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Abstract

Molecular simulation is a mature and versatile tool set widely utilized in many subjects.

However, its methodology development has been struggling with a tradeoff between accuracy

and speed, significant improvement of both is necessary to reliably substitute many expensive

and laborious experiments in molecular biology and nanotechnology. Previously, the ubiqui-

tous severe wasting of computational resources in molecular simulations due to repetitive local

sampling was raised, and the local free energy landscape approach was proposed to address

it. The core idea is to first learn local distributions, and followed by dynamic assembly of

which to infer global joint distribution of a target molecular system. When compared with

conventional explicit solvent molecular dynamics simulations, a simple and approximate im-

plementation of this theory in protein structural refinement harvested acceleration of about six

orders of magnitude without loss of accuracy. While this initial test revealed tremendous ben-

efits for addressing repetitive local sampling, there are some implicit assumptions need to be

articulated. Here, I present a more thorough discussion of repetitive local sampling; potential

options for learning local distributions; a more general formulation with potential extension
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to simulation of near equilibrium molecular systems; the prospect of developing computa-

tion driven molecular science; the connection to mainstream residue pair distance distribution

based protein structure studies; and the fundamental difference of the averaging strategy from

potential of mean force. This more general development is termed the local distribution theory

to release the limitation of strict thermodynamic equilibrium in its potential wide application

in general soft condensed molecular systems.

Introduction

Molecular simulation has been utilized in a wide variety of disciplines, including but not limited

to chemistry, physics, biology and materials science. Its increasing importance is clearly demon-

strated by steady growth of relevant publications as shown in Fig. 1. However, atomistic molecu-

lar dynamics (MD) simulations, while being effective in revealing underlying atomic mechanisms

for many molecular processes, are extremely computationally intensive.1,2 Historically, scientists

have developed two lines of algorithms to accelerate molecular simulations, with one being coarse

graining3–12 and the other being enhanced sampling.13–16 Realizing that there is severe wasting of

computational resources due to repetitive local sampling (RLS) in all molecular simulations, the

local free energy landscape (LFEL) approach was proposed to eliminate such wasting, and its ef-

fectiveness was subsequently demonstrated in an approximate implementation in protein structural

refinement.17 In the initial testing of this new theory, LFEL for amino acid packing in proteins

was constructed based on a simple neural network implementation of generalized solvation free

energy (GSFE) theory.18 Further, a computational graph was established through combination of

automatic differentiation, coordinate transformation and LFEL cached in trained neural networks.

This computational graph was successfully utilized to achieve the only end-to-end and the most

efficient protein structural refinement pipeline17 up to date. The connection among coarse grain-

ing, enhanced sampling and LFEL as various forms of applying “dividing and conquering” and

“caching” principle in molecular modeling was summarized previously.19 Like all present protein

structure prediction, design and refinement studies,20–29 there is an implicit and extremely crude
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assumption that all high resolution experimental structures were solved under similar environmen-

tal (thermodynamic) conditions. Alternatively, differences in thermodynamic and environmental

conditions are deemed not important for all high resolution structural data utilized to train mod-

els. Such assumptions neglect rich conformational redistribution of many functional proteins upon

environmental stimuli. For example, while most protein structures stay intact when temperature de-

crease from physiological condition, some proteins denature upon sufficiently low temperature.30,31

Many channel proteins may switch between open and closed states upon change of concentration

of specific ions32 and mechanical stress33,34 . To realize modeling of these functional and dynamic

property of biomolecular systems, further development of algorithms that is capable of accounting

for diverse environmental stimuli is apparently necessary. Additionally, the LFEL approach as it

stands only applies to equilibrium conditions. Here, I explicitly articulate these issues, develop a

more general form of the LFEL idea and term it the local distribution theory (LDT). Meanwhile,

more concrete discussions of RLS, more options for fitting local distributions, extension of LDT to

near-equilibrium scenarios, connection of LDT to present protein structural studies based on deep

neural networks, and the difference of LDT from conventional molecular simulation framework

based on potential of mean force are presented. It is hoped that this work will intrigue more in-

terest in further development of LDT in general chemical and biomolecular systems, and facilitate

advancement of computation driven molecular science.

Repetitive local sampling

In molecular simulations, we have a long history of utilizing RLS in analysis of MD trajectories.

For example, when computing a pair distribution function g(r) between oxygen atoms of water

molecules, instead of tracking a specific pair of water molecules or water molecules within a given

small space and binning distances of oxygen atom pairs, statistics is usually accumulated by count-

ing all pairs of water molecules within a distance of half simulation box to obtain a more smooth

curve. Similarly, in calculation of dynamic property such as mean squared displacement, in stead
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of focusing on one specific particle and trace its motion with time, displacement of many particles

are traced and results are averaged. Such tricks are routinely utilized in various analyses of molec-

ular simulation trajectories. The basis of these manipulations is the belief that all molecules of the

same chemical identity and composition are indistinguishable, and ensemble average converges

to time average for ergodic systems. All above practices clearly demonstrate that we have been

carrying out RLS in essentially all our simulations, except not carefully thinking about its poten-

tial utility in saving computational resources in the simulation/sampling stage. The reality that

RLS consumes majority of computational resources in regular molecular simulations was raised

previously17,19 without sufficiently detailed discussions. Some typical examples of RLS in various

simulation and/or modeling applications are discussed below.

