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Abstract: Yersinia pestis is an infamous gram-negative, coccobacillus enterobacterium responsible for 

three devastating plague pandemics worldwide. The recent outbreak of this zoonotic disease demands in 

silico study of the hypothetical proteins for efficient drug and vaccine discovery. As hypothetical 

proteins constitute a substantial portion of the proteome, it’s essential to annotate them structurally and 

functionally. The current study characterized physicochemical properties, predicted homology-based 

3D structure and annotated functions of the hypothetical protein AVO28_00330 of Y. pestis using a 

range of bioinformatic tools and softwares. Swiss Model and Phyre2 server were utilized to predict the 

tertiary model which was minimized energetically using YASARA server. The quality assessment 

servers found the model as a good one. For future molecular docking analysis, active binding sites were 

predicted using CASTp. Protein-protein interaction analysis was performed in STRING server. For 

functional prediction InterPro, Pfam, Motif and other tools were used. The hypothetical protein revealed 

tricopeptide repeat domain and rubredoxin metal-binding domain which regulates lipopolysaccharide 

metabolic process in the outer cell membrane which contributes to virulence property of the protein. 

Therefore, this in silico analysis will improve the current understanding of the protein and aid in the 

future analysis regarding therapeutic drug and vaccine investigation. 
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Introduction 

Yersinia pestis, the etiologic agent of plague and a member of the family Enterobacteriaceae, is a gram-

negative, non-spore forming, non-motile coccobacillus that grows within a temperature range of 4 to 

400C and optimum pH range of 7.2 to 7.6 [1]. This beyond infamous bacterium is responsible for three 

devastating pandemics throughout history namely the Justinian’s plague, the Black Death and the 

Modern plague [2]. The plague is zoonotic as it spreads from rodents as a natural reservoir to humans 

using fleas as the vector [3]. Bites of fleas during blood-meal to humans, direct contact with a mucous 

membrane or damaged skin, inhalation of aerosolized air droplets cause transmission of the pathogenic 

bacterium to human [4]. It causes the death of the individual within a week if left untreated for bubonic 

form and even less than a week for septicemic form and pneumonic form. The rapid development of 

bacterial biofilm inside the digestive tract of flea helps Y. pestis to adapt to a unique life stage for 

effective transmission [5]. For its high similarity in the genomic level with Y. pseudotuberculosis, Y. 

pestis is thought to be a recently emerged clone of it [6], [7]. The USA, the former Soviet Union and 

Japan developed Y. pestis as a biological weapon during the 20th century [2].  

In the 21st century, the plague has been reported from Asia, Africa and America as the pathogenic strain 

is endemic to animal populations and the recent outbreak in Uganda, the Democratic Republic of Congo, 

China and Madagascar indicates the major health concern [6]. Though plague has a significant disease 

history, no highly efficient vaccine with long-lasting support has still been developed. Moreover, the 

recent emergence of antibiotic-resistant strains poses a serious threat to global public health and 

biodefense [6], [8], [9]. All these aspects trigger biotechnological interest among the scientists with an 

integrated in silico approach to study Y. pestis for new drug synthesis and vaccine development. 



Hypothetical proteins are predicted or experimentally uncharacterized proteins and they constitute a 

substantial portion of the proteome of both eukaryotes and prokaryotes [10]. With the remarkable 

advancement in the field of Next Generation Sequencing (NGS), the number of hypothetical proteins is 

increasing rapidly and comparing to that experimental validation rate is not so high. This gap of 

structural and functional annotation can be reduced through in silico approach using modern 

bioinformatic tools which might pave the way for new drug synthesis and vaccine development. Thus, 

the current study focuses on annotating AVO28_00330 hypothetical protein of Y. pestis, both 

structurally and functionally for an improved understanding, which might help later at drug and vaccine 

development.  

