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ABSTRACT: Most of the open-shell radicals are usually thermodynamically or kinetically unstable in air due to their 
incompletely satisfied valency. As phenol radical without steric hindrance group protection, aromatic nitric acid radical 
exhibits high electrochemical and thermal stability due to its rich resonance structures including closed-shell nitro-like and 
open-shell nitroxide structure with unpaired electrons delocalized in conjugated backbones. Herein, a series of star-shaped 
aromatic nitric acid radical materials were prepared via facile demethylation and consequent oxidation of their phenolic 
hydroxyl precursors in air. Interestingly, they exhibit extremely high spin concentration and highly enhanced nonradiative 
decay, which make them exhibit great potential for photothermal conversion. Among them, TPA-TPA-O6 exhibits high 
photothermal conversion efficiency and negligible photobleaching effect in seawater desalination. Under irradiation of one 
sunlight, the water evaporation efficiency of TPA-TPA-O6 is recorded as high as 89.41% and the water evaporation rate is 
1.293 kg/m2 h, which represent as the top performance in pure organic small molecule photothermal materials.

INTRODUCTION 

Open-shell organic radicals have attracted tremendous 
attention in recent years, as they exhibit potential 
applications in many fields such as optoelectronics, 1-7 
organic magnets, 8  photothermal, 9-13  thermoelectric 14-18  
and spintronic materials, 19-22 due to their unique 
chemical/physical properties. 11, 23-24 Narrow optical band 
gap can be relatively readily achieved through reasonable 
chemical modification and structural control. 25-28  
Considering the good biocompatibility of the radical 
materials, they have attracted widespread attention in the 
development of photothermal conversion and biologic 
applications. 9,29-31 Comparing with the other widely 
reported photothermal conversion materials such as 
inorganic materials, organic two-dimensional framework 
and conjugated polymer materials, 12-13, 32-34,35,36 organic 
small molecules are relatively overlooked by researchers in 
this field. In details, the disadvantages of them are well 
recognized as following aspects: 1) Inorganic materials 
mainly include carbon materials, gold, and palladium metal 
nanomaterials. These materials usually contain highly 
precious and nondegradable metal and will produce 
potential safety issues for human health when applied in 
vivo; 37-38 2) Two-dimensional framework and conjugated 
polymers widely suffer from poor synthesis reproducibility. 
39-40 Although these materials exhibit good photothermal 
effect, they still have drawbacks such as high cost, poor 
solubility and risk of performance decay in practical 
photothermal applications. The previous organic small 
molecules represented by porphyrin, cyanine dyes and 
other dyes might limit their large-scale application due to 
their disadvantages including cumbersome synthesis 
procedure, poor photothermal stability. 37  Compared with 
the candidates mentioned above, organic small molecule 
materials show excellent structural definiteness, 

convenient preparation and will not cause potential heavy 
metal ion poisoning. 37-38  

Among the small molecules, the open-shell radicals with 
high photothermal conversion efficiency and 
thermal/electrochemical stability are rarely reported in 
previous work. 41-42 It is very challenging to prepare air-
stable organic conjugated radicals due to their intrinsic high 
reactivity with oxygen. 43-46 The preparation of stable 
neutral radicals is not only the basis for in-depth study of 
radical chemistry theory but also the prerequisite for the 
realization of multifunctional application. 44-46  Therefore, 
photothermal materials based on organic stable radicals, 
bearing their unique physical and optical properties, can be 
applied in solar-driven water evaporation, photothermal 
therapy and photothermal catalysis field by converting 
near-infrared (NIR) light into heat via nonradiative decay. 
12-13, 35 Based on our previous research on stable radicals, 47-

50   we designed and synthesized a series of aromatic nitric 
acid radicals (ANARs) without steric hindrance group based 
protecting groups. 49 Compared with the traditional 
triarylamine radical cations, these neutral conjugated 
nitrogen oxide radicals can be readily prepared, purified 
and exhibit high thermal/electrochemical/light stability. 
11,51-53  

In this work, four star-shaped ANAR materials TPA-TPA-
O6, TPA-TPZ-O6, TPA-PY-O8, and Spiro-O8 were synthesized 
by introducing different cores such as triphenylamine, 
triazine, pyrene, spiro fluorene and other groups (Figure 1A, 
B, C). The detailed synthetic scheme and characterization of 
the products are provided in the supporting information (SI) 
(Figure S1-S9). 47, 49, 54-55  The radical species and physical 
properties of the star-shaped ANAR materials were 
thoroughly studied by cyclic voltammetry (CV), UV-vis-NIR 
spectroscopy, and electron spin resonance (ESR) spectrum. 



