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Abstract

Scalable electronic predictions are critical for soft materials design. Recently, the

Electronic Coarse-Graining (ECG) method was introduced to renormalize all-atom

quantum chemical (QC) predictions to coarse-grained (CG) molecular representations

using deep neural networks (DNN). While DNN can learn complex representations that

prove challenging for traditional kernel-based methods, they are susceptible to overfit-

ting and the overconfidence of uncertainty estimations. Here, we develop ECG within

the GPU-accelerated Deep Kernel Learning (DKL) framework to enable CG QC predic-

tions of a conjugated oligomer using range-separated hybrid density functional theory.

DKL-ECG provides accurate reproduction of QC electronic properties in conjunction

with prediction uncertainties that facilitate efficient training over multiple temperature

data sets via active learning. We show that while active learning algorithms enable

efficient sampling of a more diverse configurational space relative to random sampling,

the predictive accuracy of DKL-ECG models is effectively identical across all active

learning methodologies employed. We attribute this result to the low conformational
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barriers of our test molecule and the redundant sampling of configurations induced by

Boltzmann sampling, even for distinct temperature ensembles.

Introduction

The accurate and scalable modeling of electronic structure in non-crystalline morphologies

underscores a broad array of critical soft materials applications.1–4 To perform scalable in sil-

ico characterizations of morphology-dependent electronic properties, one typically relies upon

the combination of all-atom molecular dynamics (MD) simulations and density functional

theory (DFT) electronic structure calculations. All-atom MD samples the configurational

distribution function at nanometer scales, with configurational snapshots being extracted

and used as input for DFT calculations of energies and couplings.4–7 These calculations pro-

vide a means of parameterizing model Hamiltonians, reaction rates, and transport models

useful for understanding electronic properties of heterogeneous soft materials. While this

computational paradigm has seen usage, its poor scaling and computational redundancy8

for systems beyond nanometer spatiotemporal scales strongly limits its usage for the in silico

design of electronic functionality in soft materials.

For molecular and polymeric systems exhibiting slow relaxation dynamics or mesoscopic

ordering, coarse-grained (CG) models supersede all-atom models for configurational sam-

pling.8–10 Provided the need for all-atom MD to keep track of atomic degrees of freedom, the

accessible spatiotemporal scales are intrinsically limited (∼10’s nm and ∼100’s ns). Con-

trastingly, CG simulations utilize pseudoatoms that are averages over collections of atomic

degrees of freedom, facilitating computational acceleration. Moreover, the renormalized in-

termolecular interactions between CG pseudoatoms are generally softer, accelerating system

dynamics and improving configurational sampling. These reduced models can also enhance

conceptual understanding when analyzing the results of large-scale simulations. To main-

tain rigorous connections to the statistical mechanics of underlying all-atom models, a variety
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of frameworks have emerged with important applications in both biological and materials

systems.11–14 Such CG approaches have also emerged in the context of machine learning

(ML) driven dimensionality reduction of configurational space,15–19 further emphasizing the

important nature of CG modeling across molecular domains.

Despite these benefits, CG modeling places obvious limitations on the ability to solve

the Schrodinger equation for the underlying atomic degrees of freedom. By virtue of CG

models averaging over atomic degrees of freedom, the ability to deduce electronic structure

directly from CG configurations is lost, as one cannot solve the Schrodinger equation for CG

pseudo atoms. This fundamental issue has led to a variety of ad hoc computational proto-

cols in which CG simulations are performed, all-atom representations are backmapped20–22

onto CG configurations, resampled, and subsequent quantum-chemical (QC) calculations are

performed.5,7 This approach exhibits high computational cost, is often defined in an ad hoc

manner, and is strongly limited by the poor scaling of QC calculations. Methods capable

of bypassing these complicated protocols and performing electronic structure calculations

directly at the CG model resolution exhibit potential for rapidly accelerating both materials

understanding and design efforts across disciplines.

Recently, we have introduced a systematic computational strategy for CG electronic pre-

dictions known as Electronic Coarse-Graining (ECG).23,24 Due to the theoretical intractabil-

ity of performing systematic renormalizations over both electronic and nuclear degrees of

freedom, machine learning (ML) approaches have been employed. Previous efforts have used

deep neural networks (DNN) with ECG to provide semi-empirical QC predictions of molec-

ular orbital energies, optical properties, and charge densities of conjugated oligomers.23,24

While existing ECG approaches exhibit considerable promise, within their current formula-

tion they (i) are unable to provide accurate predictions of model uncertainty and (ii) suffer

from the need to develop an extensive training set of atomic configurations and their asso-

ciated electronic properties. To improve ECG models, concerted efforts must be made to

both incorporate prediction uncertainties as well as reduce the required amounts of training
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data, especially when learning electronic properties associated with high computational cost

QC methods. For organic materials, range-separated hybrid DFT is a common and reliable

QC methodology,25 representing a desirable target for ECG predictions extending beyond

semi-empirical methodologies.

Gaussian process regression (GPR) represents a class of Bayesian supervised learning

models capable of providing prediction uncertainties using only learning a small number

of kernel parameters.26 GPR can also provide high predictive performance under low data

limits compared to DNN. An example can be drawn from two recent studies on learning

the potential energy surface of molten NaCl where the GPR-based Gaussian approximation

potential (GAP) was fitted with ∼ 1000 training samples computed with DFT whereas a

comparable DNN based approach required 100 times more samples to reproduce the correct

structural properties for molten NaCl.27,28 GPR has found applications such as fitting the

potential energy surface for atomistic simulations,29–31 transition state searches,32 CG simu-

lations,33,34 and materials design.16,35 Despite GPR’s utility, GPR kernels are often unable to

learn complex representations of high dimensional feature inputs such as images. DNN’s on

the other hand have shown considerable success in learning complex feature representations

resulting in impressive predictive performance,36 though can be susceptible to overconfidence

in the estimation of uncertainties.37 Here, we combine “the best of both worlds” by leverag-

ing the complex representation learning power of DNN with the Bayesian nature of GPR

through a Deep Kernel Learning (DKL)38 framework. In DKL, the DNN processes the high

dimensional input feature and generates an intermediate representation, which is then fed

into the GPR kernel. We have conceived such a hybrid strategy with two goals: (1) provide

ECG prediction uncertainties and (2) enable the use of data poor ECG models via AL query

strategies that decrease the amount of required training data and facilitate the use of high

computational cost QC methods.