RLS within a single simulation task

Fig. 2a represents a snapshot for a simulation of aqueous solution comprising a few different types

of ions and water molecules, with gas-liquid and liquid-solid interfaces under given thermody-

namic conditions. In a production run of this simulation, we may choose to focus our attention

on a spherical space A. As the simulation goes on, many different configurations with various

number of ions and water molecules within this space will be observed. When the simulation is

sufficiently long, a converged LFEL will be obtained. This LFEL is a complex high dimensional

distribution that gives correct statistical weight for each thermally accessible structural ensemble

(or free energy local minimum) on the one hand, and all possible transition paths connecting these

minima with respective statistical significance on the other hand. The exactly same LFEL would

have been obtained if another bulk spherical space B with the same volume was taken. As a matter

of fact, the exactly same LFEL would have been obtained for all possible bulk spherical spaces

with the same volume. However, for each such separate local space, significant computational

resource was consumed to obtain the exactly same LFEL, resulting in tremendous wasting of com-

putational resources! This is a typical case of RLS within the same simulation task. Beyond the

illustration in Fig. 2a, there are other less obvious forms of RLS. For example, in protein structure
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prediction, design and refinement with implicit representation of aqueous solution, each residue in

a chain has more or less unique surroundings and no direct RLS over different local spaces seems

existing. However, in these tasks, each residue experiences many rounds of adjustment or repack-

ing. Sampled collisions, favorable and unfavorable configurations from each round is partially or

completely discarded and performed on the fly in the next round, engendering significant RLS.

RLS across different simulations

Much more computational resource are consumed by RLS across different simulation tasks. Imag-

ine how many times simulations of local packing for water molecules of each popular water force

fields have been carried out by thousands of scientists globally! Similarly, molecular packing of

amino acids surrounding each of 20 natural amino acids have been carried out numerous times

by computational structural bioinformaticians around the world. Such RLS is ubiquitous for sim-

ulations of the overwhelming majority of molecular systems in chemistry, biology and materials

science.

The generalized solvation free energy perspective

While local spaces near various interface certainly have LFELs different from that of bulk, there

are regularities that can be learned as well. Such RLS may be effectively described from a slightly

different perspective according to the GSFE theory as shown in Fig. 2b. In GSFE theory, each

comprising unit of a molecular system is on the one hand a solute unit solvated by its surrounding

units, and on the other hand a comprising solvent unit for each of its surrounding units. As all

units with the same chemical identity/structure are indistinguishable, so should be LFEL of their

local solvent under given thermodynamic conditions if a simulation trajectory is sufficiently long.

When our focus is on LFEL surrounding a given central unit, different scenarios of interfaces

are simply different solvent configurations with corresponding statistical weights and no special

treatment is required anymore. More specifically, for a water molecule absorbed on wall of a

tube filled with water, its solvent units include both water molecules and molecules belong to
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the wall surrounding it. To eliminate difficulty of defining interfaces at molecular scales is the

very initial motivation for development of the GSFE theory. Additionally, defining local spaces

with local coordinates originated from individual molecule is a convenient, efficient and natural

choice with two advantages. Firstly, it reduces data requirement and improves accuracy during

training/learning of local distributions, and secondly, it facilitates assembly by eliminating the

uncertainty of selecting from infinite possible origins for local spaces during inference for global

joint distribution (GJD) of a target molecular system.

Potential benefits of utilizing local distributions to eliminate RLS

Sufficient sampling of complex molecular systems has long been our pursuit in simulation stud-

ies. The very fact that we almost always collect statistics from different local spaces and utilize

indistinguishable property of molecules for better statistics indicates that we rarely achieve suffi-

cient sampling for a given small space or surrounding of a given single molecule. Therefore, it is

likely that more accurate global correlations would have been obtained if sufficient statistics was

available for all local regions. Since in construction of GJD by assembly of LFEL, local spaces

surrounding each particle is driven by a sufficiently sampled LFEL, consequently facilitating suf-

ficient sampling of local regions. Therefore, the ability to cache and utilize LFEL properly would

not only tremendously reduce the need of computational resources, but also potentially improve

accuracy due to effectively more sufficient “local sampling”. This is in strong contrast to decades

of trade-off in molecular simulations that improved efficiency being always accompanied more or

less by reduced accuracy, and increased accuracy being always accompanied by more or less re-

duction of efficiency! When compared with conventional molecular mechanical force fields35–38

or knowledge based potentials,39–41 the ability of accounting for many-body correlations is another

advantage of LFEL that is likely to contribute to improved accuracy.
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The local distribution theory

It is well understood that the folding process and conformational distributions for a given protein

depend upon both its sequence and environmental conditions. However, due to lack to data, in

both establishment of traditional knowledge based potentials39–41 and deep learning studies21,22

of protein folding, design and structural refinement, it is widely assumed that all experimental

structural data may be deemed as obtained under similar conditions, and details of which may be

safely ignored in such tasks. Such simplification was similarly utilized in implementing the LFEL

approach in protein structure refinement17 with focus being on coordinates without attending to

thermodynamic and solvent conditions. Should detailed modeling of the variation of interested

molecular systems under different environmental and/or thermodynamic conditions be desired,

inclusion of these variables in the formulation was essential. Here, previous simplified formula-

tion is extended to deal with such scenarios. Denote environmental and thermodynamic variables

(e.g. temperature, pressure, concentrations of relevant molecular species, special restraints) as

Φ = (φ1, φ2, · · · , φk), molecular coordinates as X = (x1, x2, · · · , xn) and local regions of molecular

systems as R = (r1, r2, · · · , rm)(m ≤ n,m = n is preferred), the GJD may be expressed by local

distributions q(Φ, ri) and their correlations as:

P(Φ, X) = Q(Φ,R)

=
Q(Φ,R)∏m
i=1 q(Φ, ri)

m∏
i=1

q(Φ, ri) (1)

It is important to note that each ri(i = 1, 2, · · · ,m) represents a dynamic collection of molecular

coordinates for the ith specified region ri = M(xi1, xi2, · · · , xil), withM being a translation, rota-

tion and permutation invariant transformation matrix from the global to local coordinate system.

