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Abstract
In this work, we present a fully automated
method for the construction of chemically
meaningful sets of non-redundant internal coor-
dinates (also commonly denoted as Z-matrices)
from the cartesian coordinates of a molecular
system. Particular focus is placed on avoid-
ing ill-definitions of angles and dihedrals due
to linear arrangements of atoms, to consis-
tently guarantee a well-defined transformation
to cartesian coordinates, even after structural
changes. The representations thus obtained
are particularly well suited for pathway con-
struction in double-ended methods for transi-
tion state search and optimisations with non-
linear constraints. Analytical gradients for
the transformation between the coordinate sys-
tems were derived for the first time, which al-
lows analytical geometry optimizations purely
in Z-matrix coordinates. The geometry op-
timisation was coupled with a Symbolic Al-
gebra package to support arbitrary non-linear
constraints in Z-matrix coordinates, while re-
taining analytical energy gradient conversion.
Sample applications are provided for a num-
ber of common chemical reactions and illustra-
tive examples where these new algorithms can
be used to automatically produce chemically
reasonable structure interpolations, or to per-
form non-linearly constrained optimisations of
molecules.

Introduction
The choice of atomic coordinate systems and
the transformation between different represen-
tations has been a matter of debate since the
first molecular potential energy surfaces were
explored. Many of these representations are
based on our own, however biased, way of think-
ing about molecules in terms of atoms and
bonds. Internal coordinates span the potential
hypersurface on the basis of bond distances, an-
gles and dihedrals,1–3 but for a non-redundant
description there is no unique set available. The
coupling between different coordinates strongly
depends on the criteria applied in their con-
struction as well as the specific point in chemi-
cal space being described.4 This matter is par-
ticularly complicated when following the course
of a chemical reaction, whereby the number or
type of bonds will necessarily change. Defin-
ing a set of coordinates for start, end points
and everything in between is difficult and will
usually require user input. In addition struc-
tural changes along a reaction may lead to an
ill-defined (back-)transformation (from) to in-
ternal coordinates.5 An illustrative example of
the problems faced is included in the Support-
ing Information.
These issues become even more pertinent

with the growing number of projects relying
on machine learning (ML), large scale struc-
ture encoding,6 and automated, robust pro-

1



cesses for chemical structure conversion and
comparison.7,8 It should be noted that as a gen-
eral use descriptor, the Z-matrix representation
is not very useful. Although it is translational
and rotational invariant, it is not permutational
invariant. It is, however, still a powerful tool
in structure optimisation and related applica-
tions.9 A recent study by Meyer and Hauser
highlights the advantages of non-redundant in-
ternal coordinate systems in Gaussian pro-
cess regression minima optimisation,10 and is
equally helpful for transition state search.11 It
also finds applications in several pre- and post-
processing tasks. For example, in the compu-
tation of phase corrections for molecular pho-
todynamics calculations, one requires an auto-
mated algorithm for the detection of a phase
shift. Interpolation of two structures through
a Z-matrix can be used for pathological cases
where the geometric overlap is close to zero.12
However, its greatest relevance is in day to day
applications, as many codes struggle to handle
exceptions when atoms adopt linear conforma-
tion and the (back-)conversion (from) to inter-
nal coordinates becomes ill-defined. These are
regular occurrences when using standard quan-
tum chemistry packages in geometry optimisa-
tions under the application of constraints or in
more general searches.
We propose a black-box algorithm that gen-

erates chemically meaningful Z-matrices and
automatically avoids the conditions under
which the coordinate transformation between
Z-matrices and cartesian coordinates becomes
ill-defined. This new algorithm also works in
a hybrid way, i.e. the user can define cer-
tain internal coordinates and dependencies
while the rest of the Z-matrix is automatically
constructed. The automatically generated Z-
matrices agree with human chemical intuition,
have a set of coordinates that simplify the ex-
ploration of potential hyper surfaces (PHS) of
a molecule, and can be reliably transformed
to cartesian coordinates even after structural
changes.
Most electronic structure algorithms and

codes yield energy gradients in cartesian co-
ordinates. For the first time we derived fully
analytical expressions for the Jacobian matri-

ces of the coordinate transformations between
cartesian and Z-matrix coordinates which allow
the analytical transformation of energy gradi-
ents to Z-matrix coordinates. The transformed
energy gradients allow the structure optimiza-
tion purely in Z-matrix coordinates. So far this
transformation had to be performed numeri-
cally either by using a self-consistent equation
that is solved iteratively,13 or by “learning”
the gradient transformation in the context of
machine learning applications.9 Since we cou-
pled our code to the symbolic algebra package
sympy14 it is even possible to perform structure
optimizations with respect to arbitrary differ-
entiable expressions in the Z-matrix. These
non-linearly constrained optimizations can be
used to reduce the degrees of freedom, enforce
symmetries, or guide the search for transition
states. Especially with a chemically meaning-
ful Z-matrix these constraints can easily match
chemical intuition and are easy to define for
the user which makes Z-matrices superior com-
pared to redundant internal coordinates in that
regard. On the other hand we also have to
note that unconstrained geometry optimiza-
tion in redundant internal coordinates 15,16 still
outperforms Z-matrices. One example of a con-
strained optimization in this work is the highly
symmetric cubane where the cubic symmetry
can be imposed in Z-matrix coordinates and
by optimizing only rCC, rCH, and α the prob-
lem size is reduced to three degrees of freedom
(from 3 · 16− 6 = 42).
One of the advantages of the chemically

meaningful and reliable Z-matrix is the possi-
bility to interpolate internal coordinates (IC)
in an automated fashion. Using the same con-
struction table for both minimum structures,
their Z-matrices can be interpolated just as eas-
ily as their cartesian coordinates and if the Z-
matrices were defined in a chemically mean-
ingful way, the interpolated structures will be
usually much more chemically reasonable. We
demonstrate the superior automated interpo-
lation by generating starting guesses for the
Nudged Elastic Band (NEB) method. NEB ap-
proximates minimum energy paths (MEPs) by
connecting minimum structures as a string of
discrete intermediate structures (“images”). At
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the time of writing, most NEB implementations
generate the initial pathway by interpolation
in cartesian coordinates. These interpolations
will often generate structures with compressed
bonds or overlapping atoms when bond angles
change or molecule fragments rotate against
each other. There has been development of
methods that obviate this problem, such as
the Image-Dependent Pair Potential (IDPP),17
which performs a pre-optimization of the initial
cartesian interpolation, reducing atom overlaps
and bond deformations. In this work we demon-
strate that starting guesses from interpolation
in internal coordinates, that use black-box-like
automatically generated Z-matrices, performs
similar or better compared to cartesian inter-
polation + IDPP.
All discussed algorithms were implemented in

an open source python library chemcoord that
is publicly available at https://github.com/
mcocdawc/chemcoord and is actively used by
other chemists around the world.

