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Abstract

We present a computational methodology for the screening of a chemical space of
1025 substituted norbornadiene molecules for promising kinetically stable molecular so-
lar thermal (MOST) energy storage systems with high energy densities that absorb in
the visible part of the solar spectrum. We use semiempirical tight-binding methods to
construct a dataset of nearly 34,000 molecules and train graph convolutional networks
to predict energy densities, kinetic stability, and absorption spectra and then use the
models together with a genetic algorithm to search the chemical space for promising
MOST energy storage systems. We identify 15 kinetically stable molecules, five of which
have energy densities greater than 0.45 MJ/kg and the main conclusion of this study is
that the largest energy density that can be obtained for a single norbornadiene moiety
with the substituents considered here, while maintaining a long half-life and absorption
in the visible spectrum, is around 0.55 MJ/kg.
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Introduction
Today, the production of solar and wind energy have become more profitable than non-
renewable alternatives. However, daily and seasonal variations in the renewable energy
production as well as large variations in the power demands are two serious challenges for
a sustainable energy eco-system. Storing excess power and using this energy in peak times
is therefore absolutely crucial,1,2 but it requires affordable large-scale energy storage sys-
tems. One technology that attempts to solve this problem is closed-cycle MOlecular Solar
Thermal (MOST) energy storage.3–13 Such systems relies on photochromic molecules or
molecular photoswitches where stable reactants can interconvert to form metastable prod-
ucts using solar irradiation as the driving force. Thus, the solar energy can be stored as
chemical energy until a subsequent exothermic reaction releases the captured energy. De-
pending on the storage lifetime, this energy release can either occur spontaneously or be
controlled by e.g. a thermal activation, a heterogeneous catalyst, an electric potential, or
light. To paraphrase, MOST systems are able to harvest and store solar energy, which can
later be released as clean thermal energy for space heating or heating of domestic water.
In fact, the thermal energy can be stored without the need for thermal insulation, which
enables prolonged storage times compared to alternative thermal energy storage systems.

One of the most promising MOST systems is the norbornadiene/quadricyclane (NBD/QC)
couple (Figure 1), which was introduced as a potential MOST system in 1961 by Dauben
and Cargill,14 although the isomerization reaction of a NBD/QC dicarboxylic acid system
was already observed in 1954 by Cristol and Snell.15,16 Since then, the system has been ex-
tensively studied due to its high energy density of almost 1 MJ/kg, which is estimated to be
the fundamental upper limit of MOST systems and comparable to Li-ion batteries.7

However, the absorption spectrum of NBD lies in the UV region with absorption onset at
267 nm, and has therefore no overlap with the spectrum of solar radiation.12 Several studies
have shown that it is possible to obtain a large redshift in the absorption spectrum and bet-
ter quantum yield, but at the expense of a decrease in the energy density due to the added
weight of the chromophore.17–24 For example, in a recent perspective Orrego-Hernández et
al.24 highlight seven examples of NBD systems with absorption onsets of 362-466 nm, but
energy densities of 0.10-0.56 MJ/kg - compared to 0.97 MJ/kg for unsubstituted NBD. Fur-
thermore, four of the seven molecules have half-lives of a week or less, which make them
unsuitable for long-term energy storage.

In this study we combine quantum chemical calculations, machine learning, and a genetic
algorithm to search chemical space of roughly 1026 NBD/QC derivatives defined in Figure 2
for optimal MOST candidates. Our results suggest that the largest energy storage value that
can be obtained with these substituents, while maintaining a long half-life and absorption
in the visible spectrum, is around 0.55 MJ/kg.
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Figure 1: Energy diagram of the NBD/QC system.
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Figure 2: A representation of the chemical space investigated using machine learning, show-
ing that the NBD/QC motif can be functionalized on four positions with three different
groups ("a", "b", and "c"). The group "a" includes electron withdrawing groups (EWGs)
and electron donating groups (EDGs) as well as hydrogen, and accounts for a total of 18
different substituents. There are roughly 18 + 2(1