Active learning (AL) has emerged as a powerful paradigm in which an algorithm judi-

ciously selects data points for labeling and inclusion in training data that optimally improve
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model performance. Here, labeling would mean an expensive evaluation involving QC calcu-

lations.39 AL has been employed to facilitate dramatically improved computational efficiency

in the DFT screening of oxidation potentials in redox active molecules,40 as well as improved

ML force-fields,41–45,45,46 including molten salts.47,48 Drug design has combined AL with ML

regression models to great effect in identifying new candidate compounds.49 Recent advances

in AL for regression show exceptional promise in bypassing the canonical AL query strate-

gies.50,51 For ECG, AL represents a potential means of extracting distinct conformations

from the training data sets for QC labeling at minimal computational cost.

In this work, we cast ECG in a format that combine DNN’s with GPR though a DKL

framework with the goal of arriving at a range-separated hybrid DFT accurate ECG param-

terization with associated prediction uncertainties. First, we describe the details of data set

generation via MD, DFT and CG mapping operators. Then we detail the DKL regression

framework utilized for predictions that facilitates the incorporation of uncertainties. This is

followed by the description and implementation of three sampling strategies: random query

(RQ), uncertainty query (UQ), and expected model output changes (EMOC). We then ap-

ply the AL DKL models to learn the electronic structure of a conjugated oligomer across

multiple simulation temperatures. We then conclude and summarize the takeaways of this

work.

Methods

Data Generation

We utilize a hexamer of poly(3-hexyl)thiophene with alkylic side chains cleaved to methyls,

denoted sexi(3-methyl)thiophene (S3MT), employed in previous work.23 S3MT is used as

a molecule representative of thiophene incorporating chemistries found in a broad array of

organic semiconductor applications.52 The soft bond, angle, and dihedral degrees of free-

dom of S3MT coupled with strong π-electron conjugation induce substantial configurational
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dependence of the electronic structure.

To generate representative training sets of atomic S3MT configurations, all-atom MD

simulations of a single S3MT molecule are performed using the optimized potentials for liquid

simulations (OPLS) force field53 with partial charges and intermonomer dihedral potentials

obtained via QC parameterization in previous works.23 MD simulations are performed under

two sets of constraints (rigid and flexible) and four temperatures (50K, 300K, 600K, 1000K).

“rigid” constraints treat each thiophene monomer along the backbone as a rigid monomer and

“flexible” corresponds to a standard MD simulation without constraints - further details may

be found in previous work.23 Rigid constraints applied to conjugated molecules is a standard

protocol for treating charge transport in disordered organic semiconductors,54 but naturally

will limit the configurational fluctuations to be only those between thiophene monomers. By

comparing “rigid” and “flexible” configurations, one can separate the role that temperature

plays in improving sampling of dihedral degrees of freedom from the full configurational

distribution function.

Temperature is controlled using a Langevin thermostat with a damping parameter of 100

fs−1. Lennard Jones and Coulomb interaction use short-range cutoffs of 25.0 Angstroms and

shrink-wrapped boundaries; these parameters ensure that the single molecule only interacts

with itself and no images. Flexible and rigid simulations use timesteps of 1 fs and 5 fs,

respectively. Flexible MD simulations consist of a 100 ps heating from 300K to 1000K, 100

ps sampling at 1000K, 1 ns annealing from 1000K to the target temperature T, and 40 ns

simulation at T from which configurations are drawn at 4 ps intervals. Rigid MD simulations

consist of 500 ps heating from 300K to 1000K, 500 ps sampling at 1000K, 5 ns annealing from

1000K to the target temperature T, and 200 ns simulation at T from which configurations

are drawn at 20 ps intervals. Finally, we generated held out test sets for model validation

by performing dihedral restrained all-atom molecular dynamics simulations of S3MT under

both rigid and flexible constraints. In these simulations, the minima of the harmonically

restrained dihedral potentials (k = 5kcal/mol) are selected via latin hypercube sampling

6



(LHS).55 100 distinct sets of dihedral restraints are applied. For each set of restraints,

S3MT is equilibrated for 50 ps and sampled every 4 ps over 200 ps at 300K, generating 20

distinct configurations per set of dihedral constraints - this leads to rigid and flexible test

sets consisting of 2000 configurations each. These configurations are entirely separate from

the Boltzmann sampled configurations, but span a broad range of S3MT conformations,

presenting an orthogonal test set for ECG model validation. All simulations are performed

using LAMMPS.56

S3MT configurations derived from MD simulations are input to ωB97X−D3/def2−SV P

calculations using Orca57 to “label” the electronic structure of all S3MT configurations. In

this work we focus on the highest occupied molecular orbital (HOMO) energy as the “label”

for specific S3MT configurations due to its relevance for hole transport. As we are interested

in developing electronic prediction methods that operate using only CG representations

of chemistries, we select a CG mapping operator that defines CG coordinates as linear

combinations of all-atom coordinates. We use the systematic graph-based CG algorithm

of Webb58 to generate a hierarchy of CG mapping operators from which we select a 3-

bead per thiophene monomer representation, the mapping of which is provided in the SI.