Methods

Chemist Z-matrix definition

It is the aim of this section to analyse in depth
the linearity pitfalls that may appear in the use
of Z-matrices and how to avoid them. A further
aim is to define heuristics for the selection of
references that lead to a Z-matrix as a human
chemist would draw it.
In order to precisely analyse the possible pit-

falls when transforming from Z-matrix to carte-
sian coordinates, it is advantageous to adopt
the view of the Self-Normalizing Natural Exten-
sion Reference Frame (SN-NeRF) as described
by Parsons et al.5 The Z-matrix entries for an
atom are interpreted as spherical coordinates
and an atom is put into the canonical reference
frame. This frame is then rotated and trans-
lated into the orthonormalised, righthanded ref-
erence frame B which is spanned locally by the
three reference atoms. In the following the vari-
ables r, α, δ should canonically stand for dis-
tance, angle and dihedral. The index variables
i, b, a, d should canonically stand for the index

of the atom to be inserted and its bond, angle,
and dihedral defining atom. vi,vb, ... should be
the respective positions. By defining b, a, and d
we implicitly assumed that there are three ref-
erence atoms, which is not the case for the first
three atoms. Practically this implies that the
upper right triangle of a Z-matrix is left empty
and that there exist conventions for putting the
first atom into the origin, align the second atom
along the z-axis etc. To describe the transla-
tional and rotational degrees of a molecule in Z-
matrix coordinates we will instead use absolute
reference positions for the first three atoms.18
The conversion to cartesian coordinates is

now elegantly factored, because the first posi-
tioning into the canonical reference frame is a
function of only r, α, and δ and the affine-linear
transformation into the local reference frame B
is a function of only vb, va, and vd as can be
seen in equation 1.

vi = B(vb,va,vd) · s(r, α, δ) + vb (1)

The transformation from cartesian to Z-matrix
coordinates is then given by inverting equa-
tion 1:

(ri, αi, δi) = s−1(B−1(vb,va,vd) · (vi − vb))

= s−1(BT(vb,va,vd) · (vi − vb)),

(2)

withB orthogonal. A Z-matrix that can be con-
verted to cartesian coordinates will be referred
to as defined or valid Z-matrix. With the given
working equations it is now possible to isolate
the two possible pitfalls that prevent a defined
transformation between the coordinate systems
as illustrated in Figure 1.
The undefined dihedral in Figure 1a appears

as a definition problem when converting from
cartesian to Z-matrix coordinates. If the an-
gle α = 6 (i, b, a) equals 180° there are infinitely
many possible values for the dihedral and the
result of s−1 is undefined. It is assumed that en-
ergy and all other quantities of interest may be
formulated solely using cartesian coordinates,
so the surjectivity of s is sufficient and the di-
hedral is set to 0° in this case. When an angle
α of 180° is encountered upon converting from
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Figure 1: Schematic drawing of the two corner
cases.

Z-matrix to cartesian coordinates, the atom i is
simply set to

vi = vb + r
vb − va
‖vb − va‖

(3)

independent of the dihedral value.
The undefined local coordinate system in Fig-

ure 1b appears if the reference atoms are lin-
early aligned. In this case the matrix B in
equation 1 does not have full rank anymore
and the matrix B−1 in equation 2 is undefined.
It has to be stressed that this pitfall appears
independently of Z-matrix entries r, α, and δ
and depends solely on the position of the ref-
erence atoms in cartesian coordinates. For this
reason it is not possible to test for this patho-
logical case without converting the Z-matrix to
cartesian coordinates. To prevent this error it
is necessary to assert validity of the Z-matrix
upon creation by properly selecting the refer-
ence atoms. If any bond, angle, or dihedral is
modified later on, it is necessary to convert to
cartesian coordinates. If an invalid reference for
atom i is found, a dummy atom has to be in-
serted in the plane spanned by vb,va,vd before
the modification. We would like to emphasize
that both cases that cause undefined Z-matrices
can appear in usual molecular systems. An il-
lustrative example of the problems faced is in-
cluded in the Supporting Information, where
we compare with OpenBabel, the de-facto stan-
dard tool for coordinate transformations, in the
community.19
Up to this point the Z-matrix was just treated

as a coordinate system for arbitrary points in
space. It is now the aim to obtain a Z-matrix
suited for chemical needs. For this purpose the
construction table is defined as a Z-matrix with
only the b, a, and d columns containing only
the indices of reference atoms. The problem of
defining a chemical Z-matrix reduces to find-
ing a “good” construction table. A specific con-
struction table could also be created manually
while the calculation of Z-matrix entries bond,
angle, and dihedral is performed by the com-
puter. It has to be emphasized that there is
not one single correct solution for choosing a
construction table, but the following rules of
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thumb should give similar results to a human
chemist constructing a Z-matrix manually:

• The bond defining atom should lie in the
the first coordination sphere of i.

• The angle defining atom should lie in
the first coordination sphere of the bond
defining atom and in the second coordi-
nation sphere of atom i.

• The dihedral defining atom should lie in
the first coordination sphere of the angle
defining atom, in the second coordination
sphere of the bond defining atom, and in
the third coordination sphere of atom i.

• The Z-matrix definition should start in
the geometric center of the molecule i. e.
start with the atom nearest to the geo-
metric center.

• High valency atoms should appear higher
up in the Z-matrix and are preferred ref-
erence atoms. Valency in this context is
simply the number of connected atoms.
There is no distinction between single,
double, and triple bonds.

• The variation in the b, a, and d columns
should be kept minimal. If it is possible
for atom i to use the same references as i−
1, without violating previous constraints,
it should do so.

• The used references should propagate
through, which means that the bond
defining atom of the bond defining atom
of i should be the angle defining atom of
i and so on.

It is worth noting that apart from starting
near the molecule’s geometric center, all other
constraints are solely dependent on the connec-
tivity graph and not on specific positions in
cartesian space. Hence it is advantageous to use
a suitable data structure representing the con-
nectivity graph. Since the following algorithm
involves several tests for membership and set in-
tersections, it is advantageous to use hashtable
based data structures.

It is important to note that a single connected
structure is assumed for algorithm 1, but in cer-
tain situations it is necessary to construct a Z-
matrix for an ensemble of molecules/fragments.
In this case algorithm 1 is applied onto each
fragment/substructure separately. The result-
ing Z-matrices are then concatenated, which is
performed by substituting the absolute refer-
ences in the first three rows with atom labels
from other Z-matrices.

Algorithm 1 Finding a chemical construction table.