2
185) = 1.9M substituents and 1

4
(1.9M)4 =

1025 different NBD systems.
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Computational Methodology
We show that semiempirical tight-binding methods (SQM) can be used used to identify
molecules with high energy densities and thermal back reaction (TBR) barriers as well as
suitable absorption maxima by benchmarking against DFT calculations and experiment. We
use the SQM methods to construct a dataset that provided even coverage of the chemical
space of interest and train graph convolutional neural networks to predict energy densities,
TBR barriers, and absorption spectra and then use the models together with a genetic al-
gorithm to search chemical space for promising MOST candidates.

Semiempirical tight-binding calculations

∆H◦storage and ∆G◦,‡TBR are approximated as the differences in electronic energy (∆Estorage
and ∆E‡TBR) computed using GFN2-xTB.25 For each NBD structure the QC structure is
automatically generated using RDKit.26 5 + 5nrot random conformations (where nrot is the
number of rotatable bonds in the molecule) are then generated for each structure using RD-
Kit and optimized with GFN2-xTB. Optimizations that result in discrepancies between the
input and output connectivity are discarded. The lowest energy conformers of NBD and QC
are used to compute ∆Estorage.

To compute the energy barrier of the thermal back reaction a concerted adiabatic scan
is performed for the two breaking CC single bonds of QC-to-NBD, which are constrained to
20 values from 1.5 Åout to 2.2 Å, starting from the QC structure with the lowest energy.
The highest energy structure and energy is used as an estimate for the transition state. The
absorption spectra of NBD are computed by the sTDA-xTB method27 using the lowest en-
ergy GFN2-xTB structure.

The entire process is automated and requites only SMILES strings of NBD derivatives
as input (see flowchart in supporting information).

The machine learning model

Three undirected graph convolutional networks (GCNs)28 are trained to reproduce the en-
ergy storage, absorption, and TBR barrier. The GCN model is essentially that implemented
in DeepChem29 and written in Python 3.6.8 using PyTorch version 1.2.030 and PyTorch Ge-
ometric version 1.3.2.31 The feature vectors of the nodes describe the atom type, number of
directly bonded neighbors, number of hydrogen atoms attached to the atom, formal charge,
hybridization, and aromaticity, while the feature vectors of the edges include bond orders as
well as information about conjugation and presence in a ring system. The GCN uses two
graph convolutional layers, with 128 channels in the first layer and 64 in the second. After
the final graph convolutional layer, a global max-pooling layer creates a representation with
64 values, which is fed to the feed-forward neural network. The feed-forward network has
two hidden layers with 64 nodes in each layer. The final layer outputs a single value i.e. the
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target value predicted by the network.
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Figure 3: An example of a NBD/QC derivative included in the chemical space defined in Fig.
2. The gene for this system is "[[’C’,17,0,0,0,0],[’A’,3,0,0,0,0],[’A’,0,0,0,0,0],[’B’,0,0,2,0,0]]",
and the smile is "CSc1ccccc1C#CC12C3CC4C(c5ccc(C(F)(F)F)cc5)(C31)C42C#N".

