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Abstract  

The combination of free energy simulations in the alchemical and configurational spaces provides a 

feasible route to access the thermodynamic profiles under a computationally demanding target Hamiltonian. 

Normally, due to the significant differences between the computational cost of ab initio quantum mechanics 

(QM) calculations and those of semi-empirical quantum mechanics (SQM) and molecular mechanics (MM), 

this indirect method could be used to obtain the QM thermodynamics by combining the SQM or MM results 

and the SQM-to-QM or MM-to-QM corrections. In our previous works, a multi-dimensional nonequilibrium 

pulling framework for Hamiltonian variations has been introduced based on bidirectional pulling and 

bidirectional reweighting. The method performs nonequilibrium free energy simulations in the 

configurational space to obtain the thermodynamic profile along the conformational change pathway under a 

selected computationally efficient Hamiltonian, and uses the nonequilibrium alchemical method to correct or 

perturb the thermodynamic profile to that under the target Hamiltonian. The BAR-based method is designed 

to achieve the best generality and transferability and thus leads to modest (~20 folds) speedup. In this work, 

we explore the possibility of further accelerating the nonequilibrium free energy simulation by employing 

unidirectional pulling and using the selection criterion to obtain the initial configurations used to initiate 

nonequilibrium trajectories following the idea of adaptive steered molecular dynamics (ASMD). A single 

initial condition is used to seed the whole multi-dimensional nonequilibrium free energy simulation and the 

sampling is performed fully in the nonequilibrium ensemble. Introducing very short ps-length equilibrium 
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sampling to grab more initial seeds could also be helpful. The ASMD scheme estimates the free energy 

difference with the unidirectional exponential average (EXP), but it does not follow exactly the requirements 

of the EXP estimator. Another deficiency of the seeding simulation is the inherently sequential or serial 

pulling due to the inter-segment dependency, which triggers some problems in the parallelizability of the 

simulation. Numerical tests are performed to grasp some insights and guidelines for using this selection-

criterion-based ASMD scheme. The presented selection-criterion-based multi-dimensional ASMD scheme 

follows the same perturbation network of the BAR-based method, and thus could be used in various 

Hamiltonian-variation cases.  

 

Keywords: Steered Molecular Dynamics, Multi-dimensional Nonequilibrium Pulling, Seeding Simulations, 

Exponential Average, Gaussian Approximation 
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1. Introduction 

All-atom molecular dynamics (MD) simulation is now a feasible tool to access the atomistic motions in 

complex systems.1-3 The statistically meaningful estimates of observables require extensive sampling of the 

phase space, and the sampling time depends on the intrinsic properties of the system, the description or 

Hamiltonian, and the sampling strategy. Probability distributions are often satisfactorily transformed to the 

free energy profiles or landscapes. The differences between the free energies of different states depict their 

relative stabilities.  

Enhanced sampling simulations provide a computationally feasible route to obtain converged 

thermodynamics in complex systems.4-9 They sample the system on modified energy landscapes to enhance 

the sampling efficiency and explore the phase space effectively.10-13 There are various types of enhanced 

sampling techniques. For instance, the traditional umbrella sampling14-16 adds a series of harmonic biasing 

potentials along the configurational collective variable (CV) to enhance the sampling efficiency in specific 

regions of phase space. The replica exchange method17-22 designs a series of systems similar to the interested 

one but with higher flexibility in some degrees of freedom and attempts to exchange configurations in 

different equilibrium ensembles to enhance the barrier crossing and conformational search. The 

nonequilibrium steered MD (SMD) method shares similar features of the equilibrium umbrella sampling but 

adds time-independent biasing potential to drive the system from one state to another. The SMD approach is 

less frequently used, but is observed to be promising in various case studies.23-30 As the energy landscape is 

modified, proper post-processing methods are required to recover the statistics in the original unperturbed 

ensemble. Theoretically rigorous reweighting estimators in free energy simulations could be obtained based 

on free energy perturbation (FEP).31 The estimator itself has many problems. For instance, the sample-size 

hysteresis problem10, 32, 33 introduces significant biases into the finite-sample estimates, and the statistical 

error is heavily underestimated.34, 35 These statistical problems could be avoided to some extent by 

combining the perturbations from multiple directions. In the two-state case, the statistically optimal 

estimator named Bennett Acceptance Ratio (BAR)36, 37 uses the Fermi weighting function to process the data 

points, while in the multi-state situation the generalization of BAR named MBAR38, 39 is of the highest 

statistical efficiency. The results obtained from perturbation-based reweighting estimators rely on the 

magnitude of phase space overlap between different states, and those of the neighboring states are often 

higher than the non-neighboring cases. As a result, the BAR estimates are often identical to the MBAR ones. 