1: function get_construction_table(X)
2: B := get_connectivity_graph(X)

3: i := get_atom_label_closest_to_centroid(X)

4: visited := {i}
5: R[i] := {i: {’b’: ’origin’, ’a’: ’e_z’, ’d’: ’e_x’}} . This is the

construction table.
6: parent := {j : i for j in B[i]}
7: work_bond_dict := {j : (B[j] \ visited) for j in B[i]}
8: while not empty work_bond_dict do
9: for i in SortByValency(Keys(work_bond_dict)) do
10: if i ∈ visited then
11: continue
12: else
13: b := parent[i]
14: if b in Index(R)[:3] then
15: if Length(R) = 1 then
16: R[i] := {’b’: b, ’a’: ’e_z’, ’d’: ’e_x’}
17: else if Length(R) = 2 then
18: R[i] := {’b’: b, ’a’: MaxV(B[b] ∩ Keys(R)) , ’d’:

’e_x’}
19: . MaxV returns the atom label with the highest valency.
20: else
21: if Exists(parent[b]) then
22: a := parent[b]
23: else
24: a := MaxV(B[b] ∩Keys(R))

25: end if
26: if Exists(parent[a]) and parent[a] not in {b, a}

then
27: d := parent[a]
28: else
29: if not empty (B[a]∩Keys(R)) \ {b, a} then
30: d := MaxV((B[a] ∩Keys(R)) \ {b, a})
31: else
32: d := MaxV((B[b] ∩Keys(R)) \ {b, a})
33: end if
34: end if
35: R[i] :={’b’: b, ’a’: a, ’d’: d}
36: end if
37: else
38: R[i] := {’b’: b, ’a’: R[b][’b’], ’d’: R[b][’a’]}
39: end if
40: end if
41: visited := visited ∩{i}
42: for j in SortByValency(Keys(work_bond_dict[i])) do
43: new_work_bond_dict[j] := B[j]\ visited
44: parent[j] := i

45: end for
46: end for
47: work_bond_dict := new_work_bond_dict
48: end while
49: return R
50: end function

A test to prevent a locally undefined coordi-
nate system (Figure 1b) is still missing in algo-
rithm 1. This test is performed afterwards by
checking if there exists an atom i whose refer-
ence atoms are linearly aligned. If such an atom
is found, its dihedral defining atom d is changed
(preferably) to an atom from the same coordi-
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nation sphere relative to i. Instead of testing
afterwards, it is possible to include additional
conditionals in algorithm 1 to reject a selection
for d(i), if the reference of i is linear. This in-
line testing could be faster than the additional
test afterwards, but it would further increase
the amount of nested conditionals up to a point
where the code becomes very hard to under-
stand.

Equations for the coordinate
transformation
In this section the working equations for the
transformation between Z-matrix and cartesian
coordinates are given and the gradients are
derived. It will be assumed that the corner
case of an undefined coordinate system as dis-
cussed in the previous section and shown in
Figure 1a does not appear. Due to mathe-
matical elegance and superior perfomance the
Self-Normalizing Natural Extension Reference
Frame (SN-NeRF) algorithm by Parsons et al.
is used.5
In order to store the information about the

absolute positions in cartesian space an ap-
proach similar to Hoft et al. was imple-
mented.18 In the first three rows the origin and
canonical unit vectors can be treated as if they
were reference atoms, to specify translational
and rotational degrees of freedom. These fixed
points in cartesian space that are used to spec-
ify the absolute position will be called absolute
references.
The section will heavily rely on tensor for-

mulation. This might seem hyperbolic for the
transformation functions but it is necessary for
deriving the gradients. A further advantage of
the tensor formulation lies in the similarity be-
tween derived equations and actual implemen-
tation using vectorized calls.
The following typographic rules for the nota-

tion of variables will be used:

• Scalars will be denoted with italic letters

• Tensors of order one (vectors) will be de-
noted with lowercase, bold letters: x

• Tensors of order higher than one will be
denoted with uppercase, bold letters: X

The typography of functions depends on the
tensorial order of their image.
In the case of tensors the colon notation of array
slices as in Fortran is used. So the i-th column
vector of the matrix X may be written as X:,i

and the j-th row vector may be written as Xj,:.
Another important convention is the layout

of coordinates. The row wise alignment of XYZ
files makes sense for these CSV like files. But
in the following section it is mathematically ad-
vantageous to use a column wise alignment of
coordinates. This implies that the cartesian po-
sitions and Z-matrix entries of a molecule with
n atoms are an element of R3,n.

Transformation from Z-matrix to
cartesian coordinates

Let n be the number of atoms in a molecule. Let
I := [1...n] be the index set of the molecule, and
IR := [−2...n] the index set of the molecule with
three indices of absolute references. The b, a,
and d can also be interpreted as functions that
return for a given atom index i the respective
bond, angle, and dihedral defining atom of i. In
this case, we know that

i > b(i), a(i), d(i) . (4)

C ∈ ([0,∞) × [0, π) × [0, 2π))n is defined to
be the matrix of bond length r, angle α and
dihedral δ of the i-th atom:

C:,i = (ri, αi, δi)
T

The distance ri = C1,i is the distance between
atom i and b(i), the angle αi = C2,i is the angle
between atom i, b(i), and a(i) and the dihedral
δi = C3,i is the dihedral between atom i, b(i),
a(i), and d(i). Let X ∈ R3,n be the matrix of all
atom positions. Let XR ∈ Rn+3,3 be the matrix
of all atom positions plus the three absolute ref-
erences. (This means that the row index of XR

starts at -2.) So X:,i and XR
:,i are the position

of the i-th atom. The position of the i-th atom
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is given by:

X:,i: [0,∞)× [0, π)× [0, 2π)× R3,3 → R3

(C:,i,X
R
:,I(i)) 7→ X:,i(C:,i,X

R
:,I(i))

Let B be the third rank tensor, which contains
the orthonormal bases spanned by the refer-
ences of the i-th atom.

B:R(n+3),3 → Rn,3,3

bai :=
XR

:,a(i) −XR
:,b(i)∥∥∥XR

:,a(i) −XR
:,b(i)

∥∥∥
adi :=

XR
:,d(i) −XR

:,a(i)∥∥∥XR
:,d(i) −XR

:,a(i)

∥∥∥ (5)

B:,3,i := −bai

B:,2,i :=
adi × bai
‖adi × bai‖

B:,1,i :=
B:,2,i ×B:,3,i

‖B:,2,i ×B:,3,i‖

Using the IUPAC defined rotation directions
the function for transforming spherical to carte-
sian coordinates is defined as:20

S: ([0,∞)× [0, π)× [0, 2π))n → R3,nrα
δ

 := C:,i 7→ S:,i :=

 r sin(α) cos(δ)
−r sin(α) sin(δ)
−r cos(α)


(6)

If we collect (b(i), a(i), d(i)) into I(i) we can
combine the previous equations to yield a more
explicit version of equation 1 as

Xi,j(C:,j,X
R
:,I(j)) = Bi,:,j(X

R
:,I(j)) · S:,j(C:,j) +XR

i,b(j)

(7)

XR
:,i(C:,i,X

R
:,I(i)) =

{
X:,i(C:,i,X

R
:,I(i)) i ∈ I

XR
:,i i ∈ IR \ I.

(8)

Since XR itself depends on C, the function X
can be nested until the references are one of the
three absolute references.