Both number l and identity of involved units may change for each local region with propagat-

ing trajectories. When (m = n) or m is close to n, since each local region contains dozens of or

more particles, overlapping among such regions are extensive. Local distributions are essentially

LFEL for equilibrium systems. The fraction term Q(Φ,R)∏m
i=1 q(Φ,ri)

includes all complex global correla-
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tions among various local regions ri(i = 1, 2, · · · ,m) and is denoted the global correlation factor

(GCF) previously.19 The product term (hereafter “local term”)
∏m

i=1 q(Φ, ri) is simply to treat all lo-

cal regions as if they were independent. If the GCF was ignored, then overlapping parts of different

ri may have distinct states. In reality, regardless of how many different local regions a molecule xi

participates, it has a unique physical state at any given instant. So all possible configurations with

contradicting molecular states for any molecule participating different local regions have proba-

bility density zero. Such correction and additional modification of probability density is achieved

by the GCF term. However, direct calculation of GCF is intractable for any realistic complex

molecular system. Therefore, equation 1 is not directly useful for understanding and predicting

behavior of molecular systems. How to approximately and effectively utilize this equation in prac-

tice is an open problem, and likely with multiple potential approximate solutions. The optimal

approximation might well have some extent of molecular system specificity.

Probability density (free energy in equilibrium) of a specific configuration may be decomposed

into three approximately independent contributions. The first is the short range contribution (FS R)

that measures the extent of structural stability/compatibility within each local region and is quanti-

fied by the local term in equation 1. The second contribution is from mediated interactions (FMED

Fig. 3ab) that measures the extent of compatibility among all overlapping local regions, and the

third contribution measures direct long range (FLR, Fig. 3b) compatibility within the whole molec-

ular system. Both the second and the third contributions are contained in the GCF term. With the

assumption that mediated interactions are independent from long-range interactions, the GCF may

be approximately split into FMED and FLR as shown below.

Q(Φ,R)∏m
i=1 q(Φ, ri)

≈ exp(−
∑

FMED(Φ,R))exp(−
∑

FLR(Φ,R)) (2)

The summations are over all mediated and long-range interactions in the given configuration R. In

practical computation, separation of FS R and FMED is challenging on the one hand and inefficient

on the other hand. In the previous implementation17 FS R and FMED were merged. Specifically, As
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shown in Fig 3b, at any given instant, a molecule (particle) in the system experiences free energy

driving force additively from local distributions centered on each of its directly interacting neigh-

bors within a preset cutoff. This is in strong contrast to regular MD simulations in which a particle

experience direct forces from its directly interacting neighbors. While FLR was not accounted for

previously, it may be added in for each particle in each or every few propagation step(s). So in

equation 1, local interactions are separated from the GCF, which may be approximately decom-

posed into mediated and long range interactions. However, local and mediated interactions were

computed together in the previous implementation. This choice is somewhat counter intuitive but

is feasible and efficient. Since an analytically clean mathematical factorization of the GCF is not

available, it is likely that the above approximation is just one of many possible ways to realize

practical computation. Distinct molecular systems may have different correlation characteristics

and the optimal approximation is likely to be system specific. Nonetheless, the overall idea is quite

clear, that is to first train local distributions, which are subsequently to be assembled to compose

the GJD according to suitable approximation of the equation 1. The core idea of the LDT is to use

local distributions to eliminate RLS.

Combining equations 1 and 2, we have the following equation:

Q(Φ,R) ≈
m∏

i=1

q(Φ, ri)exp(−
∑

FMED(Φ,R))exp(−
∑

FLR(Φ,R)) (3)

with q(Φ, ri) being neural networks parameterized by W, exp(−
∑

FMED(Φ,R)) enforce me-

diated interactions via sampling constraints, and exp(−
∑

FLR(Φ,R)) being calculated through

a selected direct long-range interaction calculation method independent of W. In the training

stage, local distributions are learned by optimizing parameter set W with a given data set D =

{X1, X2, · · · , Xd}

W∗ = argmax
W

d∏
j=1

Q j(Φ,R(X j)) (4)

with W∗ representing the optimal parameter set and subscript j indicating the jth record with

coordinate X j in the data set. In the free energy optimization stage, W∗ is fixed, with Q∗ indicating
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local distributions in which being parameterized by W∗, we have:

X∗ = argmax
X

Q∗(Φ,R(X)) (5)

as each unit x participates in many local distributions, this optimization process essentially is com-

petition of each unit for its best position given its solvent environment, each comprising unit of

which is simultaneously seek respective best position, thus drive the propagation of a target molec-

ular system.

