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ABSTRACT: Antibody-drug conjugates (ADCs) are a rapidly emerging therapeutic platform. The chemical linker between the an-
tibody and the drug payload plays an essential role in the efficacy and tolerability of these agents. New methods that quantitively 
assess cleavage efficiency in complex tissue settings could provide valuable insights into the ADC design process. Here we report 
the development of a near-infrared (NIR) optical imaging approach that measures the site and extent of linker cleavage in mouse 
models. This approach is enabled by a superior variant of our recently devised cyanine carbamate (CyBam) platform. We identify a 
novel tertiary amine-containing norcyanine, the product of CyBam cleavage, that exhibits dramatically increased cellular signal due 
to improved cellular permeability and lysosomal accumulation. The resulting cyanine lysosome-targeting carbamates (CyLBams) are 
~50X brighter in cells, and we find this strategy is essential for high-contrast in vivo targeted imaging. Finally, we compare a panel 
of several common ADC linkers across two antibodies and tumor models. These studies indicate that cathepsin-cleavable linkers 
provide dramatically higher tumor activation relative to hindered or non-hindered disulfides – an observation that is only apparent 
with in vivo imaging. This strategy enables quantitative comparisons of cleavable linker chemistries in complex tissue settings with 
implications across the drug delivery landscape. 

INTRODUCTION 
Antibody drug conjugates (ADCs) combine the specificity of 
monoclonal antibodies (mAbs) and the potency of small mole-
cule therapeutics. To date, 10 ADCs have received FDA ap-
proval and many others (> 60) are in clinical trials.1,2 ADC ac-
tivity generally requires lysosomal processing of a linker do-
main to release the active payload. Consequently, the linker 
component should be stable in circulation, but selectively 
cleaved following target binding and internalization – a signifi-
cant chemical challenge.3-7  
To assess the state-of-the-art and to guide future linker discov-
ery efforts, a means to quantitively compare ADC linker chem-
istry in vivo would be of significant utility. ADCs are conven-
tionally assessed by examining tumoricidal activity and toxicity 
profiling. While these methods are important benchmarks, they 
provide only indirect insights into the site and mechanism of 
drug release.8-10 Enzyme-linked immunosorbent assays 
(ELISAs) are also broadly employed, but only determine the 
blood-pool concentration and biodistribution of the antibody 
component.11-12 Radiolabeling methods can provide important 
insights regarding mAb localization, but are costly and do not 
directly report on the linker cleavage step.13-16 

 Optical imaging has the potential to provide critical insights to 
the ADC design and optimization process. Prior efforts using 
stimuli-responsive fluorophores with conventional visible 
wavelengths have quantified payload processing and internali-
zation kinetics in cellular imaging experiments.17-19 However, 
these probes are not suitable for applications in deep tissue due 
to the poor penetration depth of wavelengths in the visible re-
gion. Complementing these efforts, approaches using always-
ON near-infrared (NIR) probes have provided insights into tu-
mor and off-target uptake.20-23 Fluorogenic turn-ON probes that 
use NIR wavelengths (~700 to 900 nm) have significant poten-
tial to provide insight into dynamics and localization of biolog-
ical phenomena in complex tissue settings. We recently devel-
oped the first class of NIR fluorogenic probes based on the hep-
tamethine cyanine core.24 These fluorogenic cyanine carba-
mates (CyBams) exhibit exceptional turn-ON ratios and untar-
geted variants enabled in vivo imaging in a metastatic tumor 
model. We hypothesized mAb-conjugated variants could pro-
vide a real time, quantitative approach to determine the site and 
extent of ADC linker cleavage in complex model organisms. 



 

Here we detail the development of the first activatable mAb tar-
geted probes with absorbance and emission maxima beyond 
700 nm. To obtain sufficient signal for in vivo imaging, we op-
timized the cellular uptake and retention of the norcyanine scaf-
fold – the released fluorescent product of linker cleavage. These 
efforts reveal the installation of a basic amine into the probe 
dramatically improves cellular photon output, likely due to en-
hanced lysosomal uptake and retention. Converting the opti-
mized norcyanine into the corresponding cyanine lysosome-tar-
geting carbamate (CyLBam) dramatically improves the in vitro 
signal and is essential for high-contrast in vivo optical imaging 
of mAb conjugates. Finally, we test a panel of commonly used 
ADC linkers in two tumor models. We find cathepsin-cleavable 
linkers outperform reductively cleaved disulfide linkers with 
dramatic differences in tumor uptake – a distinction that is only 
apparent with in vivo imaging. Broadly, this approach provides 
a general means to assess cleavable linker efficiency and spec-
ificity, with applications from the cellular to organismal scales. 
RESULTS AND DISCUSSION 
 
