 Hz, 1H), 10.32 (s, 1H), 7.95 

(t, J = 7.6 Hz, 1H), 7.42 (t, J = 7.3 Hz, 1H), 7.21 (t, J = 7.6 Hz, 1H), 6.96 (s, 1H), 6.09 (s, 1H), 2.64 

(q, J = 7.6 Hz, 2H), 2.37 (s, 3H), 2.30 (s, 3H), 1.25 (t, J = 7.5 Hz, 3H). 13C NMR (201 MHz, CDCl3) 

δ 169.0, 161.1, 160.1, 158.9 (d, 1J = 248.9 Hz), 153.8, 148.3, 140.5, 135.8 (d, 3J = 6.0 Hz), 129.8, 

125.7 (d, 2J = 19.1 Hz), 124.6 (d, 4J = 3.9 Hz), 120.4 (d, 2J = 12.4 Hz), 107.8, 100.1, 30.2, 14.4 (d, 

3J = 4.9 Hz), 14.2, 12.4. APCI-MS(+): m/z 356.1 [M+H]+. APCI-MS(-): m/z 353.9 [M-H]-. HPLC 

retention time: 13.345 min. HPLC purity 99.2%.  

N-(1-(4-ethyl-6-oxo-1,6-dihydropyrimidin-2-yl)-3-methyl-1H-pyrazol-5-yl)-2-fluoro-5-methyl 

benzamide (38). Prepared using general procedure A using 2-fluoro-5-methylbenzoic acid (0.046 

g, 0.30 mmol, 1.3 eq), BTFFH (0.11 g, 0.34 mmol, 1.5 eq), DCM (0.5 μL), DIPEA (180 μL, 1.0 

mmol, 4.3 eq), and 5 (0.050 g, 0.23 mmol, 1 eq) to produce 38 as an off-white powder (0.025 g, 
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0.070 mmol, 31%). 1H NMR (800 MHz, CDCl3) δ 12.31 (d, J = 8.9 Hz, 1H), 10.31 (s, 1H), 7.92 

(d, J = 7.4 Hz, 1H), 7.37 – 7.33 (m, 1H), 7.09 (dd, J = 11.5, 8.4 Hz, 1H), 6.96 (s, 1H), 6.08 (s, 1H), 

2.63 (q, J = 7.6 Hz, 2H), 2.40 (s, 3H), 2.31 (s, 3H), 1.23 (t, J = 7.5 Hz, 3H). 13C NMR (201 MHz, 

CDCl3) δ 169.1, 161.2, 160.0, 158.7 (d, 1J = 247.9 Hz), 153.7, 148.2, 140.4, 135.0 (d, 3J = 8.8 Hz), 

134.9 (d, 4J = 3.2 Hz), 132.3, 120.0 (d, 3J = 11.7 Hz), 116.0 (d, 2J = 23.8 Hz), 107.6, 100.2, 30.1, 

20.6, 14.2, 12.2. APCI-MS(+): m/z 355.8 [M+H]+. APCI-MS(-): m/z 353.9 [M-H]-. HPLC 

retention time: 13.356 min. HPLC purity 98.4%. 

N-(1-(4-ethyl-6-oxo-1,6-dihydropyrimidin-2-yl)-3-methyl-1H-pyrazol-5-yl)-3,4-dimethyl 

benzamide (39). Prepared using general procedure B at triple-scale using 3,4-dimethylbenzoic acid 

(0.134 g, 0.890 mmol, 1.3 eq), BTFFH (0.325 g, 1.03 mmol, 1.5 eq), 5 (0.150 g, 0.684 mmol, 1 

eq), DIPEA (300 µL, 1.70 mmol, 2.5 eq), LiHMDS 1.0 M in THF (3.079 mL, 3.079 mmol, 4.5 

eq), and DCM (1.5 mL) to produce 39 as an off-white powder (0.12 g, 0.34 mmol, 49.0%). 1H 

NMR (800 MHz, CDCl3) δ 12.24 (s, 1H), 10.31 (s, 1H), 7.74 (s, 1H), 7.71 (d, J = 7.8 Hz, 1H), 

7.28 (d, J = 7.4 Hz, 1H), 6.88 (s, 1H), 6.10 (s, 1H), 2.68 (q, J = 7.6 Hz, 2H), 2.36 (s, 6H), 2.31 (s, 

3H), 1.30 (t, J = 7.6 Hz, 3H). 13C NMR (201 MHz, CDCl3) δ 168.1, 163.7, 160.9, 154.2, 148.7, 

142.2, 141.3, 137.4, 130.7, 130.1, 128.4, 124.9, 107.6, 98.9, 30.7, 20.0, 19.8, 14.2, 12.3. APCI-

MS(+): m/z 352.4 [M+H]+. APCI-MS(-): m/z 350.3 [M-H]-. HPLC retention time: 13.479 min. 