In a proper implementation of LDT, a target molecular system may be propagated similarly as

in the case of MD simulations except for the two differences. The first difference is that empirical

potentials driving MD is replaced by approximate GJD assembled from LDTs. The second is that

a learning rate αa, which is implicitly related to temperature, needs to be given. It is important to

note that LDTs are utilized to replace RLS, not global sampling. To accelerate global sampling of

a given molecular system, the propagation may be carried out in different temperatures other than

the one corresponding to the training data. Methodologies such as simulated annealing42 may be

realized just as in regular MD or MC simulations simply by assign a proper scheme of temperature

cycles specified by corresponding gaussian noise term with variance αb. In practice, αa and αb

need not be identical in the following Langevin equation:

Xt+1 = Xt − αa
∂(
∑

FS R +
∑

FMED +
∑

FLR)
∂X

+ ε, ε ∼ N(0, αb) (6)

Challenges and options for fitting local distributions

Training/learning of local terms is by no means trivial. In reality, strictly normalized local distribu-

tions is beyond reach and we may approximate them by complex high dimensional unnormalized

potential functions. The direct consequence of lacking normalization is that resulting free energy

unit is arbitrary and is different for different molecular systems. When direct long range interac-

tions are to be added, or comparison of results among different molecular systems are essential,
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this uncertainty has to be resolved. If long-range interactions with fixed unit may be calculated

accurately, then it can serve as a unit-defining quantity among different molecular systems.

Construction of local distributions is essentially a density estimation problem in high dimen-

sional space. Firstly, each local region need to be represented mathematically in a translation, rota-

tion and permutation invariant way for its probability density to be effectively fit. Such processing

of molecular coordinates is accomplished by descriptor functions, which have accompanied de-

velopment of neural network force fields,43,44 and are quite well understood. One possible way

of defining a local region is to utilize the position of an given particle as the origin for the local

coordinates, so ri = (xi−c, yi−s), with xi−c being the origin of the local coordinates defined by a

given unit and yi−s being the coordinates of all surrounding molecules within a preset cutoff. It is

important to note that the number of molecules may fluctuate and so is the dimensionality of yi−s,

and padding is a feasible way to address it. The distribution of a local region within a molecular

system under given environmental conditions Φ may be decomposed into a local prior q(Φ, yi−s)

and a local likelihood q(Φ, xi−c|Φ, yi−s) as shown below:

q(Φ, ri) = q(Φ, xi−c, yi−s)

= q(Φ, xi−c|Φ, yi−s)q(Φ, yi−s) (7)

The likelihood term measures extent of match between the particle at the origin (xi−c) and its

surroundings. The prior term represent structural stability of the surrounding under given environ-

mental conditions. In the protein structure refinement implementation,17 identities of the central

amino acids were utilized as labels to train a simple neural network representing likelihood terms,

and prior terms were approximated with simple weights. This strategy is likely to be not very

useful for general molecular systems. For example, in a typical molecular system of dilute aque-

ous solution, the fraction of water molecules is the overwhelming majority. Training with identity

will face extremely unbalanced data and important differences among minority molecular/ionic

species are likely to be lost. To improve fitting of local distributions, accurate description of both
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likelihood and prior terms are essential.

Like any density estimation application, fitting of local distributions may be carried out di-

rectly without decomposing into likelihood and prior terms. As a matter of fact, density estimation

problem is of fundamental importance in both statistics and machine learning. Not surprisingly,

many neural network architectures have been developed to tackle density estimation in high di-

mensional space where conventional methods (e.g. kernel density estimators45) are not effective.

The most widely utilized two types are autoregressive models46 and normalizing flows.47,48 The

former decompose a target joint density into product of conditional densities, which are modeled

by parametric densities (e.g. mixture of gaussians) with trainable parameters. The later utilizing

invertible neural network architectures to realize a direct quantitative map from a known density

(e.g. uniform or gaussian) to the target density space. Establishment of proper correlations among

different parametric densities is a highly challenging task for autoregressive models. The invert-

ibility requirement in normalizing flow methodology imposes heavy restrictions on neural network

architecture and hence its representation power. One outstanding application example of normal-

izing flow in modeling molecular system is the Boltzmann generator.49 However, application of

Boltzmann generator in complex molecular system remain to be tested. The fundamental differ-

ence between Boltzmann generator and LDT is that the former aims to directly model GJD for

target molecular systems while the later decompose the problem into fitting and assembly of lo-

cal distributions. Therefore RLS across different tasks is not addressed by Boltzmann generator,

which as a results loses transferability of computed results among different molecular systems. A

recent more general approach, Roundtrip,50 was proposed to overcome weakness of these two den-

sity estimation methodology. However, it takes an expensive sampling step to finalize the density

estimation. Each available class of methods has its pros and cons, and no theory is available for

selection of proper density estimation methodology presently. It might well be that better methods

will arise in future. For fitting local distributions in specific complex molecular system, many tests

are likely necessary to construct a proper neural network model. Different molecular systems may

have distinct structural distributions and case by case exploration is probably necessary to achieve
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high accuracy.

Energy based models (EBM)51,52 are good candidates for fitting local distributions, either as a

whole or when decomposed into prior and likelihood terms. In EBM, an energy is trained to be as-

sociated with a given configuration, thus eliminating the need of a normalization constant, which is

a core challenge in fitting local distributions. Present tests of EBMs are mainly in conventional ma-

chine learning application scenarios such as computer vision or natural language processing.53–56

Density distributions for such systems are quite different from complex molecular systems of con-

densed matter. Since LDT is a new development, significant effort is necessary to search for both

proper loss functions, neural network architectures, optimization algorithms and their combina-

tions for EBM to facilitate fitting local distributions in our interested molecular systems.