 

 
Figure 1. Synthesis procedure and molecular structures. (A) 
Synthetic routes for the aromatic nitric acid radical 
materials. (B) Resonance structures of radical motivated 
from aromatic HNO3.41,49 (C) Chemical structure of the four 
aromatic nitric acid radical materials. 

Open-shell ANARs, bearing their unique physical and 
optical properties were applied in photothermal conversion 
by converting near-infrared (NIR) light into heat via 
nonradiative decay. Among them, TPA-TPA-O6 exhibits the 
highest photothermal conversion performance compared 
to other molecules and excellent photo-stability. An 
interface heating evaporation system based on TPA-TPA-O6 
was established. Under these conditions, high solar-energy-
to-vapor efficiency of 89.41% and water evaporation rate of 
1.293 kg m−2 h−1 under 1 sun irradiation are obtained. Open-
shell ANARs enable highly efficient solar energy conversion 
and provides us a novel strategy for the design of stable 
organic-small-molecule photothermal materials in solar 
energy utilization.  

RESULTS AND DISCUSSION 

The UV-Vis absorption spectra of TPA-TPA-OMe in the 
dichloromethane solution and the film are very consistent, 
with absorption at 305 nm and 380 nm, respectively (Figure 

2A). For the sample TPA-TPA-O6, the soultion in DMSO 
exhibited similar absorption spectrum with TPA-TPA-OMe, 
however, the film absorption of TPA-TPA-O6 shows a typical 
and great red shift comparing with that of TPA-TPA-OMe. 
This clear and long absorption tail in the range of 400–825 
nm Indicates its typical radical character in the solid state, 
which is widely reported in previous work. 11, 49 In addition, 
the color of the TPA-TPA-O6 radical powder is totally black,  

 

which is in good agreement with the wide absorption 
covering the whole visible region. For the pyrene and 
triazine core, the TPA-PY-OMe and TPA-TPZ-OMe showed 
the typical wide bandgap absorption spectra with slight 
redshift comparing with TPA-TPA-OMe. It is noteworthy 
that both the TPA-PY-O8 and TPA-TPZ-O6 exhibited an 
obvious absorption with edge around 1ooo nm and 800 nm 

in film, respectively. (Figure 2B and Figure 2C). The UV 
absorption of Spiro-OMeTAD and Spiro-O8 have been 

 
Figure 2. UV-Vis-NIR and PL spectra. (A-C) TPA-TPA-OMe 
and TPA-TPA-O6, TPA-TPZ-OMe and TPA-TPZ-O6, TPA-PY-
OMe and TPA-PY-O8 in solution as well as film, respectively. 



 

 

Figure 3. Cyclic voltammograms results. (A-H) TPA-TPA-OMe, TPA-PY-OMe, TPA-TPZ-OMe, Spiro-OMeTAD, TPA-TPA-O6, 
TPA-PY-O8, TPA-TPZ-O6 and Spiro-O8, respectively. All of CV curves were measured 15 cycles in dichloromethane solution 
containing 0.1 M nBu4NPF6 as a supporting electrolyte and the scan rate was 0.1 V/s. The methoxy substituted precursors 
were dissolved in dichloromethane at a concentration of 5 mg/mL and target radical compounds coated on carbon-glass 
electrode to form film during measurements. Potential values are reported with saturated calomel electrode as the reference 
electrode using the Fc+/Fc couple (0.27 V) as an internal standard. 

reported in our previous work and they also showed very 
similar behavior with the other three samples mentioned 
above. The photoluminescence and photoluminescence 
quantum yield (PLQY) test of all the precursors of in 
dichloromethane solution and film showed fluorescent 
emission between 450 and 570 nm (Figure 4B). In sharp 
contrast the moderate PLQY of precursors (Table S1), the 
corresponding radicals exhibited none of fluorescent 
emission in film. After demethylation, the PLQYs of these 
radical products are significantly reduced and all of them 
showed low fluorescence quantum yields lower than 1% 
(Table S1), which indicate the formation of radicals. These 
results are in good agreement with the previous work in    
diradicaloids and multiple radicaloids which usually 
showed obviously lowered PLQY. 56  