HPLC purity 100%. 

N-(1-(4-ethyl-6-oxo-1,6-dihydropyrimidin-2-yl)-3-methyl-1H-pyrazol-5-yl)-3,5-dimethyl 

benzamide (40). Prepared using general procedure B using 3,5-dimethylbenzoic acid (0.045 g, 0.30 

mmol, 1.3 eq), BTFFH (0.11 g, 0.34 mmol, 1.5 eq), 5 (0.050 g, 0.23 mmol, 1 eq), DIPEA (100 µL, 

0.57 mmol, 2.5 eq), LiHMDS 1.0 M in THF (1.03 mL, 1.03 mmol, 4.5 eq), and DCM 0.5 mL to 

produce 40 as an off-white powder (0.019 g, 0.054 mmol, 24%). 1H NMR (800 MHz, CDCl3) δ 
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12.24 (s, 1H), 10.31 (s, 1H), 7.59 (s, 2H), 7.24 (s, 1H), 6.89 (s, 1H), 6.10 (s, 1H), 2.68 (q, J = 7.6 

Hz, 2H), 2.41 (s, 6H), 2.31 (s, 3H), 1.29 (t, J = 7.5 Hz, 3H). 13C NMR (201 MHz, CDCl3) δ 168.0, 

163.9, 160.9, 154.2, 148.7, 141.2, 138.7, 134.4, 133.1, 125.1, 107.6, 99.0, 30.8, 21.2, 14.2, 12.4. 

APCI-MS(+): m/z 352.4 [M+H]+. APCI-MS(-): m/z 350.3 [M-H]-. HPLC retention time: 13.614 

min. HPLC purity 97.6%. 

 

Biological Evaluation 

 

High-throughput screen for AC1 inhibitors 

The compound screen of the Life Chemicals diversity library was completed at the 

Biomolecular Screening and Drug Discovery Core Facility (BSDD), Purdue University (West 

Lafayette, IN).   Cryopreserved HEK293 cells stably expressing AC1 (HEK-AC1) were washed 

with pre-warmed Opti-MEM from Thermo Fisher Scientific (Waltham) and centrifuged for 5 

minutes at 150 x g. Supernatant was discarded and the cells were resuspended in Opti-MEM, 

counted, and plated into white opaque 384-well plates from Perkin Elmer (Waltham, MA). The 

plates were incubated for 1-hour in a 37°C incubator supplemented with 5% CO2 to let the cells 

adhere to the plate prior compound addition. Subsequently, DMSO (negative control), the AC1 

inhibitor ST034307 (positive control), or the Life Chemicals library compounds were added at a 

screening concentration of 10 μM using a pin tool liquid handling system. Following a 30-minute 

incubation at room temperature with DMSO or the compounds, the calcium ionophore, A23187, 

was added to all the wells to a final concentration of 3 μM in the presence of the phosphodiesterase 

inhibitor, 3-isobutyl-1-methylxanthine (IBMX). After 1-hour incubation with A23187 at room 

temperature, cAMP accumulation was measured using the HTRF cAMP kit from Cisbio (Bedford, 
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MA). The screen was carried out on three separate days and a total of 10,240 compounds were 

screened. The percentage inhibition (%) was calculated by normalizing the cAMP levels of each 

of the screen compounds to the mean cAMP levels of the positive control, ST034307, (100% 

inhibition) and DMSO (0% inhibition) in each plate.    

 

Adenylyl cyclase cAMP accumulation assay 

 

Cryopreserved HEK-ACΔ3/6 cells overexpressing human AC1, AC2, AC5 or AC8 were 

transferred to a 15-mL Falcon tube and gently resuspended in prewarmed Opti-MEM.48 The cells 

were centrifuged for 5 minutes at 150 x g, supernatant was discarded, and the cell pellet was 

resuspended in 10 mL for a second centrifugation step. Then, the cells were counted, plated in a 

white opaque 384-well plate and incubated for 1-hour in a 37°C incubator supplemented with 5% 

CO2. The hit compounds’ working solutions were prepared in prewarmed Opti-MEM and 

successive serial dilutions were prepared using a Precision 2000 automated pipetting system. Dose 

response curves were generated for each hit compound using a three-fold serial dilution starting at 