Gradient for the transformation
from Z-matrix to cartesian coordi-
nates

The derivatives of cartesian coordinates with
respect to bonds, angles, and dihedrals in the
Z-matrix shall be evaluated. This gradient is
especially important because it will allow us
to transform energy gradients analytically from
cartesian to Z-matrix coordinates. Then it
is possible to perform geometry optimizations
purely in Z-matrix coordinates although most
electronic structure methods yield energy gra-
dients in cartesian coordinates.
Using the defined variables of the previous

subsection the derivative of equation 7 can be
written as:

∂Xi,j(C)

∂Ck,l

(C) =
∂Bi,:,j(X

R
:,I(j)) · S:,j(C) +XR

i,b(j)(C)

∂Ck,l

(C)

= Bi,:,j(X
R
:,I(j))

∂S:,j(C)

∂Ck,l

+
∂Bi,:,j(X

R
:,I(j))

∂XR
:,I(j)

(XR
:,I(j)(C))

·
∂XR

:,I(j)(C)

∂Ck,l

(C) · S:,j(C)

+
∂XR

i,b(j)(C)

∂Ck,l

(C)

(9)

This leads to three different cases depending
on (j < l), (j = l), or (j > l). Each
case is discussed individually in Appendix A
(equations 20, 22, and 23). The symbolically
evaluated derivatives ∂B(XR)

∂XR are given in the
supporting information. They were calculated
using the symbolic algebra package SymPy.14
With all equations at hand we can formulate
the combined algorithm 2.
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Algorithm 2 Calculation of the analytical gradient for the coordinate transformation from Z-
matrix to cartesian coordinates

for j = 1 . . . n do
for l = (j + 1) . . . n do

. Alternatively the whole array may be initialized with zeros.
(
∂X(C)

∂C

)
:,j,l,:

(C,XR) :=
∂X:,j(C)

∂C:,l
(C,XR) := 0

end for
end for
for j = 1 . . . n do

(
∂X(C)

∂C

)
:,j,j,:

(C,XR) :=
∂X:,j(C)

∂C:,j
(C,XR) = B:,:,j(X

R
:,I(j))

∂S:,j(C)

∂C:,j
(C)

end for
for j = 1 . . . n do

for l = 1 . . . j − 1 do

(
∂X(C)

∂C

)
:,j,l,:

(C,XR) :=
∂X:,j(C)

∂C:,l
(C,XR)

=
∂B:,:,j(X

R)

∂XR
:,I(j)

(XR)
∂XR

:,I(j)
(C)

∂C:,l
(C,XR) · S:,j(C) +

∂XR
:,b(j)

(C)

∂C:,l
(C,XR)

=

(
3∑

m1=1

∑
k∈{b(j),a(j),d(j)}

(
∂B(XR)

∂XR
(XR)

)
:,:,j,k,m1

(
∂XR(C)

∂C
(C,XR)

)
m1,k,l,:

)
· S:,j(C)

+

(
∂XR(C)

∂C
(C,XR)

)
:,b(j),l,:

=

3∑
m1=1

∑
k∈{b(j),a(j),d(j)}

3∑
m2=1

(
∂B(XR)

∂XR
(XR)

)
:,m2,j,k,m1

Sm2,j(C)

(
∂XR(C)

∂C
(C,XR)

)
m1,k,l,:

+

(
∂XR(C)

∂C
(C,XR)

)
:,b(j),l,:

end for
end for
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Transformation from cartesian to
Z-matrix coordinates

The inverse function of S (equation 6) is given
by:

S−1:R3,n → ([0,∞)× [0, π)× [−π, π))n

V:,i :=

xy
z

 7→ S:,i :=

√x2 + y2 + z2

acos
(−z
r

)
atan2

(−y
r
, x
r

)

(10)

The affine-linear transformation T of atom i
into the coordinate system spanned by its ref-
erences is given by:

T:R3,n → R3,n

X:,i 7→ T:,i = B−1:,:,i

(
XR

:,I(i)

)
·
(
X:,i −XR

:,b(i)

)
= BT

:,:,i

(
XR

:,I(i)

)
·
(
X:,i −XR

:,b(i)

)
= V:,i

(11)

The second equality is due to the orthogonality
of B. This gives for the bond, angle and dihe-
dral of the i-th atom the following equation:

C:,i = S−1:,i (T:,:,i(X:,i))

= S−1:,i

(
BT

:,:,i

(
XR

:,I(i)

)
·
(
X:,i −XR

:,b(i)

))
(12)

Note that the use of the atan2 function in equa-
tion 10 automatically solves the pitfall of an un-
defined dihedral discussed in the previous sec-
tion.

Gradient for the transformation
from cartesian to Z-matrix coordi-
nates

The aim is to calculate the derivative of bonds,
angles, and dihedrals in the Z-matrix with re-
spect to x, y, and z coordinates in cartesian
space. Using the defined variables of the pre-
vious subsection the derivative of equation 12

can be written as:

∂C:,j(X)

∂X:,l

(X) =
n∑

m1=1

(
∂S−1:,j (V:,m1)

∂V:,m1

(T:,:,m1(X:,m1))

· ∂T:,m1

∂X:,l

(X:,l)

)

A closer inspection of equation 10 reveals that
the j-th column of S−1 solely depends on the
j-th column of the argument matrix V:

∂C:,j(X)

∂X:,l

(X) =
∂S−1:,j (V:,j)

∂V:,j

(T:,:,j(X:,j))

· ∂T:,j(X)

∂X:,l

(X:,l)

(13)

The first factor in equation 13 is obtained by
straightforwardly deriving equation 10. For a
succinct notation it is necessary to define the
following variables:

(x, y, z)T := v := V:,j

r :=
√
x2 + y2 + z2

This gives:

∂S−1:,j (V:,j)

∂V:,j

(T:,:,j(X:,j)) =
∂S−1:,j (v)

∂v
(v)

=


x
r

y
r

z
r

−xz
r2
√
x2+y2

−yz
r2
√
x2+y2

√
x2+y2

r2

y
x2+y2

−x
x2+y2

0


(14)

For x = y = 0 a removable singularity exists,
which is due to the undefined dihedral case from
Figure 1a. Removing this singularity yields for
x = y = 0:  0 0 1

−1
z
−1
z

0
0 0 0


The second factor in equation 13 may be de-
rived by applying the product rule on equa-
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tion 11.

∂T:,j(X)

∂X:,l

(X:,l)

=
∂BT

:,:,j(X)

∂X:,l

(
XR

:,I(j)

)
·
(
X:,j −XR

:,b(j)

)
+BT

:,:,j

(
XR

:,I(j)

)
·
(
∂X:,j(X)

∂X:,l

(X:,l)−
∂XR

:,b(j)(X)

∂X:,l

(X:,l)

)
(15)

One can then insert equations 14 and 15 into 13.
Again this leads to three different cases depend-
ing on (j < l), (j = l), or (j > l). Each case is
discussed individually in Appendix B and yields
four working equations (equations 24, 25, 26,
27, and 28). The derivative ∂S−1(v)

∂v
is given

by equation 14. The symbolically evaluated
derivatives ∂BT(XR)

∂XR are given in the supporting
information if the transposition of the first two
indices is taken into account. With all equa-
tions at hand we can formulate the combined
algorithm 3.