The 3-bead per thiophene mapping is optimal for being able to uniquely define all relative 3-

dimensional orientations between thiophene monomers within a rigid body approximation.59

This mapping is applied to every all-atom configuration to create CG configurations. For

input into DKL, these CG configurations are then featurized using the distance matrix

between all CG beads, from which the upper triangle of the CG distance matrix is flattened

and used as an input feature to DKL.

Deep Kernel Learning

To facilitate the integration of AL algorithms with ECG, prediction uncertainties. Here we

select GPR as a systematic framework for generating both prediction means and uncertain-

ties. However, it is well-known that the performance of GPR depends strongly upon, and can
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be limited by, the specification of the kernel function. In the context of this work, we show

a representative example of the limitations of traditional kernel-based GPR in an explicit

numerical ECG experiment available in Figure S1.

To combine the powerful representational flexibility of DNN, as demonstrated in our

previous ECG work,23,24 with the GPR framework we employ the concept of DKL introduced

by Wilson et al.38 In this approach, DNN learn a flexible representation of the input feature,

which is then used as input into a non-parametric GPR kernel, providing scalable closed form

covariance kernels for GPR. DKL utilizes a base kernel k(xi, xj|θ) with hyperparameters θ

and transforms the inputs x utilizing

k(xi, xj|θ)→ k(g(xi, w), g(xj, w)|θ, w) (1)

where g(x,w) is a non-linear mapping provided by a DNN, parametrized by weights w.

Here we utilize a radial basis function (RBF) kernel

kRBF (x, x′) = exp(−1

2
||x− x′||/l2) (2)

All hyperparameters of the base kernel, θ, and of the DNN, w, are learned jointly by

maximizing the log marginal likelihood L of the GP.

L = log(p(y|w, θ,X)) ∝ −[yT (Kw,θ + σ2I)−1y + log[Kw,θ + σ2I]] (3)

This is accomplished via the chain rule to compute derivatives of L with respect to w

∂L
∂θ

=
∂L
∂Kw,θ

∂Kw,θ

∂θ
,
∂L
∂w

=
∂L
∂Kw,θ

∂Kw,θ

∂g(x,w)

∂g(x,w)

∂w
(4)

The derivative of L with respect to the n x n covariance matrix Kw,θ is given by

∂L
∂Kw,θ

=
1

2
(K−1w,θyy

TK−1w,θ −K
−1
w,θ) (5)
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To avoid the poor scaling of the K−1w,θ calculation, the KISS-GP scaled kernel interpo-

lation procedure developed by Wilson and Nickisch is used.60 Utilization of the KISS-GP

approximation enables linear scaling in the number of training data. Following hyperparam-

eter optimization on a training data set, X, the predictive distribution of the GP evaluated

at the test points X∗ is given by the standard GPR expressions:

f∗|X∗, X, w, θ, σ2 ∼ N(E[f∗], cov(f∗)) (6)

E[f∗] = µX∗ +KX∗,X [KX,X + σ2I]−1y (7)

cov(f∗) = KX∗,X∗ −KX∗,X [KX,X + σ2I]−1KX,X∗ (8)

All DKL calculations are implemented through the PyTorch based GPU accelerated

GPyTorch library.61 The calculations are performed on a single NVIDIA A100 GPU. For

DKL we use a four hidden layer neural network featurizer with exponential linear unit

activations and batch normalization at each layer feeding into a RBF kernel. The Adam

optimizer62 is applied to tune DKL weights. The width of neural network layers, number

of training iterations, and learning rate are further tuned using Bayesian optimization for

a randomly drawn data set from the 1000K flexible data set. The list of hyperparameters,

optimized architecture, and search range are provided in Table S2.

Active Learning

Whereas previous ECG models have proven effective, they are limited by the need for a large

number of QC calculations for parameterization. To overcome this, we implement three

different AL query strategies to develop reduced size training data sets exhibiting negligble

loss in performance relative to larger data sets.39 The AL procedure is as follows: (i) a small

random subset of data are drawn from the large unlabeled pool of CG configurations to

initialize the training data set, (ii) the DKL-ECG model is trained on the current training

data set, (iii) the trained DKL-ECG model is applied to all data remaining in the unlabeled
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pool, (iv) a query function is used to calculate a score for each sample in the pool, (v)

the sample(s) with the best score are selected for labeling, labeled, and then added to the

training data set, and then the cycle repeats from (ii) until convergence. It is important to

note that there are a broad range query strategies available in the literature. Here, we have

judiciously selected three: RQ, UQ, and EMOC query. In what follows, we approximate the

functional map F : D → Y where x ∈ D are the input features and y ∈ Y are continuous

output labels using DKL-ECG.

Random Query (Qran):

Random query serves as a baseline method for comparison against more sophisticated AL

query strategies. Random query simply involves selecting a random subset of data from the

unlabeled pool without any scoring system for the unlabeled data.

Uncertainty Query (Qunc):

Uncertainty query is one of the most commonly used AL strategies. Here, the mean and un-

certainty derived from the DKL regression model are used to construct a score that balances

exploration and exploitation defined by:63

Qunc(U) = argmin
x(i)∈U

|µ(x(i))|√
σ2(x(i))

, (9)

The numerator of the query function, the absolute predictive mean, is exploitative

whereas the denominator, the predicted variance, is explorative.

EMOC query (Qemoc): As an advanced balance between exploitation and exploration,

we employ the EMOC AL query algorithm. EMOC avoids irrelevant or redundant samples

being considered for labeling that would not lead to improvement in model output after

retraining. The EMOC based AL strategy for GP classification tasks was proposed by

Freytag et al.,50 with Käding et al.51 extending the approach to regression problems. The

approach has not been widely adopted in the chemical community due to its cumbersome
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mathematical form requiring transformation to be performed on the kernel elements. Here

we reproduce the main elements of the derivation of the EMOC strategy in closed form and

provide a generic numerical implementation that can be applied to GPR methods based on

a highly customizable and GPU accelerated PyTorch framework.64 This implementation is

available in our GitHub repository 1.