2. Materials and Methods 

2.1 Sequence retrieval and similarity identification 

 The amino acid sequence of AVO28_00330 was retrieved in FASTA format from the National 

Center for Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov) with the GenBank 

accession ID of KZC74892.1. A similarity search using the NCBI Blastp program [11] was performed 

initially against the non-redundant and UniProtKB/SwissProt [12] database to predict the function of 

the hypothetical protein.  

2.2 Multiple sequence alignment and phylogeny analysis 

 Multiple sequence alignment (MSA) was performed using MUSCLE algorithm in MEGA 10 

[13], [14] between the hypothetical protein and other similar proteins obtained from Blastp. MSA was 

crosschecked by Clustal Omega program of EMBL-EBI [15]. Then phylogeny analysis was done using 

NEXUS file generated by MEGA into Phylogeny.fr [16]. 

2.3 Physicochemical characterization 

 Different physical and chemical properties including molecular weight, amino acid 

composition, atomic position, extinction coefficient, estimated half-life, instability index, aliphatic 

index, grand average of hydropathicity (GRAVY), isoelectric point, total number of negatively charged 

residues (Asp + Glu), total number of positively charged residues (Arg + Lys) were predicted using 

ProtParum tool (http://web.expasy.org/protparam/) of ExPASy [17].  

2.4 Subcellular localization 

 Subcellular localization was predicted using CELLO 2.5 [18]. Results were cross-checked with 

PSORTb [19], PSLpred [20], SOSUIGramN [21]. HMMTOP [22], TMHMM [23], SABLE [24] were 

utilized to predict the presence of transmembrane helices in the hypothetical protein. Protein solubility 

was predicted using Protein-Sol [25]. Signal peptide prediction was performed using PrediSi [26] and 

SignalP-5.0 server [27]. 

2.5 Secondary structure prediction 

 Self-optimized prediction method with alignment (SOPMA) [28] and PSI-blast based 

secondary structure prediction (PSIPRED 4.0) [29] servers were utilized for secondary structure 

prediction. 

2.6 Tertiary structure modeling, visualization and quality assessment 

 Tertiary structure was modeled using Swiss Model [17] and Phyre2 server [30]. For higher 

accuracy, the best scoring template was selected for homology modeling. 3D model was visualized 

using UCSF Chimera [31]. For quality assessment of the obtained models, PROCHECK [32], Verify3D 

[33] and ERRAT [34] server were utilized. Finally, energy minimization was performed for the best 

predicted model using YASARA energy minimization server [35]. 



2.7 Active site detection 

 The active sites were determined using Computed Atlas of Surface Topography of Protein 

(CASTp) server which provides an online resource for locating, delineating, and measuring concave 

surface regions on three-dimensional structures of proteins [36]. 

2.8 Functional annotation 

 Conserved domain database (CDD, available at NCBI) [37] was searched for conserved 

domain. For protein motif and domain searching, Motif [38], Pfam [39], InterPro [40], ScanProsite [41], 

SMART [42], were utilized. Protein folding pattern was recognized using PFP-FunD SeqE server [43]. 

For virulence property analysis, VirulentPred [44] was utilized. 

2.9 Protein-protein interaction analysis 

 STRING 11.5 [45] server was utilized to predict the possible protein-protein functional 

interaction network. 

2.10 Submission of the model to protein model database 

 The suitable model generated for hypothetical protein AVO28_00330 of Y. pestis was 

successfully submitted to Protein Model Database (PMDB) [46]. 

3. Results and Discussion 

3.1 Sequence similarity and phylogeny analysis 

 Blastp result against non-redundant and SwissProt database showed homology with 

lipopolysaccharide assembly proteins (Table 1). Multiple sequence alignment between the hypothetical 

protein and other homologous proteins generated NEXUS file in MEGA. To strengthen homology 

assessment between proteins, down to complex and subunit level, phylogenetic analysis was performed. 