Non-linearly constrained optimisa-
tion

In order to find the equilibrium geometry of
a molecule, its potential hyper surface (PHS)
is optimized in Z-matrix coordinates. This re-

quires a potential energy gradient expressed in
internal coordinates. To do so the potential en-
ergy is written as VX if it is a function of carte-
sian coordinates and as VC if it is a function
of Z-matrix coordinates. Furthermore denoting
the Hadamard product with � and the sum of
all matrix elements with

∑all allows to write:(
∂VC(C)

∂C
(C0)

)
i,j

=
all∑((

∂VX(X)

∂X
(X(C0))

)T

�
(
∂X(C)

∂C
(C0)

)
:,:,i,j

) (16)

For the purpose of abstracting equation 16 to
include non-linear constraints, the vector p is
defined as an arbitrary length vector contain-
ing only differentiable expressions. A Z-matrix
C containing symbolic expressions can then be
written as function C(p). The Z-matrix in
Table 2 is for example a function of the two-
dimensional vector (t, rCH)

T. The potential
function Vp expressed in terms of the param-
eter vector p is then:

Vp := VC ◦ C = VX ◦X ◦C
Vp(p) := VX(X(C(p)))

(17)

Deriving this function for the m-th entry in p
yields:

∂Vp(p)

∂pm
(p0)

=
3∑
i=1

n∑
j=1

n∑
k=1

3∑
l=1

((
∂VX(X)

∂X
(X(C(p0)))

)
j,i

·
(
∂X(C)

∂C
(C(p0))

)
i,j,k,l

·
(
∂C(p)

∂p
(p0)

)
l,k,m

)

=
3∑
i=1

n∑
j=1

n∑
k=1

3∑
l=1

((
∂VX(X)

∂Xi,j

(X(C(p0)))

)
·
(
∂Xi,j(C)

∂Cl,k

(C(p0))

)
·
(
∂Cl,k(p)

∂pm
(p0)

))
(18)

The first factor ∂VX(X)
∂X

is returned from elec-
tronic calculations and the second factor ∂X(C)

∂C

was derived in this paper. For the factor ∂C(p)
∂p

,
we note the previous restriction that only dif-

10



Algorithm 3 Calculation of the analytical gradient for the coordinate transformation from carte-
sian to Z-matrix coordinates

for j = 1 . . . n do
for l = 1 . . . n do

if l /∈ {j, b(j), a(j), d(j)} then
. Alternatively the whole array may be initialized with zeros.

(
∂C(X)

∂X

)
:,j,l,:

(X) := 0

end if
end for

end for
for j = 1 . . . n do

∂C:,j(X)

∂X:,j
(X) :=

∂S−1
:,j (V:,j)

∂V:,j
(T:,:,j(X:,j)) ·BT

:,:,j

(
XR

:,I(j)

)

∂C:,j(X)

∂X:,b(j)

(X) :=
∂S−1

:,j (V:,j)

∂V:,j
(T:,:,j(X:,j))

·
(
∂BT

:,:,j(X)

∂X:,b(j)

(
XR

:,I(j)

)(
X:,j −XR

:,b(j)

)
−BT

:,:,j

(
XR

:,I(j)

))

=
∂S−1

:,j (V:,j)

∂V:,j
(T:,:,j(X:,j))

·
(

3∑
m1=1

((
∂B(X)

∂X

(
XR

:,I(j)

))
m1,:,j,b(j),:

(
Xm1,j −XR

m1,b(j)

))

−BT
:,:,j

(
XR

:,I(j)

))

∂C:,j(X)

∂X:,a(j)

(X) :=
∂S−1

:,j (V:,j)

∂V:,j
(T:,:,j(X:,j)) ·

(
∂BT

:,:,j(X)

∂X:,a(j)

(
XR

:,I(j)

)(
X:,j −XR

:,b(j)

))

=
∂S−1

:,j (V:,j)

∂V:,j
(T:,:,j(X:,j))

·
(

3∑
m1=1

((
∂B(X)

∂X

(
XR

:,I(j)

))
m1,:,j,a(j),:

(
Xm1,j −XR

m1,b(j)

))

∂C:,j(X)

∂X:,d(j)

(X) :=
∂S−1

:,j (V:,j)

∂V:,j
(T:,:,j(X:,j)) ·

(
∂BT

:,:,j(X)

∂X:,d(j)

(
XR

:,I(j)

)(
X:,j −XR

:,b(j)

))

=
∂S−1

:,j (V:,j)

∂V:,j
(T:,:,j(X:,j))

·
(

3∑
m1=1

((
∂B(X)

∂X

(
XR

:,I(j)

))
m1,:,j,d(j),:

(
Xm1,j −XR

m1,b(j)

))

end for
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ferentiable expressions are allowed as Z-matrix
entries and use a symbolic algebra package. For
the usual applications in chemistry the restric-
tion of differentiability should be of no concern.
With the potential function from equation 17

and its gradient from equation 18 the BFGS
algorithm or other quasi-Newton methods can
be used to optimize a Z-matrix with non-linear
contraints to reduce the degrees of freedom.21

Application examples

Starting guesses for NEB calcula-
tions

The Nudged Elastic Band (NEB) method ap-
proximates minimum energy paths (MEPs)
connecting minimum structures as a string of
discrete intermediate structures (“images”). To
perform an NEB calculation, starting guesses
for the entire string of structures are required.
At the time of writing, most NEB implementa-
tions generate per default the initial pathway by
interpolation in cartesian atomic coordinates.
An interpolation is performed between the two
minima structures, potentially aided through a
lower level theory or added potential. However,
when trying to model changes in bond angles or
rotations of molecule parts, cartesian interpo-
lations will often generate structures with com-
pressed bonds or overlapping atoms. Since such
molecular movements are common in reaction
pathways, these shortcomings of the cartesian
approach will often delay NEB convergence, or
even prevent it altogether, when overlapping
atoms cause the calculations of one or more
structures to fail. Methods have been devel-
oped to reduce this problem, such as Image-
Dependent Pair Potential (IDPP),17 which per-
forms a pre-optimization of the initial cartesian
interpolation, reducing atom overlaps and bond
deformations.
One of the advantages we observe in the

method outlined in this paper is the possibility
to create structure interpolations in internal co-
ordinates (IC) in an automated fashion. Using
the same construction table for both minimum
structures, their Z-matrices can be interpolated

just as easily as their cartesian coordinates. In-
terpolations generated this way can effortlessly
model changes in bond angles and rotations of
large molecule parts, resulting in interpolated
structures that are much more chemically rea-
sonable.
If two Z-matrices use the same construction

table their changes of bond lengths, angles, and
dihedrals can be interpolated almost as in carte-
sian coordinates and give chemically reason-
able starting structures. The only difference to
cartesian coordinates are the equivalence rela-
tions (∼) for certain combinations of angles (α)
and dihedrals (δ)