EMOC selects the samples from the unlabeled pool U with the largest expected change

of model output. For a new model F
′

obtained by updating an old model F with (x
′
, y
′
),

Qemoc(U) = argmax
x(i)∈U

∆F = argmax
x(i)∈U

ExEy′ |x′ ||F′(x)− F(x)||P . (10)

To derive the EMOC criterion described in eqn. 10 for GPR-like methods we apply a

zero mean assumption to eqn. 7 and assume an arbitrary kernel function K(., .), from which

the prediction by F can be written as

F(x) =
∑
j

αiK(x(j), x) = k(x)Tα, (11)

where α is the weight vector resulting from the GPR training and x(j) ∈ L, the pool of

labelled samples used for training the model. Now we compute the EMOC criterion for GPR

as,

∆F(x
′
) = ExEy′ |x′ ||k

′
(x)T∆α||P , (12)

where k
′
(x) = [k(x),K(x

′
, x)] and ∆α indicate the difference of the current model weight

α from the new model weights obtained by the addition of the new labelled samples, (x
′
, y
′
).

There exists a closed form for ∆α for GPR which is given by,50

∆α =
k(x

′
)Tα− y′

σ2
n + σ2

f ′
(x′)

(K + σ2
nI)−1k(x

′
)

−1

 , (13)

1https://github.com/TheJacksonLab/ECG_ActiveLearning
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where σ2
f ′

corresponds to the predictive variance of x
′
.

Eqn. 13 has a dependence on y
′
. But y

′
is not known a priori before the labelling, hence

a marginalization over y
′

must be performed. For this purpose we decompose eqn. 13 based

on its dependence on y
′

as follows:

∆α = g(x
′
)(k(x

′
)Tα− y′). (14)

We will now rewrite eqn. 12 to derive EMOC for new samples x
′

with respect to a single

training sample x:

∆F(x
′
, x) = Ey′ |x′ ||k

′
(x)Tg(x

′
)(k(x

′
)Tα− y′)||P . (15)

Let ν = ||k′(x)Tg(x
′
)||, c = k(x

′
)Tα and substituting z = y

′ − c in the above equation

results in

∆F(x
′
, x) = ||ν||P

∫
Y

||z||Pp(z + c|x′)dz. (16)

We exploit that F is modeled by a GP. Hence our posterior distribution can be approxi-

mated as Gaussian as follows:

p(z + c|x′) = N (z + c|µ(x
′
), σ2

f (x
′
)).

This leads to

∆F(x
′
, x) = ||ν||PE[||z||P ], (17)

There exists a closed form solution for the non-central Pth-moment of the Gaussian
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distribution given by ,

E[||z||P ] = σP .2
P
2 .

Γ(1+P
2

)
√
π

.1F1

−P
2
,
1

2
,−1

2

(
µ(x

′
)

σ2
f (x

′)

)2
 , (18)

where Γ(.) is the gamma function. The confluent hypergeometric function 1F1(., ., .) is

given by

1F1(a, b, z) =
∞∑
n=0

a(n)zn

b(n)n!
. (19)

The computational workflow is illustrated in Figure 1. In this work we use eight distinct

data sets that represent rigid and flexible MD runs performed at four temperatures (50K,

300K, 600K, 1000K). The AL methods above are first applied independently to all distinct

data sets. Each data set contains 9,700 configurations wherein the first 8,500 are used

for each AL query, the next 200 are skipped to ensure decorrelation between training and

validation sets, and the final 1,000 are used for independent validation. The labeled pool

of configurations for every AL run is initialized with three random samples. The AL query

process is run for 1,500 iterations, with the highest scored configuration from the unlabeled

pool being added to the training data set; in the case of random sampling, a randomly

selected data point from the unlabeled pool is added. The query width in all cases is 6,995.

All AL learning curves (SI Figure S7) are averaged over five independent runs initialized

with different random seeds. We measure the performance of the AL methods by reporting

the root mean square error (RMSE) and coefficient of determination (R2) associated with

predicting the HOMO energy of each configuration. To further test the robustness of the

AL query strategies applied across multiple temperatures we create temperature aggregated

rigid and flexible data sets, resulting in a large U consisting of an initial sample size of 34,000

(SI Figure S6). A query width of 32,495 is used. Four different test data sets each consisting

of 1000 samples drawn at different temperature are kept for validation. Finally, to test the

generalization of the DKL-ECG model outside of training data sets, we also generated a
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global validation data set using LHS.65 LHS is used to sample 2,000 dihedral configurations

each for rigid and flexible.

Figure 1: Computational approach for DKL-ECG used in this work. All-atom configurations
are mapped to CG representations. CG distance matrices are transformed by DNN to
generate a low dimensional latent representation. The intermediate latent representation
drives kernel based regression and the AL of the HOMO energies.