The nonequilibrium generalization of the FEP derivatives replaces the energy difference with the 

nonequilibrium work (NEW) accumulated during nonequilibrium SMD simulations, and shares the same 



4 / 53 
 

statistical problems as the equilibrium perturbation schemes. The Jarzynski’s Identity (JI)40 corresponds to 

the exponential average (EXP) or FEP estimator, and the Crooks’ Equation (CE)41 is the nonequilibrium 

scenario of BAR. The equilibrium and nonequilibrium perturbation-based schemes are observed to achieve 

similar efficiency and accuracy in the construction of the potential of mean force (PMF) in various cases.42-46  

Complex processes often involve the rearrangements of multiple regions of the system, and it is 

difficult to find one or several proper CVs to describe these motions. Defining an optimal set of CVs 

requires a deep understanding of the dynamics of the system under investigation, which is very hard even for 

experienced researchers. For instance, the binding/unbinding event of protein-ligand complexes may involve 

significant conformational changes of the protein, which is hard to be captured with several CVs. The 

binding pathway may involve multiple ligand-residue interactions, some of which may be necessary to be 

included in the definition of the CV set. Considering the complexity of these problems, some alternative 

ways to obtain the variation of thermodynamics of the process could be preferred. The alchemical method 

only considers the differences between thermodynamics at physical end states. It avoids the direct simulation 

along the physical transformation pathway by defining an artificial alchemical order parameter.47-53 The free 

energy profile along this non-physical pathway is constructed and the overall free energy difference is 

obtained. As the alchemical method relies on the construction of a thermodynamic cycle to determine the 

relative free energy of different states,54, 55 it could be viewed as an indirect regime to obtain the free energy 

difference. The alchemical method could also be used to perturb the description of the system.56-58 For 

instance, the ab initio quantum mechanics (QM) results could be obtained by employing the alchemical 

method to perturb the semi-empirical QM (SQM) results.34 The SQM results could also be obtained in a 

similar way by perturbing the thermodynamics obtained under some molecular mechanics (MM) force 

fields.59 Due to the significant differences between the computational costs of different Hamiltonians, 

performing such perturbation could render some speedups compared with direct simulations under the 

computationally demanding Hamiltonians. In the case that the energetics under different Hamiltonians show 

significant differences, the staging technique should be used to improve the convergence behavior. However, 

equilibrium sampling in the intermediate states is computationally demanding, which actually degrades the 

efficiency of the indirect method. The situation is further aggravated when the configurational sampling in 

the intermediate state is difficult to converge.55, 60-62 In this case, the nonequilibrium approach could be 

useful, as the intermediate-state sampling is avoided to some extent.  

The combination of the enhanced sampling simulations in the configurational and alchemical spaces 

provides the multi-dimensional picture of the thermodynamic landscapes.63-71 The PMF along the 
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configurational CV at one alchemical state depicts the variations of thermodynamics in the process under 

that alchemical description/Hamiltonian, while the PMF along the alchemical CV at one configurational 

state shows the variations of some observables under different alchemical Hamiltonians or descriptions. Our 

previous works have provided a multi-dimensional nonequilibrium pulling framework for Hamiltonian 

variations, which features the stratification strategy, bidirectional pulling and bidirectional reweighting.34, 59, 

72 The BAR-based scheme obtains the thermodynamics along the configurational CV under some 

computationally efficient Hamiltonians such as SQM Hamiltonians, and perturbs the results to some ab 

initio levels with the alchemical method. Bidirectional pulling is used along both of these two perturbation 

pathways. However, as has been pointed out in the discussions of the previous works, the convergence of the 

simulation could be easily achieved in some cases,34, 59, 72 and unidirectional pulling could be sufficient. 