The phylogenetic tree showed distances between branches and reveals close similarity of the 

hypothetical protein with WP_046596310.1 Y. pestis homolog while distantly related with NLU15143.1 

Serratia liquefaciens (Fig. 1). 

Table 1: Similar proteins obtained from non-redundant and SwissProt database 

Non 

redundant 

database 

Protein ID/Entry 

Name 

Organism Protein Name Identit

y (%) 

Scor

e 

Query 

Covera

ge (%) 

e-

value 

WP_011192449.1 Yersinia 

pseudotuberculosis 

complex 

MULTISPECIES: 

Lipopolysaccharide 

assembly protein LapB 

99.74 800 100 0.0 

WP_025383887.1 Yersinia similis Lipopolysaccharide 

assembly protein LapB 

98.71 796 100 0.0 

WP_174849589.1 Yersinia 

enterocolitica 

Lipopolysaccharide 

assembly protein LapB 

96.66 780 100 0.0 

WP_145537544.1 Yersinia 

kristensenii 

Lipopolysaccharide 

assembly protein LapB 

96.66 779 100 0.0 

WP_050125144.1 Yersinia aleksiciae Lipopolysaccharide 

assembly protein LapB 

95.63 775 100 0.0 

WP_038242561.1 Yersinia ruckeri Lipopolysaccharide 

assembly protein LapB 

90.26 720 97 0.0 

WP_037415793.1 Serratia grimesii Lipopolysaccharide 

assembly protein LapB 

87.89 706 97 0.0 

WP_115158869.1 Serratia fonticola Lipopolysaccharide 

assembly protein LapB 

87.66 701 97 0.0 

WP_126483050.1 Serratia 

plymuthica 

Lipopolysaccharide 

assembly protein LapB 

87.37 701 97 0.0 

NLU15143.1 Serratia 

liquefaciens 

Lipopolysaccharide 

assembly protein LapB 

87.37 698 97 0.0 



UniProtK

B/ 

SwissProt 

P0AB58.1 Escherichia coli 

K-12 

Lipopolysaccharide 

assembly protein B 

77.57 631 97 0.0 

 P44130.1 Haemophilus 

influenzae Rd 

KW20 

Lipopolysaccharide 

assembly protein B 

48.35 386 98 8e-

132 

 

 

Fig. 1. Phylogenetic tree showing relationship of AVO28_00330 hypothetical protein with other similar 

proteins with true genetic distance. 

3.2 Physicochemical characterization 

 The protein AVO28_00330 was predicted to contain 389 amino acids where Leu (51) and Trp 

(5) are most abundant and least abundant, respectively (Table 2). The molecular weight was calculated 

as 44336.69 Da and theoretical pI was 5.94, indicating the protein to be acidic and negatively charged. 

Total number of positively charged residues (Arg + Lys) and total number of negatively charged 

residues (Asp + Glu) were found 46 and 54, respectively. The instability index was 41.32, indicating 

the unstable nature of the protein [47]. Aliphatic index was 88.12 which gives an indication of proteins 

stability over a wide temperature range. The GRAVY was -0.366, which indicates the protein is non-

polar and hydrophilic. This also indicates better interaction possibility with water [48]. High extinction 

coefficient value (47370) indicates the presence of Cys, Trp and Tyr residues [49]. The N-terminal of 

the sequence was considered M (Met). Protein half-life is an estimation of the period of time which is 

required for the radiolabeled focus protein density to be decreased by 50 percent compared to the 

amount at the onset of the chase [50]. Estimated half-life was found to be 30 h in mammalian 

reticulocytes (in vitro), >20 h in yeast (in vivo), >10 h in Escherichia coli (in vivo). Total number of 

atoms and molecular formula were 6189 and C1942H3082N562O579S24 , respectively. 