Optimization of Norcyanine Signal 
 
Prior to pursuing in vivo imaging of mAb conjugates, we set out 
to improve the cellular signal of the product of CyBam activa-
tion, the pH-sensitive norcyanine. While the previously re-
ported sulfonated norcyanine, Sulfo-NorCy7 (Figure 1A), can 
provide high contrast imaging, relatively high concentrations 
(20 – 40 µM) are required for sufficient in vitro signal.24-27 We 
anticipated this requirement might be problematic for mAb tar-
geted imaging because probe concentrations are intrinsically 
limited by antigen levels. Of note, microscopy studies indicate 
that the cellular signal of Sulfo-NorCy7 is predominately from 
the lysosome – an observation consistent probe protonation and 
a pKa between 4 and 5.24 We therefore presume poor lysosomal 
accumulation of the charged sulfonated variants is responsible 
for the modest cellular fluorescence of this probe. We hypothe-
sized that improving cellular permeability and, perhaps, intro-
ducing a lysosomal targeting element could improve the fluo-
rescent output. 
To approach this problem, we designed and synthesized a small 
panel of chemically diverse norcyanines. These compounds 
contain a C4’-phenyl-substituent appended to the polymethine 
chromophore, which we and others have found to improve syn-
thetic accessibility, photostability, and serum stability.28-33 To 
test the question of cell permeability alone, we included two 
hydrophobic derivatives, OMe-NorCy7 and H-Nor-Cy7, (Fig-
ure 1A). Commonly used lysotracker probes contain tertiary 
amines, suggesting this functional group can promote lysoso-
mal targeting.34-36 To test if this might apply to norcyanines, we 
prepared indolenine-substituted sulfonamide derivatives modi-
fied with both the hydrophobic piperidine (Pip-NorCy7) and 
the tertiary amine-containing N-Me piperazine (N-Me-Pip-
NorCy7) substituents. We also prepared another “lysotracker-
like” derivative, N-Me-NorCy7, in which the central ring sys-
tem contains an N-methyl substituent. These novel norcyanines 
were synthesized in 3-4 steps, as described in the supporting 
information.  
With access to this panel of probes, we investigated their pho-
tophysical properties and cellular uptake. All six probes exhibit 
absorbance and emission maxima above 700 nm, similar extinc-
tion coefficients and pKa’s between 4.4 and 5.2 (Figure 1B,C 

for N-Me-NorCy7, Table 1, Figure S1). We first established 
that the NorCy7 series had minimal toxicity in MDA-MB-468 
and MCF-7 cells (Figure S2). Next, we quantified signal in 

Table 1. Summary of photophysical properties (lmax abs, lmax 

em and emax) of NorCy7 series of compounds. a acetate buffer 
(pH 4.5); b MeOH:acetate buffer pH 4.5 (2:1); c MeOH:ace-
tate buffer pH 3.75 (2:1). 

Figure 1. A. Structures of norcyanines Sulfo-, H-, OMe-, Pip-, 
N-Me-Pip- and N-Me-NorCy7. B.  Absorbance and fluores-
cence spectra w/ 690 nm excitation of N-Me-NorCy7 (5 µM) in 
PBS pH 7.20 and acetate buffer pH 4.25. C. Determination of 
pKa (10 µM) in buffers ranging from pH 3.5 to pH 7.4. D. Flow 
cytometry quantification of in vitro uptake of norcyanine hep-
tamethine cyanine (5 µM) in MDA-MB-468 after 1 h incubation. 
Geometric mean fluorescent intensity (± SD) of fluorescent sig-
nal in the cells is shown (n = 4 independent experiments; ~10,000 
cells counted). E. Confocal fluorescent images (63X) of N-Me-
NorCy7 and Sulfo-NorCy7 (10 µM) after 6 h incubation with 
MDA-MB-468. Fluorescent signal from the probe and nucleus 
(Hoechst) is pseudo-colored red and blue, respectively.  