While neural networks have been black boxes with exceptional fitting capability up to date, and

have been utilized with a wide variety of architectures. Efforts are undergoing for building white

box neural networks.57 To realize more physically interpretable and mathematically elegant fitting

of local distributions transparently is certainly an attractive potential direction to explore.

Connection to conventional AI driven protein structure studies

Contact map has played a critical role in development of protein structure prediction.29 Earlier

contact was a simple binary assignment (contact or not) defined by a cutoff distance based mostly

on Cβ atoms,29 later on it evolved into residue pair distance distributions (RPDD).20,24,25,27 Sig-

nificant effort has been invested in investigating impact of various input information and neural

network architectures on RPDD prediction with great progress in understanding. As the only

known fully end-to-end and the most efficient protein structure refinement and dynamic simula-

tion pipeline, GSFE-refinement17 has a distinct overall pipeline from RPDD based algorithms of

protein structure prediction/refinement. With the common goal of describing protein structures,

these seemingly very different procedures have to be somehow connected. Fundamentally, all

methodologies targeting protein structures reflect their underlying free energy landscape from cer-
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tain perspective. In GSFE-refinement, the GJD assembled from local distributions (or LFEL) lacks

direct long-range correlations beyond spatial range of mediated interactions (Fig. 3) as the method

stands now. Certainly, addition of long-range correlations is feasible as already discussed above,

and is in fact one important task in our future development plan. Sequence information is limited

to the target protein itself in contrast to RPDD based methods, where multiple sequence alignment

information is included as a critical part of input. In AlphaFold,20 AlphaFold258 and many other

RPDD based studies,21,22,24–29,59,60 the core information obtained is explicit protein ( family ) spe-

cific RPDD, which are in fact marginalization of the GJD after integrating away all other variables

except the distance between the concerning residues. While marginalization in general is an ex-

tremely difficulty task in high dimensional space, it is trivial for an approximate GJD represented

by a trajectory of configurations with heavy statistical weights confined within the corresponding

manifold. Complex neural networks in RPDD based methods essentially realize a fitting from in-

put information (protein sequence and multiple sequence alignment) to these marginal distributions

without explicit construction of the GJD, approximation of which is the very goal of LDT based

methods/models. As shown in Fig. 4, mapping from GJD to RPDD is readily achievable through

marginalization. It is important to note that it takes some number of propagation steps (depending

upon ruggedness of the underlying FEL) to obtain approximate GJD of sufficient accuracy assum-

ing the underlying local distributions are sufficiently accurate. Marginalization is a deterministic

procedure with significant loss of information, specifically correlations among different RPDD.

Conversely, with RPDD, one may in principle construct GJD with sufficient sampling and opti-

mization with necessary restraints. However, since correlations among different RPDD are absent,

resulting GJD is highly dependent upon parameters and algorithms utilized in the corresponding

reconstruction process. Present mainstream AI-based protein structural prediction/refinement neu-

ral networks implicitly cache some projections of local distributions and rules for assembling them

into RPDD, each comes with its own loss of information that is hard to retrieve. LDT theory aims

to first directly and explicitly learn local distributions, which are subsequently dynamically assem-

bled to construct the most comprehensive GJD. LDT thus has the full potential to perform dynamic
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modeling of relevant molecular processes as long as local distributions were fit for corresponding

conditions. However, extending GSFE-refinement for accurately modeling dynamic protein fold-

ing is certainly not trivial as data on intermediate states are scarce presently. Nevertheless, LDT

is a general theory applicable to any soft condense matter as long as fitting of corresponding local

distributions is accomplished.

Potential extension to near equilibrium scenarios

At molecular scale, temperature, pressure and concentration of comprising molecules have signifi-

cant fluctuations. In conventional MD simulations, temperature and pressure are usually controlled

by various thermostats and barostats61 with equilibrium assumption. If we have a heterogeneous

cell being heated at one side, specifying temperature and pressure at different locations within it is

a challenge. It might well be that both temperature and pressure are heterogeneous in a live cell

(sometimes or always) and we just have no proper way of measuring. To specify temperature and

pressure with thermostats and barostats is difficult in such scenarios since we have no information

on heterogeneous temperature in the first place. The probabilistic description of both molecular

coordinates and thermodynamic/environmental variables can be of great utility. To apply LDT

for these problems, we need to assume that target molecular systems are near-equilibrium. More

specifically, all local distributions in a target molecular system are well approximated by local

distributions trained from equilibrium data despite the global molecular system is off equilibrium

(e.g. having temperature/pressure gradient). In such scenarios, we need thermodynamic variables

to be associated with each local distribution. If the number of local regions was defined as the same

as number of molecules/particles, we would have a set of relevant variables associated with each

particle Φi = (φi1, φi2, · · · , φik) and denote the environmental conditions as Φ = (Φ1,Φ2, · · · ,Φn)

The equation 1 may be expanded as shown below:

Q(Φ,R) =
Q(Φ,R)∏m
i=1 q(Φi, ri)

m∏
i=1

q(Φi, ri) (8)
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With near-equilibrium assumption, we may safely learn local distributions from data collected in

equilibrium states and relevant environmental conditions. However, propagation of global molec-

ular systems by dynamic assembly of such local distributions is significantly more challenging.