In order to study the chemical and electrochemical 
stability, the cyclic voltammetry (CV) test was conducted in 
film and solution. It can be observed from Figure 3 that all 
the demethylated counterparts exhibited highly reversible 
CV curves under the oxidation process and showed 
negligible change after scanning for 15 cycles (Figure 2). 
The ANARs showed the excellent reversibility in CV test and 
this result indicates that these star-shaped ANARs exhibited 
unexpected electrochemical stability compared to 
traditional organic radical materials. 26,48,57 In previous 
work, the radicaloids widely showed low electrochemical 
stability. 11The HOMO and LUMO energy levels are 
calculated based on these CV curves and the detailed values 
are listed in Table S1. The highest occupied molecular 
orbital (HOMO) and lowest unoccupied molecular orbital 
(LUMO) energy levels changed slightly to some extent due 
to the different electron-donating effect while the central 
cores are modified from triphenylamine to pyrene, triazine 
and Spiro-fluorene. In addition, the HOMO energy levels of 
demethylated counterparts TPA-TPA-O6, TPA-TPZ-O6, TPA-
PY-O8, and Spiro-O8 are recorded as -4.90, -4.81, -4.97, and -
4.84 eV, respectively. Comparing with the methoxy 
precursors, the HOMO energy levels of the demethylated 

radicaloids have been obviously enhanced (Table S1), 
however, these radicals show comparable electrochemical 
and air stability with their methoxy precursors.  

In order to further disclose the chemical structure of 
these radicals, the ESR spectrum was applied to 
characterize the radical spin signal and concentration of 
these star-shaped molecules. At the same test amount of 
0.02 mmol, very obvious increase in the relative ESR signal 
intensity were detected after the demethylation of the 
corresponding methoxy precursors (Figure 4A and S11), 
due to the large amounts of radical generation with easy 
oxidation of phenolic hydroxyl groups in air. 49This confirms 
that star-shaped ANARs molecules showed high 
concentration of radical spin, which is consistent with the 
results of ultraviolet absorption spectra and the black color 
of powder samples. In contrast with the radicals with 
triazine and pyrene cores with relatively low electron-
donating capability, the ESR signal intensity of TPA-TPA-O6 
and Spiro-O8 are significantly enhanced, which can be 
understood by the more obvious radical character and 
lower bandgap. 11 These results revealed that the strong 
donor-acceptor conjugation effect would not only reduce 
the optical bandgap but also determine the paramagnetic 
property of the radical materials. Besides, the conductivity 
of all demethylated counterparts has been improved 
(Figure S10). The triazine and pyrene cores with relatively 
low electron-donating capability making the HOMO energy 
levels of TPA-TPZ-O6 and TPA-PY-O8 lower than those of 
TPA-TPA-O6 and Sprio-O8. The lower HOMO energy level 
makes it difficult to be oxidized by O2 to form radicals, so it 
shows a weaker signal intensity in the ESR spectrum. In the 
solid-state, these radical materials showed high spin 
concentration, and this will lead to highly nonradiative 
decay and enhanced photothermal conversion efficiency 
(Figure 4D). 56,58  The PLQY with the value of demethylated 
counterparts TPA-TPA-O6, TPA-TPZ-O6, TPA-PY-O8, and 
Spiro-O8 are recorded as 0.1%, 0.9%, 1.0%, and 0.3% and 
the PL wavelength is around the  corresponding trace



 

 

Figure 4. Characterization of aromatic nitric acid radicals. (A) Electron spin resonance spectra of ANARs with the same mole 
amount (0.02 mmol) of solid samples at room temperature. (B) PL spectra of ANARs before and after demethylation in film, 
respectively. Film prepared under the same conditions. (C)  Schematic illustration of solar-driven water evaporation. (D) The 
Jablonski diagram illustrates the difference in energy dissipation of excited states before and after demethylation. 

protonated phenoxy precursors, respectively. Due to the 
high concentration of radical spin, the nonradiative decay 
will be largely boosted, which efficiently enhances the 
photothermal conversion of TPA-TPA-O6 in the solid state. 
The sky-blue photoluminescence of demethylated 
counterpart TPA-TPA-O6 is the most severely quenched in 
the solid state. The high concentration of radical spin and 
the almost negligible radiation decay of TPA-TPA-O6 
indicate that it will show great application potential in 
photothermal conversion. 11,12,13, 35 