Table 2: Amino acid composition 

Sl. No. Amino Acids Number of Residues Percentage (%) 

1 Ala (A) 44 11.3 

2 Arg (R) 28 7.2 

3 Asn (N) 10 2.6 

4 Asp (D) 23 5.9 

5 Cys (C) 8 2.1 

6 Gln (Q) 30 7.7 

7 Glu (E) 31 8.0 

8 Gly (G) 22 5.7 

9 His (H) 13 3.3 

10 Ile (I) 10 2.6 

11 Leu (L) 51 13.1 

12 Lys (K) 18 4.6 

13 Met (M) 16 4.1 

14 Phe (F) 11 2.8 

15 Pro (P) 7 1.8 



16 Ser (S) 18 4.6 

17 Thr (T) 10 2.6 

18 Trp (W) 5 1.3 

19 Tyr (Y) 13 3.3 

20 Val (V) 21 5.4 

 

3.3 Subcellular localization 

 Subcellular localization prediction helps to characterize a protein as a potential drug or vaccine 

candidate. Cytoplasmic matrix proteins are capable to be selected as potential drug targets and both 

inner and outer membrane proteins can act as potential vaccine targets [51]. CELLO 2.5 predicted the 

protein to be localized into the cytoplasm and the result was validated by PSORTb, PSLpred and 

SOSUIGramN (Table 3). The protein was predicted as soluble protein by Protein-Sol. Prediction of 

signal peptide is important to understand the transport system and cleavage sites of the hypothetical 

protein. Signal peptide was detected by both PrediSi and SignalP-5.0. However, no transmembrane 

helices were detected using HMMTOP, TMHMM and SABLE which further emphasizes the protein to 

be cytoplasmic. 

Table 3: Assessment of subcellular localization 

Predictions Servers Results 

Prediction of subcellular 

localization 

CELLO 2.5 Cytoplasmic 

PSORTb Cytoplasmic 

PSLpred Cytoplasmic 

SOSUIGramN Cytoplasmic 

Prediction of protein solubility Protein-Sol Soluble protein 

Signal peptide prediction PrediSi Present (predicted for 

secretion) 

SignalP-5.0 Present 

Prediction of transmembrane 

helices 

HMMTOP Absent 

TMHMM Absent 

SABLE Absent 

 

3.4 Secondary structure prediction 

 Considering default parameters SOPMA server was utilized first. SOPMA predicted 25.71% 

residues as random coils in comparison to alpha-helix (68.12%), extended strand (2.31%) and beta turn 

(3.86%) (Table 4). PSIPRED also predicted similar result showing higher confidence (Fig. 2-3). 

Secondary structure helps to understand function of the protein better as strong correlation exists 

between protein structure and function. 

Table 4: Secondary structure elements 

Secondary Structure Elements Values (%) 

Alpha helix (Hh) 68.12 

310 helix (Gg) 0.00 

Pi helix (Ii) 0.00 

Beta bridge (Bb) 0.00 

Extended strand (Ee) 2.31 

Beta turn (Tt) 3.86 

Bend region (Ss) 0.00 

Random coil (Cc) 25.71 

Ambiguous states 0.00 

Other states 0.00 



 

Fig. 2. Secondary structure compostion in annotation grid predicted by PSIPRED. 

 

Fig. 3. Predicted secondary structure in PSIPRED chart showing level of confidence. 

3.5 Tertiary structure modeling, visualization and quality assessment 

 Homology modeling approach was taken for determining the tertiary structure of the 

hypothetical protein. Swiss Model server predicted the 3D structure (Fig. 4) based on the most favored 

template 4zlh.1.B (PDB ID: 4ZLH_B). 4ZLH is the crystal structure of Escherichia coli protein with 

lipopolysaccharide assembly protein B (LapB) cytoplasmic domain. This template protein is a homo-

dimer which has two chains (Chain A and Chain B) and chain B was used to build the model by Swiss 



Model server. For this template, values of Global Model Quality Estimation (GMQE), Quaternary 

Structure Quality Estimation (QSQE) and identity score were 0.83, 0.51 and 76.04, respectively. The 

quality of the model was assessed by PROCHECK through Ramachandran plot analysis, where the 

distribution of ψ angle and the φ angle in the model within the limits are shown (Fig. 5, Table 5). 