Results and Discussion

Energetic and Configurational Distributions

We begin by analyzing the statistics of the input (CG distance matrices) and output (HOMO

energies) distributions for each data set. The HOMO energy distributions for all flexible and

rigid data sets are shown in the SI Figure S2 and Figure S3. The HOMO energy distributions

of the rigid data sets exhibit lower values of the distribution mean (50K: -7.250 eV, 300K:

-7.404 eV, 650K: -7.452 eV, 1000K: -7.451 eV) relative to the flexible data sets (50K: -7.150

eV, 300K: -7.330 eV, 650K: -7.354 eV, 1000K: -7.325 eV), which is attributable to the bias
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induced by the intrathiophene degrees of freedom being frozen at their minimum energy

geometry in the rigid simulations. The mean HOMO energies for both rigid and flexible

shift to higher energy as the temperature is lowered, though the maximum observable HOMO

energy increases with increasing temperature, consistent with the ability of high temperature

simulations to access planar configurations in which intermonomer couplings are largest. Also

consistent with the difference between the rigid and flexible data sets is the larger value of the

standard deviation (SI Table S1) of the HOMO energy in the flexible data sets (50K: 0.072

eV, 300K: 0.195 eV, 650K: 0.231 eV, 1000K: 0.253 eV) relative to the rigid data sets (50K:

0.078 eV, 300K: 0.170 eV, 650K: 0.202 eV, 1000K: 0.214 eV). The lower value of the standard

deviation of the rigid data sets relative to the flexible data sets is attributable to the lack

of fluctuations of the intrathiophene degrees of freedom in the rigid data set, which reduces

the diversity of conformations, thus reducing the width of the HOMO energy distribution.

For both rigid and flexible data sets, the structure of the distribution shifts dramatically in

moving from 50K to 300K, indicating the activation of conformational degrees of freedom

with strong electronic coupling that are frozen out in the 50K simulations.

We next characterize the data set dependence of the configurational space used as input

to DKL-ECG via analysis of the intermonomer dihedral distributions (SI Figure S4 - S5).

All five S3MT intermonomer dihedrals are histogrammed and averaged into a single effective

dihedral degree of freedom, the free-energy surface of which is obtained via Boltzmann

Inversion (SI Figure S4-S5). The average flexible dihedral barrier heights at 50K, 300K, 650K,

and 1000K are ∼ 10kcal/mol, ∼ 2kcal/mol, ∼ 1kcal/mol, and ∼ 0.7kcal/mol, respectively.

The average rigid dihedral barrier heights at 50K, 300K, 650K, and 1000K are ∼ 10kcal/mol,

∼ 4kcal/mol, ∼ 2kcal/mol, and ∼ 2kcal/mol, respectively. Rigid dihedral barriers are on

average larger than the corresponding flexible dihedral barriers due to the rigidity constraints

on the monomers which prevent the rotation or bending of the methyl group upon dihedral

rotation.

To further characterize conformational diversity across all data sets we train a DKL-ECG
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model and extract the final layer of the DNN (Figure 1). DKL-ECG is trained on a random

subset of ∼ 1000 configurations drawn from both 1000K rigid and flexible data sets; the

configurations drawn from the 1000K rigid and flexible data sets represent the conforma-

tionally most diverse data due to possessing the lowest free energy barriers in the system (SI

Figure S4-S5). The final layer of the DNN contains a compressed feature representation of

the high dimensional CG distance matrix input (Figure 1). We use the weights of the DKL-

ECG model trained on the 1000K data subset and pass all 34K training samples through

the network to extract the corresponding latent vectors. To aid in visualization, PCA is

applied to the 21-dimensional latent space representation and the eigenvectors of the two

largest principal components are extracted and plotted for all rigid (Figure 2A) and flexible

(Figure 2B) data sets as a function of temperature. To qualitatively understand the confor-

mational diversity spanning the principal components of the latent space, configurations are

visualized using Ovito66 (Figure 2).

Analysis of the principal components of the DKL-ECG latent space shows a broad di-

versity of conformations sampled at different temperatures. As anticipated from trends in

the dihedral free-energy surfaces, increasingly diverse conformational states are sampled at

higher temperature simulations for both rigid and flexible systems. Notably, all cis conforma-

tions of the intermonomer dihedrals are only obtained at the highest temperature simulations

(1000K) with the sparsest sampling. 300K, 650K, and 1000K simulations exhibit broad over-

lap of sampled conformations, consistent with the fact that dihedral degrees of freedom are

well sampled at even 300K for the timescale of all simulations. Notable in these plots is the

strongly localized nature of conformational space sampled in 50K MD simulations, as repre-

sented by the islands of configurational space within the Figure 2 plots. From these results,

it is anticipated that training exclusively on 50K configurations can induce low prediction

transferability due to the lack of sampling other, more diverse configurations. We further

plot the HOMO energy dependence of the DKL-ECG latent space in SI Figure S6, observing

only weak structuring of the latent space according to HOMO energy prediction.
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Figure 2: Visualization of the two largest principal components of the latent space rep-
resentations of the CG distance matrices for (a) rigid and (b) flexible simulations across
all sampled temperatures. The legend refers to reference temperatures (K) of the samples.
Representative configurations are shown as insets.

Multiple Temperature DKL-ECG Performance

With an understanding of the conformational spaces sampled using different temperature

MD simulations, we next examine the accuracy and transferability of DKL-ECG across all

temperatures. These DKL-ECG models represent the highest-quality electronic structure

data used in ECG predictions to date (range-separated, dispersion-corrected hybrid DFT).

In an attempt to minimize the quantity of training data required to train DKL-ECG at

each temperature, we first examine the single-temperature performance when using three

different AL queries: RQ, UQ, and EMOC. In all cases AL algorithms are run for 1,500
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Figure 3: Heatmap demonstrating the transferability of single temperature DKL-ECG mod-
els trained using EMOC for A) rigid B) flexible data sets. The colorbar indicates model
RMSE error in meV for held out test data sets. Axes labels indicate the reference tempera-
ture of the training and test data sets.

cycles (≈ 18% of 8500 single temperature samples) until training data sets of size 1,500 are

assembled. Reported performance of a single temperature model occurs by application to a

held-out 1000 sample test test for each temperature model (e.g. a model trained with a data

set drawn for flexible at 1000K is trained for 1500 AL cycles and validated on held out test

sets of 1000 samples each at 1000K, 650K, 300K and 50K). As noted in the methods, all the

metrics are averages over five independent runs of the AL queries. All quantitative results

of these computational experiments are listed in SI Tables S3-S10.