The genetic algorithm

In a previous study32 we have shown that chemical space of MOST candidates can be
searched efficiently by genetic algorithms and we apply a similar approach here. The chemi-
cal space shown in Figure 2 is encoded by a gene like that shown in Figure 3. Each of the four
positions is represented by a label ("A", "B", and "C") followed by five integers ranging from
0 to 17. The labels represent the three types of ligands shown in Figure 2a, b, and c, respec-
tively, while the five integers represent the five different positions on the phenyl rings shown
in Figure 2b and c (if the label is "A", only the first digit is read). The GA search generates
an initial population of 300 genes corresponding to random singly substituted NBD/QC sys-
tems (phenyl and phenylacetylene groups are also singly substituted and random mutations
are applied if duplication occurs) after which a new generation of same size is created from
crossovers between two parent genes. In the crossover, between one and three ligands from
the first parent are randomly selected and combined with the remaining ligands from the
second parent to produce a child. Furthermore, random mutations of the children occurs
with a mutation rate of 25 %. These mutations allows one of the ligands to be modified by
either changing the ligand type ("A", "B", or "C" from Figure 2) or one of the attached
"A" ligands. The different parents are selected with a probability that is proportional to
their score (roulette selection). This score is computed as sum of three thresholded-linear
functions33 ranging from 0 to 1 with thresholds of 0.6 MJ/kg, {375, 400, 450, 525} nm,
and 250 kJ/mol for the energy density, absorption, and TBR barrier, respectively, predicted
by the GCN models. To favour a redshift of the absorption spectrum, we multiplied the
absorption score by two resulting in a maximum GA score of four. Hereafter, 300 of the
worst scoring genes are discarded, which results in a new population of 300 genes. Each GA
search runs for 300 generations and the final output is the 50 highest scoring molecules of
the final population. We select four different absorption thresholds resulting in four runs of
a thousand GA searches to also promote higher energy densities and TBR barriers.
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Results and discussion

Benchmarking the tight binding calculations

We benchmark the tight binding calculations against DFT on 31 different NBD/QC systems
with promising properties collected from the literature.17–20,34 Based on a recent benchmark
study by some of us,35 we use M06-2X/6-311+G(d) for the energy density, and the same
method is also used for benchmarking the TBR barrier estimates.

Figures S1 and S2 compares the GFN2-xTB storage energy and barriers of the back
reaction to the corresponding M06-2X/6-311+G(d) values. While GFN2-xTB significantly
underestimates the storage energy and overestimates the barrier heights both properties are
strongly correlated with the DFT results, with R2 values of 0.81 and 0.70 and Pearson’s R
values of 0.90 and 0.84, respectively. GFN2-xTB is thus capable of identifying molecules
with high energy densities and low barrier heights for further study using DFT.

The sTDA-xTB UV-Vis spectrum of a charge-tagged NBD/QC carboxylate is bench-
marked against the experimental result by Ugo et al.34 and several DFT calculations (Fig-
ure S3). The relevant peak at 315 nm is blueshifted by just 10 nm by sTDA-xTB. In fact,
sTDA-xTB performs better than 13 out of the 16 DFT functionals tested in a benchmark
study,35 while requiring only a few seconds instead of several hours.

Training the machine learning models

For the dataset, different singly and doubly substituted NBD/QC systems are selected to
get an even coverage of chemical space where every small ligand (Figure 2a) is represented at
every position on the phenyl rings and NBD scaffold a roughly equal number of times. The
singly substituted NBD/QC systems include all directly attached EWGs and EDGs as well
as phenyl and phenylacetylene groups with all combinations of up to three EWGs and EDGs
in the ortho-, meta-, and para-position (resulting in a total of 183 · 2 + 18 = 11, 682 singly
substituted systems). The doubly substituted NBD/QC systems (substituted in position 1
and 2, 1 and 3, or 1 and 4, see Figure 2) included all combinations of the EWGs, EDGs,
and single ortho-, meta-, or para-substituted phenyl and phenylacetylene groups (resulting
in a total of

(
((17·3+1)·2+17)+2−1

2

)
· 3 = 22, 143 double substituted systems). Hence, the dataset

consisted of 33,825 unique NBD/QC systems. Of these, 119 of the GFN2-xTB calculations
failed and are omitted from the dataset. This results in a total of 33,706 NBD/QC systems,
which are split 80/20 for training and test set, respectively. A 5-fold cross-validation is used
to train the different GCNs for 100 epochs with a batch size of 512 and using the Adam
optimizer36 with a learning rate of 0.01 on a MSE loss (see learning curves in supporting
information). To prevent overfitting, the trained GCN with the overall best validation loss
for each property are saved.
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Figure 4: Predicted storage energies, absorption wavelengths for the first absorption peak
in the electronic absorption spectrum of the NBD isomer, and thermal back-reaction (TBR)
barriers obtained by graph convolutional networks (GCNs) versus calculated results at the
GFN2-xTB level of theory. The GCNs was trained on 26,965 NBD/QC systems using 5-fold
cross-validation and tested on yet another 6,741 NBD/QC systems for which the results are
presented in (a), (b), and (c). The orange line represents the line of equality.