Therefore, we explore the possibility of unidirectional pulling in the current work. A computationally 

efficient unidirectional pulling scheme in the SMD regime is the adaptive steered MD (ASMD) method, 

which relies on the stratification strategy and uses some selection criteria to obtain the initial configuration 

for the next nonequilibrium pulling segment from the configurations of the previous pulling segment.73-78 In 

this way, the initial configurational sampling in the SMD simulations is avoided and the efficiency is 

consequently improved. As only one or several configurations are used to spawn the whole multi-

dimensional nonequilibrium pulling simulations, the method could be considered as a seeding SMD 

approach. In the following parts, we would construct the multi-dimensional pulling framework in the ASMD 

regime and provide extensive tests on the perturbation parameters, aiming at providing some guidelines for 

using the method.  

 

2. Methodology 

The theoretical framework in the current work focuses on the variation of Hamiltonians or descriptions 

of the system. Each Hamiltonian defines a unique microscopic state of the simulated system, and we use the 

Hamiltonian H  to describe the status of the system. The differences between the Hamiltonians could be, for 

instance, the details of the multi-scale treatment (e.g., the QM theory, the basis set, and the QM region). The 

microstate ( )1 2,k k  is described with the state-specified Hamiltonian 
1 2,k kH , the two dimensions of which 

describe the conformational rearrangement and the description/model change, respectively. Consider the 

case that the thermodynamics under a target Hamiltonian ( )2..., K  is pursued. We explore the configurational 

space with 2 1k = , and then perturb the results to another Hamiltonian 2 2k K= . An illustration of the 
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thermodynamic cycle is depicted in Fig. 1a. Unidirectional pulling and unidirectional reweighting are 

performed in all perturbation parts, and only transformations drawn with solid arrows are performed. The 

reason that the thermodynamics along the configurational CV under the target Hamiltonian 
2...,kH  could be 

efficiently obtained by the indirect method is that the conformational sampling could be much more time-

consuming than the alchemical transformation. Rearrangements of many atoms or groups are involved in the 

process of interest.  

During each nonequilibrium transformation in the configurational space, the time-dependent harmonic 

potential V  given below is used to drive the system from one state to another,79 

( )( )
2

0( ) ( )
2

k
V t = −q q                                                                                                                  (1). 

Here, k  is the force constant, q  is the coordinate vector, ( )0 t  denotes the time-dependent protocol for CV 

variation defining the configurational transformation, and   refers to the current value of the CV. A large 

force constant could be used to suppress the fluctuations of the CV and keep the value of the CV very close 

to the predefined driving protocol, namely achieving the stiff spring limit.59, 78, 80-85 A small time step should 

be used to avoid unstable dynamics and the resulting perturbations of the distributions.34, 86-89 The change of 

the alchemical order parameter follows exactly the predefined protocol.  

Although the whole process could be simulated in one long pulling simulation, the dissipation is large 

and the waiting time before useful feedback is long. Therefore, to achieve a better numerical behavior and 

obtain faster user feedback, the whole pulling excursion could be divided into a series of shorter segments. 

As each of them could be finished in a much shorter simulation time and could be simulated independently, 

the parallelizability is improved and the output could be accessed much faster. Such pleasingly parallel 

computation also avoids the slowdown triggered by communications overhead, thus maximizing the 

performance. As the sampling in the configurational space is harder than that in the alchemical space, we 

only stratify the configurational sampling into K  conformational states and 1K −  segments. Note that for 

periodic configurational CV, the number of the conformational states is the same as that of the segments. As 

the convergence of the nonequilibrium pulling simulations depends heavily on the phase space overlap 

between different states and the magnitude of the perturbations during the nonequilibrium pulling process, 

the pulling simulations are only performed between neighboring states.  

In our previous BAR-based pulling framework, we aim at achieving the best generality and 

transferability. Thus, the bidirectional statistically optimal estimator of BAR is employed. It achieves faster 

convergence compared with unidirectional EXP, and the upper bound of the statistical error is larger for 
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BAR than EXP.34, 35 However, the BAR-based scheme involves the pulling process from the target 

Hamiltonian 
2...,KH  to the selected Hamiltonian for configurational sampling ...,1H , which might slightly 

increase the computational costs. In cases that the ...,1H -to-
2...,KH  perturbation is not difficult to converge, 

some accelerations could be achieved by only performing unidirectional pulling from ...,1H  to 
2...,KH , as 

depicted in Fig. 1a. In this case, the EXP or JI estimator estimates the free energy difference by 

exponentially averaging the microscopic nonequilibrium works accumulated during nonequilibrium pulling 

simulations initiated from the ith state to the jth state,40, 90 namely   

ln ijW

ij
i

A e
−

 = −                                                                                                        (2). 