(α, δ) ∼ (−α, δ + π)

α ∼ α + n2π n ∈ N
δ ∼ δ + n2π n ∈ N

(19)

the interpolation has to be adjusted to select
a chemical representation of these equivalence
classes. For example a change of −5° is pre-
ferred over 355° and a movement from (α, δ) to
(−α, δ) happens usually along the dihedral co-
ordinate. For this reason it is necessary before
the interpolation to select combinations of an-
gles and dihedrals such that 0 ≤ α ≤ π and
−π ≤ δ ≤ π. After interpolation the angle and
dihedral with the smallest absolute value should
be chosen (yielding a change of −5° over 355°).
These steps can be completely automatized.
To compare this new approach with the ex-

isting cartesian-based initial guesses, NEB cal-
culations were performed on several chemical
reactions, each once starting with an IC inter-
polation, a simple cartesian interpolation, and
an IDPP-preoptimized cartesian interpolation,
as described in the paper of Smidstrup et al.17
The reactions are shown in Figure 3. Reactions
R1–R3 provide classical examples of organic
chemistry reactivity, with the dimerization of
cyclopentadiene (R1),22 the Alder-ene reaction
between ethene and propene (R2)23 and the
cleavage of sulfolene (R3).24 Reactions R4–R5
are two selected nucleophilic reactions of carbo-
cations.25 The last three reactions R6–R8 are
rearrangement reactions in molecular dimers
without bond breaking/formation events. One
should note that R6 corresponds to a conver-
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sion from an O-bonding to a π-bonding dimer
of furan and methanol, while R7 should de-
scribe the translation of methanol from one side
of the furan molecule to the other.26,27 Albeit
not a thorough benchmark set, it does provide
some common tasks one faces in reaction path
optimisations. The theory level used for the
calculation of the R7 reaction (see Figure 2)
was PBEh-3c,28 and for all other calculations,
it was HF-3c.29 Climbing Image30 was used in
conjunction with variable spring constants,31 as
described by Henkelman and Jónsson. In all
cases we made use of eleven intermediate points
(or “images”).
The optimization algorithm used was a modi-

fied version of Momentum Gradient Descent.32
The related equations, as well as the definitions
of its parameters can be found in appendix C.
The parameterisation used in this work is pro-
vided in the Supporting Information. Our NEB
implementation was interfaced to Orca,33 with
the minima also provided by the software pack-
age. Further computational details are pro-
vided in the Supporting Information.

Figure 2: Comparison of individual optimisa-
tion steps for the three different choices of ini-
tial NEB interpolation: cartesian (Cart), carte-
sian+IDPP (Cart+IDPP) pre-optimisation and
our suggested Z-matrix interpolation (Internal).
In order to keep the figure easily readable, we
set as maximum threshold for optimisation 400
iterations.

The optimal choice of interpolation method
will, of course, strongly vary on the reaction

under study. Some paths will be easier to repre-
sent in cartesian space (such as the carbocation
reactions R4–R5), others are more assessible
with an adequate selection of internal coordi-
nates. As previously noted, there were three
sets of initial pathways: simple cartesian space
interpolation (Cartesian), the same definition
as in the latter case but with a preoptimisation
of the path with IDPP (Cartesian+IDPP) and
finally with our own Z-matrix definition (Inter-
nal). The number of individual optimisation
steps (gradient+energy calculations) required
to converge the NEB paths in dependence of
the method used for the initial pathway are
provided in Figure 2. In some cases conver-
gence could not be achieved when setting the
limit to 400 individual steps. For many reac-
tions, the performance of cartesian and inter-
nal coordinates is rather similar. It should be
noted, nonetheless, that there is not a single re-
action whereby the cartesian coordinate inter-
polation is superior (less iterations). The use
of IDPP closes the gap rather efficiently, pro-
ducing numbers very close or even lower than
the internal coordinates result (4 out of 8). The
most noticeable differences are observed in reac-
tions whereby the main atomic movements can
be best described through rotations, angles or
dihedral torsions. This is the case for the wa-
ter dimer and the two reactions involving the
methanol-furan dimer (Mefur), whereby carte-
sian coordinates produce a nonsensical interpo-
lation. The reason for this difference is visi-
ble when comparing the initial paths from both
sets (see Figures 4 and 5). In the cartesian case
one can easily encounter overlapping atoms as
the algorithm cannot distinguish bonded from
non-bonded atoms. In the case of R7 and R8
the internal coordinates interpolation is in fact
very close to the converged final pathway. One
should note that we have not in any way influ-
enced the Z-matrix definitions. The procedure
is completely black box, as it defines a Z-matrix
for the starting structure and applies the same
construct to the product state automatically.
Given that these IC-interpolations are already
competitive with IDPP corrected pathways, one
can expect that this performance can be still
significantly improved.
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Figure 3: Reactions featured in the NEB cal-
culations, with the corresponding short desig-
nation.

(a) (b) (c)

(d) (e) (f)

Figure 4: Movement of Methanol relative to
Furan interpolated in Z-matrix coordinates (re-
action R7).

(a) (b) (c)

(d) (e) (f)

Figure 5: Movement of Methanol relative to
Furan interpolated in cartesian coordinates (re-
action R7).
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Geometry optimisation

In the following section we want to apply equa-
tion 18 which yields gradients of arbitrary
differentiable symbolic expressions to perform
non-linearly constrained optimisation in inter-
nal coordinates.
One example is the highly symmetric cubane

where the cubic symmetry can be imposed as
in the example Z-matrix depicted in Table 1.
By optimizing for rCC, rCH, and α the problem
size is reduced to three degrees of freedom and
cubic symmetry is automatically preserved.

Table 1: Z-matrix of cubane with symmetry
constraints. Bond lengths in Å, angles in de-
grees.

atom b bond a angle d dihedral

7 C ~0 0.0 ~ez 0.0 ~ex 0.0
9 C 7 rCC ~ez 0.0 ~ex 0.0
2 C 7 rCC 9 90.0 ~ex 0.0
5 C 7 rCC 9 90.0 2 -90.0
3 C 2 rCC 7 90.0 9 -0.0
12 C 5 rCC 7 90.0 9 0.0
1 C 5 rCC 7 90.0 9 90.0
4 C 1 rCC 5 90.0 7 -90.0
6 H 1 rCH 5 180α