Figure 4 shows the GCN-predicted vs GFN2-xTB values for the storage energy, absorp-
tion, and TBR barriers for the test set. The respective mean absolute errors are 1.66±2.46
kJ/mol, 8.62±10.41 nm, and 7.62±11.17 kJ/mol. In the case of the TBR barriers the most
significant deviations are for molecules with low barriers, meaning that the GCN predictions
could lead to a significant number of false positives with respect to the barrier. However,
such false positives can be efficiently eliminated by subsequent GFN2-xTB calculations and
does not present a significant problem.

Identifying promising candidates using a genetic algorithm

The 50 top-scoring molecules from the final populations of 4,000 GA searches are selected,
which results in 1,234 unique NBD/QC systems. The energy storage, TBR barrier height,
and absorption spectra of these molecules are then recomputed using GFN2-xTB and sTDA-
xTB, respectively. Then, the 230 systems with energy densities, absorption spectra, and TBR
barriers above 0.2 MJ/kg, 350 nm, and 160 kJ/mol, respectively, are reoptimised at the M06-
2X/6-311+G(d) level of theory (using the lowest energy GFN2-xTB structures as starting
point) followed by vibrational analysis to ensure correct convergence. TDDFT calculations
on all 230 molecules reveal that 116 molecules have absorption maxima above 350 nm. The
energy densities for these 116 molecules are then computed and the 38 molecules with energy
densities higher than 0.4 MJ/kg are selected for barrier computations. The TS search fail
for four of the 38 molecules while the TBR barrier is higher than 150 kJ/mol for 15 of the
34 molecules (shown in Table 1).
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Label Structure ∆H◦storage/M
[MJ/kg]

λ [nm] ∆G◦,‡TBR [kJ/mol]

1

H2N NH2

HO
HO

HN

0.56 357 162

2

H2N NH2

HO
H2N

HN

0.55 361 165

3

HO

NH2HO

H2N

NH

0.49 378 163

4
H2N NH2

OHHO

HN 0.48 353 167

5

HO NH2

OHHO

H2N
O 0.46 358 157

6

HO

NH2H2N

H2N

NH

0.43 358 161

7

HO NH2

O
HO

H2N

O

0.43 376 167

8

HO NH2

OHHO

N

O

0.42 359 159

9
HN F

OH
H2N

H2N

O

NH

0.42 371 219

10

F

NH2

H2N

NH
HN

0.41 386 236
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11

H2N NH2

OH
H2N

H2N

O

0.41 426 155

12

H2N NH2

NH2
H2N

H2N
O 0.41 352 160

13

HO NH2

OH

H2N

O
O

0.41 412 160

14

H2N NH2

NH2
N

H2N

OO

0.41 397 153

15

H2N NH2

NH2F

H2N

O

0.40 376 153

0.70 204 162

Table 1: All NBD/QC systems with properties above 0.4 MJ/kg, 350 nm, 150 kJ/mol for
the energy density, absorption, and TBR barrier with respect to calculations at the M06-
2X/6-311+G(d) level of theory. Moreover, the calculated properties of the NBD/QC parent
system at the same level of theory are given as a reference in the bottom of the table.