 

MDA-MB-468 cells at 1, 3 and 6 h time points with flow cy-
tometry using the APC-Cy7 channel. At all three time points, 
the uptake of the six norcyanines follows the rank order: N-Me-
NorCy7 > N-Me-Pip-NorCy7 >> Pip-NorCy7, OMe-
NorCy7, H-Nor-Cy7 >> Sulfo-NorCy7 (Figure 1D and S3, 
S31-33). To our delight, the N-Me-NorCy7 and N-Me-Pip-
NorCy7 exhibit 187-fold and 72-fold higher uptake, respec-
tively, in MDA-MB-468 cells after only 1 h incubation com-
pared to previously used Sulfo-NorCy7. The fluorescent signal 
remained constant at the 1, 3 and 6 h time points suggesting 
efficient uptake and high retention of tertiary amine substituted 
norcyanines (N-Me-NorCy7 and N-Me-Pip-NorCy7). In con-
trast, the signal from Sulfo-NorCy7 increased steadily overtime 
and was ~3-fold higher after 6 h relative to 1 h (Figure S3). Us-
ing confocal microscopy, we confirmed that the subcellular lo-
calization of the N-Me-NorCy7 is lysosomal, with dramatically 
higher signal than SulfoNorCy7 (Figure 1E, Figure S4-5). The 
relatively modest signal of the three hydrophobic derivatives, 
Pip-NorCy7, OMe-NorCy7, and H-NorCy7, indicates that 
the tertiary amine, the lysotracker-mimicking feature, is essen-
tial for fluorescent signal enhancement. Overall, this data indi-
cates that incorporation of a single basic amine dramatically en-
hances cellular uptake and lysosomal localization of 

norcyanines. The enhanced cellular signal and synthetic acces-
sibility led us to choose N-Me-NorCy7 to compare to the pre-
viously described Sulfo-NorCy7 in developing activable mAb 
conjugates.  
Antibody Targeting 
 
We then assessed the impact of norcyanine modification on the 
signal of mAb conjugates.  N-Me-NorCy7 was converted to the 
cyanine lysosome-targeting carbamate (CyLBam) variant by 
attaching a cathepsin cleavable dipeptide (valine-citrulline, 
VC) and a non-cleavable (NC) glutaric anhydride linker substi-
tuted with a lysine reactive NHS ester (See SI for synthetic de-
tails). As a comparison, Sulfo-NorCy7 was converted to the 
corresponding CyBam molecules. The four probes were conju-
gated to the FDA-approved anti-Epidermal Growth Factor Re-
ceptor (EGFR) antibody Panitumumab (Pan) at pH 7.4 [Degree 
of labeling (DOL) ~4; Table S1, S28]. The resulting conjugates 
were purified by both spin column and dialysis to ensure that 
no free small molecule remained. Of note, prior work from our 
lab and others has shown that similar conjugates maintain the 
in vitro and in vivo targeting properties of parent mAb.21,4, 20, 37-

40 

Figure 2. A. Structures of CyLBam and CyBam probes, and VC (cathepsin-cleavable val-cit) and NC (non-cleavable) linkers. 
B. Confocal images (63X) of Pan-VC-CyLBam, Pan-NC-CyLBam, Pan-VC-CyBam, and Pan-NC-CyBam in MDA-MB-
468 (EGFR+) after 24 h incubation. Fluorescent signal from the probe and nucleus (Hoechst) is shown in red and blue, respec-
tively. C. Flow Cytometry quantification of in vitro uptake in MDA-MB-468 (EGFR+) and MCF-7 (EGFR-) after 24 h incuba-
tion. All antibody conjugates were labeled at DOL 4. Geometric mean fluorescent intensity (± SD) of fluorescent signal in the 
cells is shown (n = 4 independent experiments; ~10,000 cells counted). D. Imaging of probes (200 µg; DOL 4) intravenously 
injected in a xenograft model of female athymic nude mice implanted with MDA-MB-468 tumors (n = 3). Tumor-to-background 
(TBR) ratios, the fluorescent signal of the tumor relative to an equal area in the neck, at different time intervals (4, 48 and 168 
h). E. IVIS fluorescent images 48 h post injection. Tumors are highlighted in dotted red circles. Data points are displayed as 
mean ± SD, and the p-values were evaluated by the Student’s t-test (*** p-value ≤ 0.001, **** p-value ≤ 0.0001). 
 