30 μM concentration (at least 6-points per curve). Compounds were added to the assay plates and 

incubated for 30 minutes at room temperature. AC activity was selectively stimulated on each AC 

isoform with 3 μM A23187 (AC1 and AC8), 100 nM PMA (AC2), or a low concentration (1 μM) 

of the AC activator, forskolin (AC5). All stimulants of AC activity were added in combination 

with IBMX at a final concentration of 0.5 mM. After 1-hour incubation with the stimulant at room 

temperature, cAMP accumulation was detected using the fluorescence-based Cisbio HTRF cAMP 

detection kit. 
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Thermodynamic solubility assay 

 The thermodynamic solubility of analogs was determined via an adapted protocol from 

literature.53,54 Compounds were dissolved at a concentration of 0.5 mg/mL in DCM (minimum 

total volume 1.5 mL). 250 µL of this stock were transferred in triplicate to three separate HPLC 

vials equipped with stirbar, designated as experimental vials. A separate 200 µL was transferred 

to an additional HPLC vial for use as the standard. The DCM was then evaporated via gentle 

stirring on hotplate at 40°C for several hours. Vials marked as experimental were then diluted with 

500 µL phosphate-buffered solution (pH 7.4), and the vial marked as standard was diluted with 

500 µL DMSO. The vials were then stirred at room temperature for at least 24 hours. The stirbars 

were then removed and the vials were allowed to sit at room temperature for an additional 24 

hours. The vials were then centrifuged to pellet undissolved compound and the supernatants were 

then injected on HPLC. Determination of thermodynamic solubility was then ascertained by 

comparing the integrated AUC of the standard vial compound peak (known concentration of 200 

µg/mL) to the integration of the experimental vial compound peaks (AUCexp./AUCstd= 

Conc.exp/Concstd where Conc.exp= measured thermodynamic solubility). 

 

Common neurological off-targets 

Binding to common neurological off-targets was performed by the PDSP at the University 

of North Carolina at Chapel Hill. A complete protocol for all assays, including radiolabeled-

tracers, Ki determinations, receptor binding profiles, and agonist and/or antagonist functional assay 

can be found online at the PDSP website (https://pdsp.unc.edu/pdspweb/content/UNC-

CH%20Protocol%20Book.pdf).74,75 

https://pdsp.unc.edu/pdspweb/content/UNC-CH%20Protocol%20Book.pdf
https://pdsp.unc.edu/pdspweb/content/UNC-CH%20Protocol%20Book.pdf
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hERG binding assay 

 Radiometric displacement assay was performed by Eurofins Panlabs, LLC (New Taipei 

City, Taiwan) according to the published protocol76 using [3H]-astemizole. 

 

Kinase binding assays 

 Radiometric phosphorylation assay was performed by Eurofins Panlabs, LLC (New Taipei 

City, Taiwan) against recombinant kinases in which labeling of substrate peptides with 33P was 

quantified by scintillation counter. Procedures for each kinase are published online at 

eurofinsdiscoveryservices.com. 

 

MDCK permeability assay 

 Assay and data analysis were performed by Eurofins Panlabs (MO, USA) according to the 

following protocol from Hidalgo et al.77 using MDCKII cells and analysis was carried out as 

previously described.78 

 

CYP Inhibition assay 

 Assay and data analysis were performed by Eurofins Panlabs (MO, USA) according the 

following protocol adapted from Stresser et al.79  

 

Human Liver Microsome Stability 

 Assay and data analysis were performed by Eurofins Panlabs (MO, USA) according to the 

protocol from Obach et al.80  
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Evaluation of compound efficacy in CFA inflammatory pain model 

Male and female C57BL/6N mice were obtained from Envigo (Indianapolis, IN). Mice 

(18-24g) were grouped and housed in plexiglass cages at ambient temperature (21-23qC) in normal 

(12 light:12 dark) light cycle (lights on at 7:00, lights off at 19:00). Water and food were provided 

ad libitum. All animal procedures were pre-approved by our Institutional Animal Care and Use 

Committee. For assessment of mechanical allodynia, mice were subjected to the CFA model and 

von Frey testing as follows. Mice were habituated in von Frey testing boxes for 3 consecutive 

days, 30min/day. Mechanical thresholds were determined using von Frey filaments according to 

the Chaplan method.81,82 Mice were then baselined and injected with 10uL of 50% CFA emulsion 

into the plantar region of the paw. 24 hours later mice were baselined then injected with 5.6 mg/kg 

morphine or 5.6 mg/kg compound 38 dissolved in 10% DMSO/10% Cremaphor/80% saline. Time-

course taken over 2-hour period. Data analyzed according to Christenzen et al.,82 and represents 

the mean ± SEM of the 50% mechanical threshold (n = 6). Statistical analysis performed using 

nonparametric One-Way ANOVA (Friedman test), Dunn’s post-hoc correction. *p < 0.05 versus 

0 min time point. 

 

ASSOCIATED CONTENT 
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