Continuity restraints of relevant Φ variables is probably necessary, this may be realized through

smoothing within certain spatial range. For equilibrium system, propagation of a molecular sys-

tem under thermal fluctuation may be carried out with Langevin equation (equation 6) with a

white noise term associated with a given temperature. However, in near equilibrium scenario, two

choices need to be made for propagating the molecular system. The first is utilize either a max-

imum likelihood or bayesian approach to determine control variable at each molecule, with later

being significantly more expensive. The second choice is to select a proper smoothing procedure

to prevent large variance in control variables during the inference process. With these issues taken

care of, assuming that local distributions q(Φi, ri) have been learned with high accuracy, similar

assembly and propagation procedures may be utilized as in the equilibrium case except with Φ

included and stochastic forces added according to corresponding temperature at each molecule.

Large variance of parameters such as temperature and pressure may derail such simple treatment.

Significant exploration and development is necessary in these regards. Nonetheless, this opens

a potential highly efficient and probabilistic pathway for treatment of near equilibrium massive

complex molecular systems (e.g. a cell).

Rapid automatic search for implicit manifold

Due to both local and long range interactions/correlations in condensed molecular systems, the real

dimensionality of which is significantly smaller than the number of degrees of freedom (DOF).

Correlations inevitably reduce dimensionality. For example, a two dimensional system with vari-

ables (x, y) satisfying x2 + y2 = 1 is fundamentally a one dimensional manifold on a circle with

a radius of 1. Similarly, considering 1000 rigid water model molecules (each with 6 DOFs) in a

fixed rigid box. The number of DOF for the molecular system is 5997 (three DOFs are removed by
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fixed center of mass), but its real dimensionality is reduced to a unknown but significantly smaller

number due to complex correlations that are dependent upon environmental variables (e.g. temper-

ature, pressure, container material). Van der Waals interactions, hydrogen bonding networks, dipo-

lar and multipolar interactions all contribute to correlations and dimensionality reduction in water.

Conventional way of understanding underlying manifolds for molecular systems is to perform di-

mensionality reduction analysis on sufficiently sampled trajectories. However, popular principal

component analysis does not treat nonlinear correlations properly, and many nonlinear algorithms

have their own limitations.44 More importantly, these dimensionality reduction methodologies are

usually utilized as a post processing step for understanding molecular systems after expensive

sampling dominated by RLS has been performed. So the goal is to understand manifolds as one of

terminal goals, rather than utilizing manifolds to reduce computational cost. Learned local distribu-

tions fundamentally maps to local manifolds with significant statistical weights and the remaining

configurational space with negligible weights. Dynamic assembly of local distributions is, there-

fore, an implicit manifold assembly and search process on the one hand, and utilizes manifolds to

reduce consumption of computational resources on the other hand. This is because negative gra-

dients of local distributions always point to configurational regions of heavier statistical weights.

Upon assembly of local distributions in propagation driven by derivatives of approximate instan-

taneous GJD density with respect to coordinates, a molecular system either stay on its manifold

(free energy valleys) with fluctuations dependent upon temperature or rapidly return to the man-

ifold when being away from it. To state alternatively, construction of GJD by assembly of local

distributions according to equation 1 is equivalent to construction of global manifold by stitching

together local manifolds embedded in local distributions without any manual intervention.

It is interesting to note that when viewed from the manifold perspective, LDT is effectively

a completely automatic, significantly more accurate and efficient implicit counterpart of Metady-

namics when local distributions were fit accurately and assembled properly. In Metadynamics,

one first guess or compute for guiding collective variables (CVs), which is essentially an explicit

and significantly simplified representation of the manifold for a target molecular system in a given
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coordinate system. This is a highly challenging task, usually some iterative process is necessary

but accuracy of resulting CVs has no guarantee, and no systematic theory is available for explicit

searching of CVs. Subsequently explicit biases are accumulated to compute probability density of

visited segments along CVs. In a properly implemented LDT, a target molecular system in propa-

gation is automatically and implicitly maintained on its manifold, so the challenge of searching for

CVs is met implicitly. Additionally, no bias is necessary and an unnormalized probability density

is directly computed for each visited configuration.

Toward computation driven molecular sciences

Recent neural network force fields has demonstrated significant improvement in accuracy,44,62–64

albeit with accompanying reduction of efficiency when compared with conventional atomistic MD

simulations. With further development of density estimation/fitting, local distributions may be

built from all atom simulations based on neural network force fields of near quantum accuracy,

or directly from highly accurate density functional theory ab intio simulations, and subsequently

utilized to compose global distributions via dynamic assembly of local distributions as described

by the LDT. Such combination may realize long-desired near-quantum accuracy and superior ef-

ficiency beyond conventional coarse grained models. With corresponding dramatic and simulta-

neous improvement of both accuracy and efficiency brought by LDT, molecular biology and nan-

otechnology research may experience a transition from experiment driven to computation driven

as spatial and time scales will be accessible by present and computational facility expected in a

few years.

Most proteins are dynamic molecules with their function supported by rich conformational

transformations in response to environmental stimuli. However, if different solvent and thermo-

dynamic conditions and corresponding conformational distributions for proteins are considered,

available experimental data for any specific condition are certainly not sufficient for learning. De-

ficiency of structural data is even more severe for denatured states of proteins, nucleic acids and
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other biomolecular systems (e.g. membranes). Presently, modeling of diverse thermodynamic

and solvent conditions and denatured states relies heavily on all atom conventional MD simula-

tions, which on the one hand is not sufficiently accurate, and on the other hand are limited to

micro-second time scales in routine investigations of typical proteins for small research groups,

and simulation of large complexes and more extensive biomolecular systems is much more chal-

lenging. Development of LDT for efficient and accurate construction of local distributions, when

combined with one-time near quantum level MD simulations for general biomolecular systems has

the potential of bridging this gap, and realize routine simulations of large molecular complexes on

realistic time scales (milli-seconds and longer). Many present experiment dominated molecular

biology research (e.g. protein-protein interactions and protein-drug interactions) may experience

transition to computation driven with dramatically improved efficiency. This is especially true for

proteins and other biomolecules that are marginally stable and hard to express and store under

regular experimental conditions.