π
7 135.0

8 H 2 rCH 7 180α
π

9 135.0
10 H 7 rCH 2 180α

π
9 -135.0

11 H 3 rCH 2 180α
π

7 135.0
16 H 9 rCH 7 180α

π
2 -135.0

13 H 5 rCH 7 180α
π

9 -135.0
14 H 4 rCH 1 180α

π
5 -135.0

15 H 12 rCH 5 180α
π

7 -135.0

The electronic structure calculations were
Hartree Fock in a STO-3G basis set and were
performed with OpenMolcas.34 The analytic
gradients in cartesian coordinates were trans-
formed using equation 18 and the BFGS algo-
rithm implementation from SciPy was used to
guess the structure for the next iteration.21 The
geometry was considered to be converged, if the
maximum norm of the gradient was less than
5 · 10−4 and the absolute change of energy was
less than 1 · 10−6Eh. With starting values of
rCC = 1.4Å, rCH = 1Å, and α = 120°

180°π the
optimisation of cubane converged after 9 iter-

ations to rCC = 1.618Å, rCH = 1.159Å, and
α = 125.27°

180° π.
Another example is given by the Z-matrix

(Table 2) of 2-methylpropane. The parameter t
denotes a coupled movement of C−C stretches
and C−C−C bends with one C−C bond grow-
ing exponentially. The electronic structure cal-
culation uses the same parameters as before and
with starting values of t = 0 and rCH = 1Å
the calculation converges after 10 iterations to
t = −0.054 and rCH = 1.089Å. It has to be
stressed that it would be very complicated to
define similar constraints in cartesian coordi-
nates. The parameter t appears both in the
bond lengths and angles; subsequent hydro-
gens in Table 2 depend on the previous carbon
atoms. Both facts imply that in cartesian coor-
dinates the constraints would have to appear in
the x, y, and z coordinates of nearly every atom
and would involve complicated trigonometric
expressions, while the same constraints in Z-
matrix coordinates (Table 2) are user-friendly
to define and read.
Constraints as in Table 2 can be used to en-

force e.g. symmetry or certain paths in the
search of a transition state. If there are no con-
straints and all internal degrees of freedom are
to be optimized, our method is unfortunately
inferior to the unconstrained optimization in
redundant internal coordinates. One reason is
that usual approximations and perfomance en-
hancements such as a model Hessian or step
restrictions based on chemical knowledge can-
not be applied.15,16 There is no “one size fits all”
approximation if arbitrary symbolic constraints
are to be optimized as in the previous examples.
One would require guess force constants for the
computed internal coordinates. In the future
these values could potentially be tabulated and
interpolated and/or partially be derived from
the aforementioned model Hessians. Instead
of the traditional quasi-Newton algorithms the
constrained optimization could be also coupled
with new techniques like Kriging.35,36
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Table 2: Z-matrix of 2-methylpropane with non-linear constraints. Bond lengths in Å, angles in
degrees.

atom b bond a angle d dihedral

5 C ~0 0.3728 ~ez 66.392 ~ex -100.576
2 C 5 et + 1.5 ~ez 95.608 ~ex -10.577
11 C 5 t+ 1.5 2 180/π arcsin (t) + 110 ~ex -99.902
7 C 5 t+ 1.5 2 180/π arcsin (t) + 110 11 122.638
6 H 5 rCH 2 108.405 11 -118.668
1 H 2 rCH 5 111.344 11 178.701
3 H 2 rCH 5 111.575 11 -61.305
4 H 2 rCH 5 111.338 11 58.672
12 H 11 rCH 5 111.582 2 61.294
13 H 11 rCH 5 111.348 2 -58.695
14 H 11 rCH 5 111.348 2 -178.720
8 H 7 rCH 5 111.343 2 58.688
9 H 7 rCH 5 111.567 2 -61.303
10 H 7 rCH 5 111.344 2 178.716

Conclusions
With the growing interest in automated proce-
dures for the exploration of chemical space, it
becomes more than ever pertinent to develop
a robust, chemically meaningful ansatz for the
definition of internal coordinates. In this work,
we provide such an algorithm, overcoming the
pitfalls commonly encountered when convert-
ing from the cartesian to the internal coordi-
nate space and backwards. Analytic transfor-
mations of gradients from cartesian to Z-matrix
coordinates are derived for the first time, im-
proving on existing numerical algorithms for
this task. In combination with symbolic alge-
bra packages, the analytic gradients can be used
for non-linearly constrained geometry optimisa-
tions in Z-matrix space.
In order to illustrate the reliability of our pro-

cedure, we use it to generate starting pathways
for nudged elastic band calculations. Compared
to cartesian space interpolation, our Z-matrix
formulation is clearly superior. A comparison
is also provided to refined pathways making use
of the Image-Dependent Pair Potential (IDPP)
method. The Z-matrix results, even without
any type of post-processing, are still compet-
itive and offer clear advantages for conversion
processes in molecular dimers. This is all car-

ried out without any previous knowledge of the
chemical step in question, as the algorithm fol-
lows a priority derived from the connectivity
matrix.
We also performed non-linearly constrained

geometry optimisations on cubane and 2-
methylpropane, to show that this new method
allows contraints with arbitrary differentiable
symbolic expressions. This can be used to en-
force symmetries, to reduce degrees of freedom,
or to apply chemical knowledge for searching
transition states.
We believe this set of tools will be of great in-

terest to the community. It also provides a step-
by-step algorithm (open for discussion) of how
we chemists interpret connectivity and envis-
age internal coordinates. So far the algorithm
has reliably provided Z-matrices for a plethora
of chemical systems, from single molecules, to
non-covalent and coordination complexes. In-
put from the community will be highly valued
going into the future.
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ciety.
Appendix A - Discrimination
of transformation cases from Z-
matrix to cartesian coordinates

In this subsection we will discuss the three
different cases j < l, j = l, and j > l

that appear in the gradient for the trans-
formation from Z-matrix to cartesian coordi-
nates. We repeat the corresponding equation 9

∂Xi,j(C)

∂Ck,l

(C) = Bi,:,j(X
R
:,I(j))

∂S:,j(C)

∂Ck,l︸ ︷︷ ︸
A

+
∂Bi,:,j(X

R
:,I(j))

∂XR
:,I(j)

(XR
:,I(j)(C)) ·

∂XR
:,I(j)(C)

∂Ck,l

(C) · S:,j(C)︸ ︷︷ ︸
B

+
∂XR

i,b(j)(C)

∂Ck,l

(C)︸ ︷︷ ︸
C

and split it into summands A, B, and C to
evaluate them separately.

Derivative with j < l

The variation of a Z-matrix entry can never af-
fect the cartesian position of atoms previous to
this entry. Therefore, the corresponding deriva-
tive has to be zero.