Residues in the most favored regions covered 93.1% which indicated good quality and validity of the 

model. Verify3D showed 94.69% of the residues have averaged 3D-1D score ≥ 0.2 (Fig. 6), which 

indicates good quality of the environmental profile for the predicted model. The overall quality factor 

predicted by ERRAT server was 98.752, which validates the model as a good one. 

 

Fig. 4. Energy minimized 3D model of the hypothetical protein predicted by Swiss Model. 

Similarly, Phyre2 server predicted the 3D model with 100% confidence and 87% coverage. 337 residues 

out of 389 were modeled with 100% confidence by the single highest scoring template which was 

c4zlhB (PDB ID: 4ZLH_B). PROCHECK predicted 91.0% residues in the most favored regions, which 

indicates good confidence for the predicted model (Table 5). 87.33% of the residues had averaged 3D-

1D score ≥ 0.2, according to Verify3D which validates the predicted model. ERRAT server quality 

factor score was 89.6024, which is suggestive of a good valid model. 

Table 5: Ramachandran Plot Statistics 

Ramachandran Plot Statistics Swiss Model Phyre2 

Number Values (%) Number Values (%) 

Residues in most favored regions 

[A,B,L] 

565 93.1 283 91.0 

Residues in additional allowed 

regions  [a,b,l,p] 

40 6.6 26 8.4 

Residues in generously allowed 

regions [a, b, l, p] 

1 0.2 1 0.3 

Residues in disallowed regions  1 0.2 1 0.3 

Number of non-glycine and non-

proline residues 

607 100 311 100 

Number of end-residues (excl. Gly 

and Pro) 

4 -- 1 -- 

Number of glycine residues (shown as 

triangles) 

38 -- 19 -- 

Number of proline residues 12 -- 6 -- 

Total number of residues 661 -- 337 -- 



The tertiary structure modeled by Swiss Model was more preferable than the model predicted by Phyre2 

server considering Ramachandran map analysis, Verify3D results and ERRAT server results. Therefore, 

energy minimization was performed using YASARA server for the Swiss Model 3D structure and scene 

file (.sce) was visualized in YASARA scene. The energy calculated before energy minimization was -

338180.6 kJ/mol and that was changed to a far less value of -431656.0 kJ/mol after energy minimization 

which makes the predicted model more stable. 

 

Fig. 5. Ramachandran plot for 3D model predicted by Swiss Model. 

 

Fig. 6. Verify3D score for Swiss Model predicted tertiary model.  

3.6 Active site determination 

 CASTp 3.0 predicted 52 amino acids to be involved in the potent active sites (Fig. 7). The best 

active site was found in areas with 968.799 and a volume of 3258.076 amino acids (Fig. 8). Chain A 



contains 32 active sites with 15 different amino acids (R, S, G, M, A, Y, Q, I, V, T, K, P, C, F, D) and 

chain B contains 20 active sites with 14 different amino acids (N, R, S, Q, I, K, P, C, G, F, T, L, D, M). 

Determined active sites would be helpful for further analysis during the study of pathogenesis, drug and 

vaccine development. 

 

Fig. 7. Sequential representation of active sites (blue block) in both chains of the hypothetical protein. 

 

Fig. 8. Active sites (red sphere) of the hypothetical protein in 3D model.  