Surprisingly, RQ, UQ, and EMOC all exhibit similar quantitative performance for single

temperature prediction tasks. For rigid simulations in which training and testing occur at

the same temperature (SI Tables S3-S6), R2 of ∼ 0.8 − 0.9 is achieved using only 1,500

training points, with RMSE ranging from 10-100 meV depending on temperature. Test errors

(RMSE) correlate positively with temperature, consistent with a broader feature space that

must be learned. Similar qualitative results are obtained for flexible DKL-ECG (SI Tables

S7-S10), with R2 of ∼ 0.3 − 0.6 and RMSE ∼50-300 meV. These results are competitive

with those of previous work utilizing larger data sets (∼ 104) and a lower level of theory.

While the equivalent performance of all AL query strategies might seem strange, this is
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understood by considering the nature of the training data. In the case of single temperature

training, all conformations are drawn from the same Boltzmann distribution function and

are statistically uncorrelated. In this scenario, randomly sampling this distribution function

appears to be approximately as effective as more sophisticated AL algorithms such as UQ

and EMOC. However, in cases in which the AL algorithm is sampling data drawn from

distinct distributions, one will expect more dramatic effects, a task we explore later in this

work for multiple temperature DKL-ECG model training.

To visualize the temperature transferability of DKL-ECG models trained on single tem-

peratures, the results of the computational experiments (SI Tables S3-S10) using the EMOC

query algorithm are summarized as a heatmap in Figure 3. For both rigid and flexible data

sets, DKL-ECG models trained at higher temperatures show strong transferability to lower

temperature data sets. For example the rigid model trained at 1000K shows RMSE of 98,

89, 71, and 39 meV validated at 1000, 650, 300 and 50K respectively. While the rigid model

trained at 50K performs well at 50K, its performance decays strongly with increasing tem-

perature of the validation data set, exhibiting the highest RMSE > 200 meV at 1000K. A

similar trend of model transferability can be observed for flexible data sets in Figure 3B)

in which DKL-ECG models trained at high temperatures are generally transferable to lower

temperature data sets, but not the reverse. We attribute the transferability of high temper-

ature DKL-ECG models to lower temperature data sets to the broad configurational space

sampled by higher temperature MD simulations as shown in Figure 2. Interestingly, the

performance of high temperature models applied to low temperature data sets is often quan-

titatively comparable to the performance of the DKL-ECG model trained at the targeted

prediction temperature (See SI Tables S3-S10). This leads to the conclusion that training

DKL-ECG models on higher temperature configurations is generally a robust strategy even

for predicting electronic structure on configurations sampled from significantly lower tem-

perature MD simulations. While this appears to be a reliable rule-of-thumb, pathological

cases can be observed for flexible data sets at very high temperature differences between
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training and test (e.g. Table S7), as evidenced by the low R2 values.

We next examine the ability of AL queries to construct training data sets for the purpose

of multiple temperature DKL-ECG predictions. As noted in the methods section, combining

the four single temperature data sets creates a training space of 34,000 samples. Similar to

the previous section, AL algorithms are run for 1,500 cycles, but on a much larger and diverse

sampling space (≈4.4% of 34000 multi-temperature samples) until training data sets of size

1,500 are assembled. The AL mixed temperature models are validated for each of the 1000

test samples drawn at each temperature to probe model performance and transferability.

We begin by analyzing the regions of the aggregated (34k) feature space from which each

of the AL queries samples when assembling the 1,500 training data points (Figure 4). Only

EMOC effeectively samples from diverse regions of the configurational distribution provided

the low number of training data points relative to the full data set. This advantage becomes

especially apparent in the isolated tail points corresponding to high temperature regions

(Figure 4C and 4G). UQ performs worse than EMOC in this task, but slightly better than

RQ, which samples a very localized region of configuration space. We further investigate

the configurational diversity sampled by EMOC by examining the effect of different random

initialization on the AL query. This is accomplished by linking picked samples to their

corresponding temperatures from which they were drawn. The number of unique samples

picked at each temperature for each AL query is shown in SI Table S11. It is observed that,

averaged over five independent runs of the AL queries, EMOC samples significantly fewer

unique configurations than both RQ and UQ. This is consistent with the design of EMOC

in which samples are picked to maximize the expected model output change (eqn. 10), and

consequently should be more robust to random initialization of the AL query.

EMOC is also observed to preferentially sample configurations from higher temperature

data sets which exhibit more conformational diversity (Figure 5). It is clear from Figure 5

that EMOC can identify the lower configurational diversity of the 50K MD simulations, and

thus reduces the number of configurations drawn from these data sets. Similarly, EMOC pulls
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the most configurations from the 1000K MD simulations, as the feature space (Figure 2) and

output (SI Figure S2 and S3) of the 1000K configurations exhibit the most diversity. While

the different data sets all exhibit some finite overlap with each other due to sampling being

governed by the Boltzmann distribution, EMOC can intelligently navigate the differences

between distribution functions to ensure that a broad feature space is being sampled, which

we anticipate to be an even more desirable feature of EMOC for chemical systems in which

sampling is not all drawn from overlapping distribution functions (e.g. chemical space).

Figure 4: PCA Visualization of the DKL latent space representation of the entire CG con-
figurational sampling space accessible via AL, grouped by AL query strategy for (a-d) Rigid
(e-f) Flexible. Titles refers to AL query strategy and the right most panels show the entire
unlabelled sampling space for comparison. The color of the points corresponds to the AL
query method used for sampling. Results are aggregated over all five independent AL runs.