Five of the molecules have energy densities greater than 0.45 MJ/kg, which is similar to
the highest values observed so far for NBD-dimer systems and considerably higher than any
previously observed for NBD-monomers.24 The absorption spectra of these five molecules
are shown in Figure 5. However, most of the molecules have one or more amine and hydroxy
groups directly attached to the NBD scaffold and may undergo keto-enol or imine-enamine
tautomerisation, which may adversely impact the properties. The main conclusion of this
study is that the largest energy storage value that can be obtained for a single NBD/QC
moiety with these substituents, while maintaining a long half-life and absorption in the
visible spectrum, is around 0.55 MJ/kg.
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Figure 5: UV-Vis representation of the NBD isomers with energy densities greater than 0.45
MJ/kg (1-5). Furthermore, the UV-Vis spectrum of the parent NBD isomer is given as
a reference (NBD). All the spectra are obtained using the time-dependent analog of M06-
2X/6-311+G(d) and simulated using Eq. S1 from the supporting information.
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Conclusions
We present a computational methodology for the screening of a chemical space of 1025 sub-
stitutet NBD molecules for promising MOST systems with high energy density and TBR
barrier that absorb in the visible part of the solar spectrum. We show that semiempiri-
cal tight-binding methods (SQM) can be used used to identify molecules with high energy
densities and thermal back reaction (TBR) barriers as well as suitable absorption maxima
by benchmarking against DFT calculations and experiment. We use the SQM methods to
construct a dataset of nearly 34,000 molecules that provided even coverage of the chemical
space of interest and train graph convolutional networks to predict energy densities, TBR
barriers, and absorption spectra and then use the models together with a genetic algorithm
to search chemical space for promising MOST candidates.

The 50 top-scoring molecules from the final populations of 4,000 GA searches are selected,
which results in 1,234 unique NBD/QC systems. Then M06-2X/6-311+G(d) TDDFT cacu-
lations are performed on the 230 systems with SQM-predicted energy densities, absorption
spectra, and TBR barriers above 0.2 MJ/kg, 350 nm, and 160 kJ/mol, respectively. TDDFT
calculations on all 230 molecules reveal that 116 molecules have absorption maxima above
350 nm. The energy densities for the 116 with absorption maxima above 350 nm are then
computed and the 38 molecules with energy densities higher than 0.4 MJ/kg are selected
for barrier computations. The final results are 15 molecules with a TBR barrier higher than
150 kJ/mol.

Five of the molecules have energy densities greater than 0.45 MJ/kg and the main con-
clusion of this study is that the largest energy density that can be obtained for a single
NBD/QC moiety with these substituents, while maintaining a long half-life and absorption
in the visible spectrum, is around 0.55 MJ/kg.

Data Availability
Additional figures and tables can be found in supporting information. The code and data
are available at https://sid.erda.dk/sharelink/DeRV97z1Nz
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Supporting Information

Estimation of chemical space size

There are 18 different small substituents (including H) as shown in Figure 2a. There are
five possible substitution sites on the phenyl ring (Figure 2b-c), so there is on the order of
185 different substituted phenyl rings but since the ortho- and para-positions are symmetri-
cally equivalent this number should be reduced by roughly a factor of two. Thus there are
roughly 2(1

2
185) phenyl substituents (with and without the ethyl linker) plus 18 non-phenyl

substituents (including H). These 1.9M substituents can be placed on four different, but
symmetrically equivalent, sites in the NBD scaffold, resulting in roughly 1

2
(1.9M)4 different

NBD systems.

Supplementary figures and tables

Figure S1: Initial storage energies check
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Figure S2: Initial TBR barriers check.
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Figure S3: Initial UV-Vis check.
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Figure S4: Flowchart.
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Figure S5: The complete procedure for high-throughput virtual screening of MOST systems
based on the NBD/QC photoswitch.
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Figure S6: Illustration of the procedure for a single genetic algorithm (GA) search.
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Figure S7: Learning curve - Storage energies.
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Figure S8: Learning curve - Absorption.
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Figure S9: Learning curve - TBR barriers.

Procedure for obtaining the learning curves
• Perform a random shuffle of the training set containing 26,965 NBD/QC systems.