 

We first compared the series of Pan probes in cellular assays. 
The four conjugates, Pan-VC-CyLBam, Pan-NC-CyLBam, 
Pan-VC-CyBam, Pan-NC-CyBam, (Figure 2A) were tested in 
MDA-MB-468 (EGFR+) and MCF-7 (EGFR-) cells.41-42 The 
fluorescent signal emitting from Pan-VC-CyLBam was 50-
fold higher than Pan-VC-CyBam after incubation with MDA-
MB-468 cells for 24 h (Figure 2C and S34-37). Validating the 
role of receptor-mediated uptake, the fluorescent signal of both 
probes was lower in MCF-7 cells. As expected, the non-cleav-
able probes, Pan-NC-CyLBam and Pan-NC-CyBam, did not 
exhibit any significant fluorescent signal in either cell line. Con-
focal microscopy confirmed the trends observed by flow cytom-
etry, as well as the lysosomal uptake of the released norcyanine 
(Figure 2B and S6-8). 
We then set out to test if the improved in vitro signal of the 
CyLBam conjugate would translate to high contrast animal im-
aging.  The conjugates (200 µg) were injected intravenously 
into female athymic nude mice with MDA-MB-468 xenograft 
tumors (25-35 mm3).  The mice were imaged at 4, 24, 48, 72, 
and 168 h post-injection using an In Vivo Imaging System 
(IVIS) (Figure 2E and S9-14). After 24 h, a strong fluorescent 
signal was observed in tumors injected with Pan-VC-CyLBam 
and the signal persisted over 168 h, with tumor-to-background 
ratios (TBRs) between 4 and 5. In contrast, the Pan-VC-
CyBam group had lower TBRs (1-2) at all time points - similar 
to the two non-cleavable probes, Pan-NC-CyLBam and Pan-
NC-CyBam. Significant liver signal was observed with the two 
probes containing the protease cleavable linker (Pan-VC-
CyLBam and Pan-VC-CyBam) at early time points (4 h and 
24 h), and the fluorescent signal decreased afterwards (Figure 
S15-16). The selective hepatic signal of Pan-VC-CyBam and 
its time-dependent disappearance suggests that the released 
Sulfo-NorCy7 is rapidly cleared through hepatobiliary path-
ways. Thus, the reduced tumor signal observed with this probe 
likely reflects lower tumor retention (compared to N-Me-
NorCy7) and subsequent clearance. Overall, these results sug-
gest that the improved cellular retention of N-Me-NorCy7, first 
observed in vitro, extends to an in vivo setting. Critically, these 
observations set the stage for us to evaluate a series of ADC 
linkers.  
 
Quantitative Comparison of ADC Linkers 
 
The two most extensively studied classes of ADC linkers are 
disulfides, which are reductively cleaved by biological thiols, 
and peptide linkers, which are cleaved by lysosomal proteases, 
typically cathepsins. Significant efforts to apply disulfide link-
ers led to the approval and clinical testing of several agents.43 
These include the first approved ADC, the acute myeloid leu-
kemia therapy Gemtuzumab Ozogamicin (Mylotarg), which 
contains a hindered disulfide.44-46 However, some reports sug-
gest that disulfides can be cleaved  in circulation, leading to 
premature payload release and non-specific uptake.46-49 Concur-
rent with these efforts, cathepsin-cleavable peptide linkers have 
been incorporated in four approved ADCs, including the Hodg-
ins lymphoma drug Brentuximab Vedotin (Adcetris). While 
these two classes of linkers have been investigated extensively, 
we are not aware of any reports directly comparing the relative 
cleavage of payloads in a solid tumor setting. To do this, we 
designed a small panel of probes comparing two commonly 
used cathepsin-cleavable peptide linkers, valine-citrulline, Pan-
VC-CyLBam (used above) and alanine-alanine, Pan-AA-

CyLBam, and two disulfides, one hindered gem-dimethyl-sub-
stituted variant, Pan-S,SMe2-CyLBam and one primary disul-
fide, Pan-S,S-CyLBam (Figure 3A, Table S2).8,50 As a control, 

Figure 3. A. Structures of Pan-AA-CyLBam and disulfide 
Pan-S,S-CyLBam and Pan-S,SMe2-CyLBam. B. Quantifi-
cation of in vitro uptake of the five probes (50 µg; DOL 4) in 
MDA-MB-468 (EGFR+) and MCF-7 (EGFR-) after 24 h in-
cubation. Geometric mean fluorescent intensity (± SD) of flu-
orescent signal in the cells is shown (n = 4 independent ex-
periments; ~10,000 cells counted). C. Fluorescent images fol-
lowing injection of probes (100 µg; DOL 4) in female athymic 
nude mice (n = 5) with MDA-MB-468 tumors at 48 h time 
point. Tumors are highlighted in dotted white circles. D. 
Quantification of TBR 48 h post injection. E. Quantification 
of fluorescent signal of Pan-AA-CyLBam from liver and tu-
mor. Tumor-to-liver ratio (TLR) is depicted in insert. Data 
points are displayed as mean ± SD, and the p-values were 
evaluated by the Student’s t-test (** p-value ≤ 0.01, *** p-
value ≤ 0.001). 