∀ i, j, k, l ∈ {1 . . . n} ∧ j < l :
∂Xi,j(C)

∂Ck,l

= 0

(20)

It should be noted that the derivative of abso-
lute references after Z-matrix entries is always
zero:

∀ j ∈ IR \ I :
∂XR

i,j(C)

∂Ck,l

= 0 (21)

Derivative with j = l

In this case we know, because of equation 4,
that l > b(l), a(l), d(l) = b(j), a(j), d(j). To-
gether with equation 20 it may be concluded,
that

∂XR
:,I(j)(C)

∂Ck,j

≡ 0

∂XR
i,b(j)(C)

∂Ck,j

≡ 0

⇒ B ≡ C ≡ 0

which implies:

∂Xi,j(C)

∂Ck,j

≡ Bi,:,j(X
R
:,I(j))

∂S:,j(C)

∂Ck,j

. (22)

The only missing term is the gradient
of S (equation 6) which is given by:

∂S:,j(C)

∂C:,j

(C:,j) =

 sin(C2,j) cos(C3,j) C1,j cos(C2,j) cos(C3,j) −C1,j sin(C2,j) sin(C3,j)
− sin(C2,j) sin(C3,j) −C1,j sin(C3,j) cos(C2,j) −C1,j sin(C2,j) cos(C3,j)
− cos(C2,j) C1,j sin(C2,j) 0
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Derivative with j > l

A closer inspection of equation 6 reveals, that
the j-th column of S solely depends on the j-
th column of the argument matrix. It may be
concluded, that

∀ j 6= l :
∂Si,j(C)

∂Ck,l

≡ 0

⇒ A ≡ 0

which implies:

∂Xi,j(C)

∂Ck,l

(C)

=
∂Bi,:,j(X

R
:,I(j))

∂XR
:,I(j)

(XR
:,I(j)(C))

·
∂XR

:,I(j)(C)

∂Ck,l

(C) · S:,j(C)

+
∂XR

i,b(j)(C)

∂Ck,l

(C)

(23)

Appendix B - Discrimination of
transformation cases from carte-
sian to Z-matrix coordinates

In this subsection we will discuss the three dif-
ferent cases j < l, j = l, and j > l that
appear in the gradient for the transformation
from cartesian to Z-matrix coordinates in equa-
tion 13.

Derivative with l /∈ {j, b(j), a(j), d(j)}

The Z-matrix entries of the j-th atom can only
change if itself or its reference frame moves in
cartesian space. For this reason we can write

∀ l /∈ {j, b(j), a(j), d(j)}:
(
∂C(X)

∂X

)
:,j,l,:

≡ 0 .

(24)

Derivative with l = j

Deriving the reference frame of the j-th atom
with respect to vj itself, has to be zero

∂BT
:,:,j(X)

∂X:,j

≡ 0 .

The positions of each atom in cartesian space
are independent of each other:

∂XR
:,b(j)(X)

∂X:,j

≡ 0 .

The following equation is trivial:

∂X:,j(X)

∂X:,j

≡ 1 .

Combining the three previous equations and in-
serting into 15 yields:

∂T:,j(X)

∂X:,j

(X) = BT
:,:,j

(
XR

:,I(j)

)
Hence by inserting into 13:(

∂C(X)

∂X

)
:,j,j,:

(X) =
∂C:,j(X)

∂X:,j

(X)

=

(
∂S−1:,j (V:,j)

∂V:,j

(T:,:,j(X:,j))

)
·BT

:,:,j

(
XR

:,I(j)

)
(25)

Derivative with l = b(j)

With the same argumentation as before the fol-
lowing relationships hold:

∂XR
:,b(j)(X)

∂X:,b(j)

≡ 1

∂X:,j(X)

∂X:,b(j)

≡ 0

By inserting into equation 15 one obtains:

∂T:,j(X)

∂X:,b(j)

(X)

=
∂BT

:,:,j(X)

∂X:,b(j)

(
XR

:,I(j)

)(
X:,j −XR

:,b(j)

)
−BT

:,:,j

(
XR

:,I(j)

)
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(
∂C(X)

∂X

)
:,j,b(j),:

(X) =
∂C:,j(X)

∂X:,b(j)

(X)

=
∂S−1:,j (V:,j)

∂V:,j

(T:,:,j(X:,j)) ·

(
∂BT

:,:,j(X)

∂X:,b(j)

(
XR

:,I(j)

)(
X:,j −XR

:,b(j)

)
−BT

:,:,j

(
XR

:,I(j)

))
(26)

Derivative with l = a(j) or l = d(j)

With the same argumentation as before the fol-
lowing relationships hold:

∂XR
:,b(j)(X)

∂X:,a(j)

≡
∂XR

:,b(j)(X)

∂X:,d(j)

≡ 0

∂X:,j(X)

∂X:,a(j)

≡ ∂X:,j(X)

∂X:,d(j)

≡ 0

It may be concluded by inserting into equation
15:

∂T:,j(X)

∂X:,a(j)

(X) =

(
∂BT

:,:,j(X)

∂X:,a(j)

(
XR

:,I(j)

))
·
(
X:,j −XR

:,b(j)

)
∂T:,j(X)

∂X:,d(j)

(X) =

(
∂BT

:,:,j(X)

∂X:,d(j)

(
XR

:,I(j)

))
·
(
X:,j −XR

:,b(j)

)
Which finally gives by inserting into equa-
tion 13:(

∂C(X)

∂X

)
:,j,a(j),:

(X) =
∂C:,j(X)

∂X:,a(j)

(X)

=

(
∂S−1:,j (V:,j)

∂V:,j

(T:,:,j(X:,j))

)

·

(
∂BT

:,:,j

∂X:,a(j)

(
XR

:,I(j)

)(
X:,j −XR

:,b(j)

))
(27)

and (
∂C(X)

∂X

)
:,j,d(j),:

(X) =
∂C:,j(X)

∂X:,d(j)

(X)

=

(
∂S−1:,j (V:,j)

∂V:,j

(T:,:,j(X:,j))

)

·

(
∂BT

:,:,j

∂X:,d(j)

(
XR

:,I(j)

)(
X:,j −XR

:,b(j)

))
(28)

Appendix C - Momentum Gradient
Descent and Modified Momentum
Gradient Descent

In standard Momentum Gradient Descent, the
step vector sn at the n-th iteration is given as

sn = γ · sn−1 − α · ∇E (29)

where ∇E is the energy gradient, α is a step
size (usually between 0 and 1), sn−1 is the step
vector of the previous iteration, and γ is the
friction coefficient - effectively also a stepsize.
In the field of machine learning, where this al-
gorithm was used, it usually has a value around
0.9.37
In the modified version of Momentum Gra-

dient Descent used for the NEB calculations
in the ’Application Examples’-section, γ is no
longer a constant. Rather, it is now given as

γ(∇E, sn−1, γmax)

= min

[
γmax,

1

2

(
1 +
〈−∇E, sn−1〉
||∇E|| · ||sn||

)]
,
(30)

where γmax is the maximum gamma value. The
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step vector sn is then calculated via

s′n = γ(∇E, sn−1, γmax) · sn−1 − α · ∇E , then

sn =

{
s′n if ||s′n|| ≤ smax

s′n · smax

||s′n||
otherwise

.

(31)
smax is the maximum step length.

Supporting Information Avail-
able
The Supporting Information contains an
example for a failing conversion between
Cartesian and Z-matrix coordinates, a de-
scription of coordinate and input files
(additional_files.zip) to reproduce our re-
sults, and the analytical derivatives of the basis
B.
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