As shown in Figure 6B, TPA-TPA-O6 show high broad-
band light absorption. Remarkably, the absorption of TPA-
TPA-O6 can be further extended upon aggregation in 
powder state with the broadened absorption spectrum 
from 300 to 2000 nm, which strongly facilitates the efficient 
sunlight harvesting. Comparing with other types of organic 
photothermal materials, TPA-TPA-O6 exhibit extremely 
wide absorption spectra. 10,12,30,31,59   

According to the powder absorption spectra, ESR and PL 
measurements, we propose that the TPA-TPA-O6 might 
show promising photothermal conversion performance due 
to the radical-promoted nonradiative decay (Figure 4 and 
Table S1). 48,56 The photothermal property of star-shaped 
radical materials was evaluated by monitoring the 
temperature increment under irradiation via IR thermal 

camera, and the detailed test condition is provided in the SI. 
As shown in Figure 6A, star-shaped radical materials were 
irradiated by an 808 nm laser with energy power of 0.8 W 
cm−2. After TPA-TPZ-O6 and TPA-PY-O8 were irradiated 
with 808 nm laser for 60 s, their temperature change from 
25 °C to about 40 °C and the temperature change slowly. 
The low concentration of radical spin and the relatively low 
PLQY value of TPA-TPZ-O6 and TPA-PY-O8 limit their 
photothermal conversion performance (Figure 4A and 
Table S1). Meanwhile, TPA-TPZ-O6 and TPA-PY-O8 might be 
partially protonated to form hydroxyl groups, which will 
also lead to their relatively poor photothermal conversion 
performance. However, TPA-TPA-O6 exhibit superior 
photothermal conversion performance compared to 
counterparts, for which the temperature increased rapidly 
from 25 °C to about 210 °C within 60 s, revealing a fast 
photothermal conversion process (Figure 5A and 5C). 10, 28, 

30, 40, 42, 60-62  As shown in Figure 5B, the temperature change 
process picture of TPA-TPA-O6 powder during the 
photothermal conversion process under 808 nm laser for 
60 s was recorded by an IR thermal camera. It was also 
observed that the temperature of the sample rises regularly 
with the increase of the power of the laser irradiation 
intensity (Figure 5C). With the increase of the laser 
irradiation power to 1.0 W cm−2, the temperature of TPA-
TPA-O6 raised up to about 250 °C within 60 s, and then 



 

decreased quickly to ambient temperature after turn-off 
laser. Notably, TPA-TPA-O6 exhibit excellent stability for ten 
cycles of laser irradiation on and off (Figure 6C), indicative 
of outstanding photothermal stability superior to many 
traditional organic photothermal materials. 12 Comparing 
the reported photothermal materials in terms of the 
temperature increment (Figure 5C), it can be found that the 
TPA-TPA-O6 exhibit a superior photothermal conversion 
behavior.  

Based on the results mentioned above, as a pure organic 
molecule TPA-TPA-O6 is a very stable and high-
performance photothermal conversion material with an 
extremely wide and rarely reported absorption spectra in 
our test condition including powder and dispersed state in 
PU (Figure 6D). 63-64 Its unique absorption characteristics  

make it promising to capture solar energy in solar-driven 
water evaporation. 65 We employed a commercially 
available white polyurethane (PU) porous foam as support 
to establish an efficient interfacial evaporation system by 
floating on water (Figure 4C). TPA-TPA-O6 was loaded 
inside the PU foam by impregnating pure PU foam in 
solution and drying under 80 °C, obtaining a brownish black 
PU foam (Figure S16). Among them, the equilibrium 
temperature of PU+ TPA-TPA-O6 foam (2.0 cm diameter 
foam with 30 mg of TPA-TPA-O6 loading) can reach to as 
high as 81.2 °C under 600 s continuous irradiation (Figure 
S14), while the PU foam itself only shows a surface 
temperature of 36°C under the same test condition (1 

Figure 5. (A) Photothermal conversion behavior of TPA-
TPA-O6 powder under 808-nm laser irradiation at different 
laser powers (0.2-1.0 W cm−2). (B) IR thermal images of 
TPA-TPA-O6 powder (20 mg) under 808-nm laser 
irradiation (1.0W cm−2) and then turned off. (C) The 
maximum temperatures for reported photothermal 
materials under laser irradiation. 

sunlight irradiation, 1.0 KW cm−2). As revealed in Figure 6E, 
the surface temperature of PU+ TPA-TPA-O6 foam floating 
on the water is remarkably higher than PU foam under 1 sun 
irradiation (1 kW m-2). The equilibrium temperature of the 
PU+TPA-TPA-O6 foam loaded by 30 mg TPA-TPA-O6 is 45 °C 
after 1 sun illumination (1 kW m−2) for 1 h continuous 
irradiation, which is about 10 °C higher than that of only PU 
foam.  