 

the non-cleavable probe, Pan-NC-CyLBam described above, 
was also employed. 
We first examined the signal of the panel of conjugates in cells 
expressing variable levels of EGFR. The fluorescent signal 
from linker cleavage was quantified using flow cytometry at 6 
and 24 h post-incubation (Figure 3B and S38-41). At the 6 h 
time point, Pan-S,S-CyLBam exhibite the highest fluorescent 
signal in EGFR+ MDA-MB-468 cells. The other three cleava-
ble probes had only modest fluorescent signal after 6 h, but the 
signal increased substantially after 24 h. Pan-VC-CyLBam had 
the highest fluorescent signal among the cleavable probes after 
24 h, indicating the most extensive linker cleavage. All 5 con-
jugates exhibit low levels of probe signal at 6 and 24 h in the 
EGFR(-) cell lines (MCF-7 and MDA-MB-231, Figure 3B and 
S17, S42-43), albeit with slightly higher signal with the Pan-
S,S-CyLBam probe. Significantly, if these data were used in 
isolation, it would be difficult to differentiate these linkers and 
assess the optimal agent for further study.  
With the goal of investigating differences between these linkers 
in an organismal context, we then harnessed the NIR spectro-
scopic properties of these probes for in vivo imaging. The full 
series of probes (100 µg dose, half the dose of the studies 
above), were administered to female athymic nude mice im-
planted with MDA-MB-468 tumors and imaged at regular in-
tervals up to 48 h (Figure 3C). With the disulfide probes, Pan-
S,SMe2-CyLBam and Pan-S,S-CyLBam, we did not observe 
significant tumor signal, and the TBR was similar to the non-

cleavable Pan-NC-CyLBam control. In contrast, strong tumor 
signal was observed from the cathepsin-sensitive probes, Pan-
VC-CyLBam and Pan-AA-CyLBam (Figure 3C,D and S19-
21), with the TBR reaching as high as 4.5 after 48 h. Therefore, 
these studies indicate that cathepsin-cleavable linkers provide 
dramatically higher tumor activation relative to hindered or 
non-hindered disulfides. Critically, as only modest differences 
are observed using the cellular methods described above, this 
key distinction is only apparent with in vivo imaging. 
In addition to tumor uptake, these data also provide significant 
insight into off-target cleavage pathways. As observed above, 
conjugates with cleavable linkers exhibit significant liver signal 
at early time points (4 and 24 h) (Figure S18). While likely due 
to a combination of liver uptake/cleavage and probe clearance 
through hepatobiliary pathways, this approach can provide 
quantitative insight into off target cleavage. With Pan-AA-
CyLBam as an example, the liver signal decreases overtime but 
increases in the tumor (Figure 3E), which leads to an increase 
in the tumor-to-liver ratio over time (Figure 3E insert). These 
results are in line with prior observations suggesting significant 
liver linker cleavage using related cathepsin linkers.51-52 We 
also corroborated the in vivo imaging results with an ex vivo 
assessment, performed 48 h post injection. As expected, the 
TMR (tumor-to-muscle ratio) revealed an identical trend to that 
observed in vivo (Figure S22-23). 
Finally, to test the generality of our approach, CyLBams were 
tested against an alternative cancer target. The cell surface pro-
tein CD276, also known as B7 homolog H3 (B7H3), is overex-
pressed in both tumor cells and tumor vasculature of multiple 
solid tumor types.53-56 Antibodies against this promising target 
have been used to develop ADCs armed with either pyrroloben-
zodiazepine (PBD) or auristatin-derived (MMAE) payloads. 
These ADCs, constructed using cathepsin-cleavable linkers, ex-
hibit potent anti-tumor activity.57,58 We chose to compare VC 
and S,SMe2 linkers and prepared the CD276 targeting antibody, 
m276-SL, reported previously, and non-cleavable NC control 
m276-SL conjugates, as well as a non-binding mAb IgG con-
trols (DOL 4, Table S4, Figure S29-30). In initial in vitro testing 
using a CD276+ JIMT-1 triple negative breast cancer cell line, 
both cleavable m276-SL conjugates showed high levels of 
cleavage, with little activation using the control non-binding 
IgG antibody (Figure 4A, and S24, S44-S45). We then carried 
out a study comparing protease-cleavable m276-SL-VC-
CyLBam and the disulfide-cleavable m276-SL-S,SMe2-
CyLBam conjugates in JIMT-1 tumors (200-250 mm3) grown 
orthotopically in the mammary fat pad. As observed in the stud-
ies above, only the protease-cleavable m276-SL-VC-CyLBam 
conjugate exhibited a TBR greater than 5 (5.2 after 48 h), while 
the disulfide m276-SL-S,SMe2-CyLBam probe exhibited 
much lower tumor signal (Figure 4B, S25-27). These initial 
studies in this model serve to both validate the generality of our 
CyBam imaging strategy, as well as the observation that prote-
ase-cleavable linkers outperform disulfide linkers in solid tu-
mor models. 
 