• Loop over a list to select the first [10%, 20%, 40%, 60%, 80%, 100%] of the training
data.

• Use 5-fold cross-validation to train the GCN on the selected subset for 100 epochs
with a batch size of 512 and using the Adam optimizer with a learning rate of 0.01 on
a MSE loss.

• Test the performance on the validation set for every epoch and save the best
model.

• Use the best model to obtain the mean absolute error (MAE) on the training,
validation and test sets.

• Continue to the next fold and report the mean and standard deviation of the 5
models obtained in the cross-validation loop.

• Continue to the next subset.

The code for training the GCNs and creating the learning curves are available at
https://sid.erda.dk/sharelink/DeRV97z1Nz
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Figure S10: GA results. 1,306 structures, where 72 are shared between the four GA runs.

Table S2: TOP-1 candidates in each of the four GA runs with corresponding energy densities,
∆Estorage/M, first absorption peak, λ, and activation barriers, ∆ETBR. The percentage of
how often the NBD/QC system was found is shown in the right-hand side column. The
absorption threshold was varied in the four GA runs with (a); 375 nm, (b); 400 nm, (c); 450
nm, and (d); 525 nm. Moreover, the calculated properties of the NBD/QC parent system
using GFN2-xTB are given as a reference in the bottom of the table.

Run Structure ∆Estorage/M
[MJ/kg]

λ [nm]
∆ETBR

[kJ/mol]
% of 1000 GA

searches

(a)
F OH

NH2HO

H2N

O

0.24 369 240 72.5

(b)
H2N NH2

NH2
HO

H2N

O

0.25 417 210 60.8

(c)

H2N

NH2

H2N

O

0.22 451 221 27.7

(d)

H2N

NH2

HO OH

O

0.21 525 207 2.6

0.09 160 320
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Figure S11: Comparison of the results for the investigated properties obtained by graph
convolutional network (GCN), GFN2-xTB, and M06-2X/6-311+G(d). The top panels (a,
b, and c) show the GCN vs xTB results for results of the 1,234 unique NBD/QC systems
obtained from saving the 50 top-scoring molecules from the final populations of 4,000 GA
searches. The bottom panels (d, e, and f) show the results of the NBD/QC systems with
SQM-predicted energy densities, absorption spectra, and TBR barriers above 0.2 MJ/kg,
350 nm, and 160 kJ/mol, respectively. However, systems without a confirmed transition
state structure at the DFT level of theory are omitted in the bottom panels, which limits
the number of presented NBD/QC systems from 230 to 147. The green dots corresponds to
the 15 NBD/QC systems shown in Table 1 and the orange line represents the line of equality.
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Simulating UV-Vis Spectra

In this section, we present the expression used to simulate the UV-Vis spectra. The expres-

sion is derived from the assumption of Gaussian band shapes by applying Gaussian functions

to convolute the calculated oscillator strengths. Thus, the UV-Vis spectra can be plotted as

the extinction coefficient, ε, vs. the wavelength, λ, using the following equation.

ε(λ) =
n∑
i=1

εi(λ) =
n∑
i=1

k · fi
σ

· exp

−4 · ln (2) ·

(
1
λ
− 1

λi

σ · 10−7

)2
 (S1)

where fi is the calculated oscillator strength, λi is the corresponding wavelength in nm, λ

is an independent variable defining the simulated spectrum, and σ is the standard deviation

also known as the full width at half maximum of the Gaussian band (in these simulations

σ = 0.4 eV = 0.4 · 8065.54 cm−1 = 3226.22 cm−1). Furthermore, the constant k is given by

k =
NA · e2

2 ·me · c2 · ε0 · ln(10)
·
√

ln (2)

π
= 2.1751 · 108 L

mol · cm2
(S2)

where NA is Avogadro’s constant, c is the speed of light, e is the elementary charge, me is

the mass of an electron, and ε0 is the vacuum permittivity.
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