Establishment of a chain of tools from high level first principle calculations to simulation of

large complex molecular systems has been long standing wish for molecular simulation commu-

nity. Conventionally, coarse-graining has been the only available option and has made great contri-

butions. Development and implementation of LDT in various general molecular systems provides

a potential alternative pathway in this regard. However, to realize this goal, significant effort is

necessary for development of algorithms in fitting local distributions for a wide variety of molec-

ular systems. Condensed matter in general, and biological systems in particular, are organized in

hierarchical structures with distinct correlation patterns over different length and time scales. Such

characteristics were well summarized by Anderson65 decades ago and significant efforts have been

invested in multi-scale algorithm development in many subjects.66–69 As discussed above, local

distributions are essentially manifolds of local regions under various composition and environ-

mental conditions. The specific meaning of “local” is dependent upon definition of comprising

unit on the one hand , and upon length scales on the other hand. Implementation of LDT on multi-

ple scales, and how should it interact with coarse-graining or evolve independently, is a fully open
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field awaiting intensive exploration.

Two distinct ways of averaging

Conventional FF parameterization is fundamentally a construction of potential of mean force

(PMF)70,71 by integration/averaging as shown below:

U(x) =

∫
U(x, y)dy (9)

For fitting of atomistic FF from ab initio calculations, y correspond to electronic DOFs, for fit-

ting of coarse-grained FF from atomistic simulations, y correspond to all atomic DOFs other than

coarse-grained sites. PMF accurately reproduce behavior of variable x when a time scale separa-

tion exists between x and y. Therefore, conventional molecular simulation framework is based on

the idea of PMF.

Local distributions are clearly results of statistical averaging based on data obtained from ex-

pensive local sampling, either through experimental or computational approaches. Essentially,

relative frequency of visiting many different configurations are recorded. However, there is no

explicit reduction of variables in this process as in the case of PMF integration in FF parameter-

ization (i.e. resolution is maintained). These statements seem to be contradictory as the process

of averaging inevitably results in annihilation of some details. One would certainly like to know

what is annihilated during the averaging process of fitting local distributions. In the mapping from

complete molecular DOFs in local regions of a molecular configuration to local probability, based

on correlations among different DOFs, some of which are implicitly and adaptively eliminated by

neural networks. Such implicit process may be alternatively explained in terms of configurational

space discretization (CSD). In computers there is no strictly “continuous” variables anymore as

everything is stored by discrete “boxes” in CPU registers, memory chips and hard drives. So all

modeling in computer is performed on lattices defined by float point number discretization! In fit-

ting of local distributions via neural networks, while input of molecular configurations has the res-
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olution of lattices defined by selected float point digits, there is probably further implicit merging

(coarse graining) of different lattice boxes not necessarily uniformly both on different dimensions

and on different positions of the same dimension. Such implicit and adaptive annihilation of reso-

lution on various places of the configurational space by the fitting machinery (neural networks) is

schematically illustrated in Fig. 5. More specifically, for the given data set D = {X1, X2, · · · , Xd},

Xi may be partitioned into ni local regions, denote the transformed coordinate vector for the jth

local region from the ith record as r′i j. Local distribution is effectively obtained by an summation

established by the trained neural network:

q(Φ, r) ∝
d∑

i=1

ni∑
j=1

fΦ,W(r′i j − r)1(r′i j − r) (10)

1(r′i j − r) =


1, if(r′i j − r) ≤ gcut(r)

0, otherwise
(11)

with W being neural network parameters. fΦ,W(r′i j − r)) is an implicit weight function for eval-

uating contribution of each data point occurring represented by the indicator function 1(r′i j − r).

fΦ,W(r′i j − r) decays with |r′i j − r| but not necessarily isotropically, with specifics determined by W

and the neural network architecture. The qualitative trend is that fΦ,W(r′i j − r) approaches a delta

function for configurational space region with sufficiently high data density, and becomes flatter for

configurational space region with lower data density. gcut(r) is a r dependent cutoff determined by

the trained neural network. The indicator function maybe assimilated into a new weight function

f ′:

q(Φ, r) ∝
d∑

i=1

ni∑
j=1

f ′Φ,W(r′i j − r) (12)

Therefore, LDT adopts a distinctive path of averaging based on implicit adaptive configurational

space discretization (CSD) instead of explicit integrating out selected DOFs adopted by PMF.

Ultimately specifics of such heterogeneous CSD are likely to be determined by details of loss

function, network architecture, optimization process and their interactions. However, presently,
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how such implicit process relates to corresponding neural networks is not transparent. There is

no published research on neural networks regarding this topic to the best of my knowledge. Un-

derstanding such implicit CSD is likely an essential step to be accomplished in constructing trans-

parent white box neural networks. Manual configuration space discretization has been performed

to facilitate free energy analysis.72 However, proper CSD strategy is usually different for distinct

molecular systems and is not necessarily achievable even after significant human efforts. There-

fore, to develop transparent, easy-to-manipulate and automatically adaptive schemes for CSD in

fitting behavior of neural networks is an important open field to explore.