CONCLUSIONS 
The mode of action of ADCs is complex – optimal efficacy de-
pends on target binding, internalization, and, finally, lysosomal 
catabolism to initiate payload release. While the linker domain 
plays a central role in determining the efficacy and selectivity 
of ADCs, it is challenging to directly assess the site and extent 
of linker cleavage using conventional methods.5-7 This is a 

Figure 4. A. Quantification of cellular uptake of m276-SL-
S,SMe2-CyLBam, m276-SL-VC-CyLBam and m276-SL-
NC-CyLBam (80 µg; DOL 4) in JIMT-1 cells following 24 
h incubation. Geometric mean fluorescent intensity (± SD) 
of fluorescent signal in the cells is shown (n = 4 independent 
experiments; ~10,000 cells counted).  B. TBRs at different 
time intervals after intravenous injection of m276-SL-
S,SMe2-CyLBam and m276-SL-VC-CyLBam (100 µg; 
DOL ~ 4) in female athymic nude mice bearing orthotopic 
JIMT-1 tumors (n = 5). C. Fluorescent images 72 h post in-
jection. Tumors are highlighted in dotted red circles.  



 

critical issue because off-target cleavage of ADCs contributes 
significantly to ADC toxicity.59 The optical imaging approach 
detailed here provides a general means to analyze linker chem-
istry across cellular, tissue, and body wide scales. In this work, 
we identify probes suitable for mAb-targeted activatable imag-
ing. While our previously reported sulfonated CyBams were 
not suitable for this application, installation of a tertiary amine 
into the norcyanine framework dramatically improves cellular 
and in vivo signal, likely due to enhanced lysosomal uptake and 
retention. It is likely that these “lysotracker-like” norcyanines 
and the resulting CyLBam probes will have applications in 
other settings, including their use as activity-based sensing 
agents.60-61 
In applying this approach for ADC applications, we assume that 
the fluorescent probe can serve as a useful surrogate for the pay-
load component. Here we have shown that quantitative compar-
isons of linker chemistries can be obtained by varying the linker 
component. In addition to linker chemistry, the properties of the 
payload molecule (e.g. charge, hydrophobicity) are also im-
portant aspects of tumor targeting.62-65 Critically, while the nor-
cyanine probe is a hydrophobic, sp2-rich small molecule, so too 
are many ADC payloads.66-69  Further variations of the cyanine 
component could provide additional insights into the role of 
payload properties on tumor and normal tissue distributions, 
something our group has examined previously in the context of 
always-ON fluorophore conjugates.40, 70-73 

Going forward, we anticipate that CyLBam imaging could pro-
vide insights that directly inform the development of ADCs. 
These studies have suggested significant differences between 
protease cleavable dipeptides and disulfides in terms of tumor 
cleavage, which is likely due to instability of disulfides in cir-
culation. Prior studies looking at various cysteine mutants have 
found the site of mAb labeling can have dramatic effects on di-
sulfide stability.74 This approach is well positioned to investi-
gate these and related homogenous labeling strategies. We also 
anticipate this strategy can readily be extended to analyze the 
impact of mAb engineering strategies.75-77 As altering the mo-
lecular weight and composition of the protein component can 
dramatically alter the clearance pathway, it is likely that linker 
cleavage dynamics will be impacted. We also note this strategy 
can readily be translated to other targeted drug delivery strate-
gies that rely on cleavable linkers. Efforts towards these goals, 
and to translate lessons from these imaging efforts into novel 
therapeutics, are underway. 
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