With an understanding of the different feature space sampling of the AL queries, we
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Figure 5: Histogram showing the fraction of samples drawn by each of the AL query strategies
at each temperatures used for constructing the mixed temperature DKL-ECG model. (a)
Rigid (b) Flexible.

examine the quantitative accuracy of DKL-ECG when trained on multiple temperature data

sets. All reported results are drawn from held out 1,000 data point test sets taken from each

data set. For DKL-ECG trained on rigid data sets across all temperatures (Figure 5), results

are reported in Table 1. As for the single temperature results, all AL query methods lead to

accurate DKL-ECG models. As a benchmark, previous studies employing a much simpler

semi-empirical level of theory (ZINDO/S) obtained RMSE of ∼ 15meV and R2 of 0.99 when

training over 8,000 data points.23,24 Here, the ωB97X −D3 data set presents a significantly

more challenging data set from which to learn electronic structure correlations due to the

presence of non-local electron correlation and exact exchange not present in semi-empirical

methods. The best performing DKL-ECG model at 300K resulting from UQ exhibits RMSE
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of ∼ 65meV and R2 of 0.84 using only 1500 training datapoints, demonstrating the power

of the DKL-ECG approach. Exceptional performance (∼ 10meV,R2 = 0.96) is obtained

over the reduced conformational space of the 50K data set. Performance decays on higher

temperature data due to the broader configurational space of these data sets.

While the predictive accuracy of the DKL-ECG methods for all AL query methods is

satisfactory, the most surprising result is that RQ, UQ, and EMOC AL strategies all per-

form nearly identically despite the greater sophistication of UQ and EMOC. To understand

this result, we reexamine the PCA configuration space distributions shown previously in

Figure 2. It is well known that AL algorithms such as UQ and EMOC are most effective

when sampling data distributions existing in distinctly different basins.51 The PCA distri-

bution plots of Figure 2A) show that the rigid data set configurations exist in effectively

only two distinct basins - one predominantly populated by 300K, 650K, and 1000K and the

other predominantly populated by 50K. Consequently, we hypothesize that the reason for

the equivalent performance of all three AL algorithms is due to the fact that each method

is sampling from smooth, well-connected basins of conformational space when sampled from

individual temperatures distributions. In this case, randomly sampling these distributions

using RQ is approximately as effective as UQ or EMOC approaches. However, we antic-

ipate that in systems sampling distinctly different conformational distributions, the more

advanced UQ and EMOC algorithms should outperform RQ. Having said that, we should

mention that our PyTorch based implementation of EMOC should be broadly useful to the

community beyond the scope of problems discussed here.

Next RQ, UQ, and EMOC are applied to all flexible data sets with the results shown

in Table 1. Similar to the rigid case, all models produce satisfactory RMSE and R2 values

across all temperatures. As a benchmark against previous semi-empirical results at 300K

(RMSE ∼ 90meV , R2 ∼ 0.57) trained on 8,000 datapoints, our 1,500 datapoint best AL

results with UQ exhibit comparable RMSE ∼ 122.4meV , and a slightly improved R2 ∼

0.62.23,24 The flexible data set also has more conformational diversity compared to the rigid,
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worsening the performance due to configurational degeneracy induced by the CG mapping

operator. To further explore any potential advantages of the more sophisticated EMOC

query strategy compared to RQ and UQ we examine the evolution of the RMSE over the

entire AL training cycle by plotting learning curves in SI Figure S7. For rigid and flexible

data sets, all query strategies exhibit similar performance, with RQ and UQ significantly

outperforming EMOC at low temperatures. However, in flexible data sets we note that

EMOC significantly outperforms RQ and UQ at 1000K, while degrading strongly as the

temperature is lowered. While this result is primarily exploratory, it is consistent with the

hypothesis that EMOC will outperform RQ and UQ in situations when data is drawn from

distinctly different basins. The flexible, 1000K data set represents the most conformationally

diverse data set of all those sampled in this work via MD simulations. Consequently, the

consistently higher performance of EMOC relative to RQ and UQ for the high temperature

flexible data sets suggests the hypothesis that it should outperform RQ and UQ if samples

are drawn from even more diverse configuration sets.

One final note regarding the performance similarities of different AL queries concerns the

overlap of the HOMO energy output distributions shown in SI Figure S2 and S3. In all cases,

regardless of features, the predicted output distributions exhibit significant overlap. We

suspect that this is yet another confounding reason for the similar quantitative performance of

all AL methods here; not only do the basins from which the feature space is sampled strongly

overlap, but the output distributions are also quite similar. Moreover, as the dihedrals

primarily govern the HOMO energy value, dramatically different configurations (e.g. all cis

vs all trans) could exhibit similar HOMO energies if all dihedrals are planar in different cases.

While the primary purpose of this work is the parameterization of DFT-quality DKL-ECG

models across multiple temperatures, we anticipate that further improvement and refinement

via the use of AL queries will be obtained in systems in which large changes in configurational

space typically correspond to large changes in the output electronic property of interest.

As a final validation of AL parameterized DKL-ECG, we examine the performance of the
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mixed temperature DKL-ECG model applied to a data set in which configurations are drawn

from harmonically constrained diherals in conjunction with latin hypercube sampling. As

the dihedral distribution of this data set is non-canonically sampled, it represents a useful

test case for the transferability of the multiple temperature DKL-ECG model. RMSE and

R2 are shown in Table 1, with confidence intervals and their statistics reported in SI Figure

S8 and SI Table S12. It is seen that all DKL-ECG prediction means fall within the 95%

confidence intervals, showing that there is minimal overfitting or outliers present in the DKL-

ECG prediction model. Performance on the LHS data obtained RMSE of 57.6 meV and R2

of 0.88 and RMSE of 99.3 meV and R2 of 0.68 for rigid and flexible data sets, respectively.