The mass change curves of water with PU foam and 
PU+TPA-TPA-O6 foam was recorded to evaluate the 
efficiency of solar-driven water evaporation (Figure 6F). It 
shows an evaporation rate of as high as 1.293 kg m−2 h−1 and 
the solar-driven water evaporation efficiency (η) of 89.41% 
under 1 sun illumination (detailed calculation process is 
shown in Supporting Information). Compared with other 
types of photothermal conversion materials, this kind of 
open-shell radicals demonstrate competitive performance 
of solar thermal conversion among organic materials 
(Figure S17 and Table S2). 10, 66-68 Comparing with the 
inorganic materials, our pure organic radical compounds 
are extremely soluble in the green solvents such as ethanol 
and DMSO, which make them show excellent 
reproducibility and solution processibility. 69-78 However, 
the high performance photothermal materials are not 
soluble in any solvents and challenging to reproduce their 
preparation. As shown in Figure S17 and Table S2, water 
evaporation efficiency and rate for reported materials were 
counted, 10, 59, 66-85 where the star-shaped dots represent 
pure organic materials. In the current high-efficiency pure 
organic system (CR-TPE-T), the main disadvantages include 
the following points: expensive raw materials, complex 
synthesis, difficulty in purification and very low yield. The 
TPA-TPA-O6 is cheap and easy to synthesize via only 2 steps 
with very high yield and convenient purification process. 10 
In addition, our results show that this design concept will 
produce large space for structural optimization, meanwhile 
it shows comparable performance with previous pure 
organic photothermal materials. 10,12,28 In addition, we 
further verify the feasibility of applying TPA-TPA-O6 for 
seawater desalination. Notably, after desalination, the 
concentrations of all four primary ions (Na+, Mg2+, Ca2+, and 
K+) originally present in seawater were significantly 
reduced (Figure S18), which are lower than the values 
through the typical membrane-based method. 86 Thus, the 
stable open-shell radicals showed excellent solar-driven 
desalination performance and promising practical 
application potential in future. 11,13, 35,87 

In summary, with low cost starting raw materials a series 
of high spin open-shell ANAR molecules were prepared 
with simple process and exhibit excellent electrochemical, 
photothermal stability and possess excellent photothermal 
conversion properties. From the comparison of different 
molecular structures and performances, we found that TPA-
TPA-O6 displays wider near-infrared absorption, higher 
paramagnetic behavior and photothermal conversion 
efficiency. A high solar thermal conversion efficiency of 
89.41% and water evaporation rate of 1.293 kg m−2 h−1 
under 1 sun irradiation are detected and represent as one 
of the most efficient photothermal conversion materials. 
And it was found that the intensity of radicals is positively 



 

 

Figure 6. (A) Photothermal conversion behavior of star-shaped radical materials under 808 nm laser (0.8 W cm-2) and then 
turned off in powder.  (B) The absorption of TPA-TPA-O6 in powder. (C) Anti-photobleaching property of TPA-TPA-O6 
powder during ten cycles of heating–cooling processes. (D) The absorption of PU, PU+TPA-TPA-O6 foams and the solar 
spectral irradiance (gray). (E) The temperature changes of PU and PU+TPA-TPA-O6 foams floating on water against sunlight 
irradiation time. (F) Water evaporation curves with PU foam and PU+TPA-TPA-O6 foam under simulated sunlight with an 
intensity of 1 kW m−2 (1 sun) (Insert: Digital photos of pure PU and PU+TPA-TPA-O6 foams, respectively.) 

correlated with the photothermal conversion 
characteristics. In summary, this study provides a novel 
strategy for the design of stable high spin radical materials. 
Furthermore, considering their totally restricted radiation 
decay and potential high conductivity, we will further 
develop ANAR materials with enhanced planarity for 
applications in the fields of photothermal conversion, 
organic electronic, spintronics as well as magnetic devices. 
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