3.7 Functional annotation 

 Conserved domain search tool predicted the presence of lipopolysaccharide biosynthesis 

regulator domain (Accession ID: COG2956). The result was cross-checked with other tools. Pfam 

server predicted significant matches for tricopeptide repeat domain with an e-value of 8.4e-06 and 

rubredoxin metal-binding domain with an e-value of 1.5e-11 at 190-255 amino acid residues and 355-

382 amino acid residues, respectively. InterPro server predicted tricopeptide repeat domain at 69-315 

amino acid residues and rubredoxin metal-binding domain at 355-382 amino acid residues. SMART 

predicted tricopeptide repeat domains at 69-102, 107-140, 180-213, 214-247, 282-315 positions. 



ScanProsite and Motif also showed the presence of tricopeptide repeat domain and rubredoxin metal-

binding domain. Rubredoxin helps to form small non-heme iron-binding sites that use four cysteine 

residues to coordinate a single metal ion in a tetrahedral environment. The main feature of this domain 

is the extended loop or knuckles. Rubredoxin domain binds intimately with tricopeptide motif and this 

association is essential for lipopolysaccharide regulation and growth into bacterial cells [52]. 

Lipopolysaccharide at the outer membrane of the cell wall contributes significantly to the pathogenicity 

of Y. pestis as it enables the bacterium with unique ability to overcome the defense mechanism of both 

mammalian and insect hosts as well as antibiotics by using lipid A as an anchor to keep the LPS bounded 

to the membrane whereas orienting its carbohydrate chain towards the environment [4]. After amino 

acid composition based analysis, VirulentPred suggested this protein as virulent. The globin-like folding 

pattern was predicted by PFP-FunDSeqE. InterPro server predicted TPR (tricopeptide repeat)-like 

superfamily for the hypothetical protein. All these results confirm the role of the protein in the metabolic 

process of lipopolysaccharides, a group of related, structurally complex components of the outer 

membrane of gram-negative bacteria. 

3.8 Protein-protein interaction analysis 

 Protein-protein interactions (PPI) play a crucial role in basic processing of living cells. PPI data 

can provide deep insights to reveal molecular machinery for our better understanding of the mechanism 

of diseases [53]. STRING 11.5 server was used to search for the possible functional fellows of the 

hypothetical protein in the PPI network. The identified functional partners with scores were- lapA 

(0.973), cutC (0.634), pgpB (0.616), asmB (0.573), rlpB (0.548), hemX (0.546), lpxH (0.536), ftsH 

(0.527), YPO3362 (0.520), yfiO (0.515). Of them, YPO3362 is essential cell division protein, yfiO is a 

part of the outer membrane protein assembly complex, ftsH is a processive protein in the quality control 

of integral membrane proteins, lpxH is lipid A biosynthesizer, hemX is a methyltransferase, rlpB is a 

lipopolysaccharide assembler, asmB is involved in lipid A biosynthesis, pgpB is 

phosphatidyglycerophosphatase B like protein, cutC is involved in the control of copper homeostasis 

and lapA is involved in the assembly of lipopolysaccharide (Fig. 9) 

 

Fig. 9. String network protein-protein interaction analysis showing the functional partners of lapB. 

3.9 Submission to Protein Model Database (PMDB) 

 The predicted 3D model of AVO28_00330 hypothetical protein of Yersinia pestis was 

successfully submitted to the PMDB database. The model can be found searching PMDB ID: 

PM0084191. 



4. Conclusion 

The current study was directed to create the first 3D structure and propose probable functions of 

the Yersinia pestis hypothetical protein AVO28_00330. It was submitted as the new record to the 

protein model database. The identified protein revealed its essential role in the regulation of the 

lipopolysaccharide metabolic process of the bacterium cell using globin-like folding pattern. Predicted 

active binding sites of the homology modeled protein would be helpful for further investigation of 

therapeutic drug designing against the protein using the molecular docking approach. The 

physicochemical, structural and functional annotation would provide a better understanding of the 

protein’s activity. This sort of methodology would be helpful in the structural and functional elucidation 

of other uncharacterized proteins. Finally, in vitro experimentation should be conducted to validate the 

predicted results that are shown here and to annotate the protein’s role in biotechnology. 
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