The average confidence intervals associated with these predictions are ∼ 2− 5meV , showing

excellent quantitative performance of the DKL-ECG model across a conformationally diverse,

unseen validation data set. The DFT evaluation of single configurations requires 240 s

whereas the DKL-GPR performed prediction for 2,000 LHS data set in ∼ 0.006s thereby

showcasing an impressive ∼ 107 relative speed up.

Finally, to provide a sense of the absolute AL DKL-ECG accuracy, we compare the

performance to a DKL-ECG model trained on the full 34,000 configuration data set (Table 2).

The DKL-ECG model that utilizes 4.4% of the total data achieves impressively comparable

R2 values for the rigid data set, though similarly exceptional results are not apparent for

the flexible data sets. Consequently, it appears that 1,500 judiciously selected data points is

sufficient to sample all relevant dihedral degrees of freedom in the rigid data set, though the

additional degrees of freedom present in the flexible data set present challenges as the CG

mapping operator degeneracy associated with these degrees of freedom induces an intrinsic

noise on the prediction task. However, Table 2 drives home the critical point that, with

enough data, electronic prediction models acting on entirely CG molecular representations

are capable of obtaining DFT-quality electronic structure predictions without recourse to

all-atom backmapping and ad nausuem QC calculations.
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Table 1: EMOC DKL. Metrics averaged over five independent runs.

Temperature (K)
Rigid Flexible
RMSE (meV) R2 RMSE (meV) R2

1000 99.3 (±) 2.8 0.78 202.5 (± ) 3.1 0.34
650 88.1 (±) 2.2 0.81 168.5 (± ) 3.7 0.43
300 69.5 (±) 2.0 0.82 136.5 (± ) 2.0 0.52
50 15.7 (±) 2.3 0.91 58.1 (±) 17.8 0.49
LHS (300) 57.6 (±) 1.1 0.88 99.3 (±) 3.7 0.68

Table 2: DKL model trained on the entire sampling scape of 34,000 configurations. Metrics
averaged over five independent runs.

Temperature (K)
Rigid Flexible
RMSE (meV) R2 RMSE (meV) R2

1000 43.4 (± 0.7) 0.96 164.9 (± 3.3) 0.56
650 34.7(± 0.6) 0.97 129.4 (± 1.4) 0.67
300 22.5 (± 0.3) 0.98 85.3 (± 0.83) 0.81
50 3.9 (± 0.4) 0.99 36.0 (± 4.6) 0.74
LHS (300) 21.7 (± 0.3) 0.98 55.8 (± 2.6) 0.90

Conclusions

We have constructed an ECG prediction model within the framework of DKL. Using this

framework, we have developed DKL-ECG models at the highest level of electronic structure

theory to-date, range separated hybrid DFT, which increases the applicability of ECG to

modeling real molecular systems with high accuracy. The ability of DKL-ECG to provide

uncertainty estimates on predictions has facilitated the incorporation of AL algorithms for

efficiently training DKL-ECG models with minimal data and maximum configurational and

temperature transferability. While the EMOC AL algorithm clearly samples a more diverse

feature space than the RQ or UQ algorithms, suggesting improved prediction accuracy and

transferability, predictive performance among all three AL query methods is effectively iden-

tical. We attribute this result to the redundancy of Boltzmann sampling for the molecule of

interest, and anticipate that EMOC performance should be significantly improved over RQ

and UQ in future applications that sample data from strongly different distributions. The

results presented in this work significantly advance the ECG method, providing a means of
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performing DFT-accurate electronic predictions directly from CG representations.

Acknowledgement

This material is based upon work supported by Laboratory Directed Research and De-

velopment (LDRD-CLS-1-630) funding from Argonne National Laboratory, provided by the

Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-

06CH11357. N.E.J acknowledges support from the Dreyfus Program for Machine Learning

in the Chemical Sciences and Engineering during this project. This research used resources

of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facil-

ity supported under Contract DE-AC02-06CH11357. Argonne National Laboratory’s work

was supported by the U.S. Department of Energy, Office of Science, under contract DE-

AC02-06CH11357. We gratefully acknowledge the computing resources provided on Bebop

and Swing, high-performance computing clusters operated by the Laboratory Computing

Resource Center at Argonne National Laboratory. G. S. would like to thank Dr. Murali

Emani and Greg Pauloski for useful discussions on PyTorch compilation.

Supporting Information Available

The Supporting Information is available free of charge on the ACS Publications website.

Supporting information contains: Comparison of DKL-ECG and Traditional GPR, HOMO

Energy Statistics, Intermonomer Dihedral Statistics, Coarse-Grained Mapping Operator,

Representative S3MT All-Atom Configuration, Hyperparameters for DKL-ECG, Visualiza-

tion of the DKL-ECG Feature Space, Single Temperature DKL-ECG Performance, Learning

Curves for Multiple Temperature DKL-ECG, Unique Samples from Multiple Temperature

DKL-ECG AL Queries, and Multiple Temperature DKL-ECG Confidence Intervals on LHS

Validation.

27



References

(1) Wasielewski, M. R. Self-Assembly Strategies for Integrating Light Harvesting and

Charge Separation in Artificial Photosynthetic Systems. Accounts of Chemical Research

2009, 42, 1910–1921, Publisher: American Chemical Society.

(2) Petersen, M. K.; Voth, G. A. Characterization of the Solvation and Transport of the Hy-

drated Proton in the Perfluorosulfonic Acid Membrane Nafion. The Journal of Physical

Chemistry B 2006, 110, 18594–18600, Publisher: American Chemical Society.
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(28) Li, Q.-J.; Küçükbenli, E.; Lam, S.; Khaykovich, B.; Kaxiras, E.; Li, J. Development

of robust neural-network interatomic potential for molten salt. Cell Reports Physical

Science 2021, 2, 100359.
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