LDT and neural network force fields

Neural networks, with their strong fitting capability, are at the core of representing both local

distributions in LDT and neural network force fields. In these two methodologies, many body

correlations are accounted for naturally and the accuracy ceiling due to fixed functional forms (

describing molecular interactions ) is lifted. However, local distributions are fundamentally differ-

ent from neural network force fields. The former is trained to reproduce local probability distri-

butions while the latter is trained to reproduce exact energy for each given atomic configuration.

By incorporating both energetic and entropic contributions within local regions, local distribu-

tions when assembled according to LDT essentially eliminates RLS and significantly increases

efficiency. Neural network force fields replace conventional molecular fields in established frame-

work of “force fields + sampling” without considering RLS, and improve accuracy at the cost of

decreased efficiency. However, as discussed above, fitting local distributions is essentially a density

estimation problem, which is in general significantly more difficult than supervised training of neu-

ral network force fields. Presently, development of neural network force fields is the mainstream

of research bridging artificial intelligence and molecular simulations.
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Conclusions and prospects

RLS in molecular simulations consumes large amount of computational resources on the one hand

and slows down exploration of relevant research fields dramatically on the other hand. The LFEL

approach was developed to address RLS previously. However, the formulation and its exemplary

implementation in protein structural refinement, while demonstrated tremendous potentials, is lim-

ited to a single implicit set of given environmental conditions. Here I propose the local distribution

theory to generalize LFEL for addressing variable environmental conditions and near-equilibrium

application scenarios. As a matter of fact, essentially all biological systems are off equilibrium

to various extent. Despite the simple theoretical proposal presented here, extending implemen-

tation of LDT to near-equilibrium poses great challenges and significant exploratory efforts are

necessary. Theoretical connection and fundamental differences of LDT with metadynamics, with

neural network force fields, with RPDD based AI-driven protein structural research, and with PMF

based framework of conventional molecular simulation in general are discussed. It is hoped that

discussions and speculations herein stimulate more interest and attract more scientists in further

development and application of the local distribution theory.

Abbreviations

CSD: Configurational Space Discretization. CV: Collective Variable. DOF: Degree of Freedom.

FF: Force Fields. GJD: Global Joint Distribution. GSFE: Generalized Solvation Free Energy.

MD: Molecular Dynamics. MC: Monte Carlo. LDT: Local Distribution Theory. LFEL: Local

Free Energy Landscape. PMF: Potential of Mean Force. RLS: Repetitive Local Sampling. RPDD:

Residue Pair Distance Distribution.
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Figure 1: The number of publications retrieved from web of science on Jun. 1st 2021 with subject
word "molecul* simulation" and "molecul* simulation & bio" respectively. The corresponding
time frame is every two years starting from 1999. The first data point is the number of papers
published in year 1999 and 2000.
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Figure 2: Schematic illustration of RLS. Left: the spatial perspective. A) and B) are two different
spherical bulk spaces. We expect the same local distributions after sufficiently long simulations
of the whole molecular system. In such cases, spherical and partial spherical spaces near or on
interfaces have different local distributions from that of the bulk, special treatment of such spherical
spaces engenders significant difficulty. Right: indistinguishable particle and GSFE perspective.
All particles of the same species are indistinguishable, so should be local distributions of local
regions defined by spherical spaces with such a particle as the origin. This removes the need for
special treatment of all interfacial issues as different interfaces may be simply defined as more cases
of particle packing surrounding a given particle with well defined statistical weight under given
thermodynamic and environmental conditions. A), B), C) and D) are examples of surrounding
local regions of different particle species.
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Figure 3: Schematic representation of the short range, mediated and long range interactions as
implemented in ref. Left: particles (1,2,3), (2,3,4) and (6,7,9) are directly interacting with short
range interactions. (1,4) are interacting through mediation by (2,3), (2,7) and (3,9) have direct
long range interactions. Right: here the focus is the central red particle, which define a region with
boundary being shown as a dotted partially transparent blue line. Each of all other particles within
this region defines a local distribution, six of the most further of such regions are represented as
purple circles. The central red particle experience forces from all of local distributions surrounding
each of its neighbors. In this way, short range and mediated interactions are effectively accounted
for simultaneously. In summary, for the central red particle, it experiences short range interactions
from particles within the dotted partial transparent blue circle, mediated interactions from particles
between the dotted blue circle and large solid blue circle, and long range interactions from the
region outside the large blue circle.
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Figure 4: Schematic comparison between LDT based end-to-end protein structure modeling (top
orange boxes) and mainstream RPDD based protein structure prediction and refinement schemes
(bottom blue boxes). It is important to note that LDT based modeling aims to generate the GJD,
which is the most comprehensive information for any complex molecular systems and is generally
applicable. The marginalization from the GJD to pairwise residue distance distributions is an irre-
versible process with deterministic results and significant information loss on correlations among
different pairwise distances. The converse process is a highly expensive process with sampling
and optimization involved, due to complexity of correlations among different distances, resulting
global distribution is highly dependent both on initialization and the optimization procedures.
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Figure 5: Schematic illustration of CSD. Left: natural discretization of two dimensional config-
urational space by float point digits. Right: a imagined heterogeneous CSD resulted from fitting
of neural network on local distributions, and the highest density is supposedly in the white region
where CSD is as fine as lattices determined by float point digits. Qualitatively, finer discretization
corresponds to region with high data density and coarser discretization corresponds to region with
lower data density.
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