Here, A  denotes the dimensionless free energy difference, ijW  represents the dimensionless work 

accumulated during the nonequilibrium pulling initiated from state i  and ended in state j , and 
i
 

represents the canonical average over nonequilibrium realizations initiated from state i . As the 

nonequilibrium transformations are performed between neighboring states, we have 1j i= +  here. The 

estimator is valid for any pulling speeds, and such calculation is historically called the fast growth 

simulation. An alternative estimator applicable for extremely slow pulling speeds (i.e., reversible pulling) is 

the slow growth method.91-93 In this case, the ordinary average of the microscopic nonequilibrium works is 

used to estimate the free energy difference, namely 

ij a ij i
A W W = =                                                                                                   (3). 

The slow growth method is a variant of the equilibrium integration method thermodynamic integration.91 

The equation is valid for reversible pulling. However, practical simulations are all of finite lengths. Thus, the 

estimates are intrinsically biased.  

 Although the fast growth method is theoretically rigorous, as it is based on exponential averaging, it 

suffers from the same numerical problems of EXP, e.g., the sample size hysteresis and the underestimation 

of the statistical error. Cumulant expansion provides a way to better the numerical estimates from finite-

length simulations. The expanded components are on the exponent and the free energy difference could be 

expressed as a linear combination of cumulants.94-96 The distribution of the nonequilibrium works in near-

equilibrium pulling is close to Gaussian according to the central limit theory. For normally distributed data, 

only the first two terms in cumulant expansion survive, as higher-order cumulants are all zeros. Therefore, 

the Gaussian approximated EXP estimate GEXP could be expressed as  
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2

2

ij

ij

W

ij WA


 = −                                                                                                    (4). 

Here, the mean of the works is  , and   is the standard deviation of the nonequilibrium works. The 1st 

term is exactly the same as the slow growth estimate, and the 2nd term is an estimate of the dissipation of the 

pulling process, which corrects the bias of the slow growth result.   

The statistical errors of the above three estimators could be obtained with the normal error propagation 

procedure. Note that for the EXP estimator, there is an upper bound for the analytical statistical error, which 

is found to be the thermal energy Bk T  in our previous work.35 The other two estimators of aW  and GEXP 

do not have this behavior.  

The inputs of the above estimators and the corresponding statistical errors should be statistically 

independent. Thus, to initiate nonequilibrium pulling trajectories, equilibrium sampling in the initial state is 

required. The fluctuation of some observables could be used to define uncorrelated configurations. For 

instance, the autocorrelation of the reaction coordinate used to describe the conformational change was used 

to define uncorrelated initial configurations in dihedral flipping in peptides and nucleotide systems.11, 78, 85, 97 

Another example is the derivative of the alchemical Hamiltonian, which has been widely used in many 

alchemical free energy calculations.98-103 To obtain uncorrelated configurations, the autocorrelation time of 

the selected observable in each state i  is calculated and the whole dataset is subsampled by the statistical 

inefficiency 1 2i i = + . The statistical inefficiency eq,i  is an estimate of the computational cost of each 

independent sample from equilibrium simulations, and the length of pulling simulations NEW,i  should be 

added to define the sampling time required for an independent sample in nonequilibrium pulling simulations, 

namely  

NEW, eq,i i i  = +                                                                                                                           (5).

 

The pulling time NEW,i  for unidirectional pulling is the same as the pulling time in each segment, while that 

for bidirectional pulling should be multiplied by a factor of 2.  

By using the above estimators to determine the free energy difference between all neighboring states, the 

variation of the free energy in the whole process could be obtained, namely  

1

1 , 1

1

k

k i i

i

A A
−

+

=

 =                                                                                                                           (6).

 

A reference state is often selected in the representation of the relative free energies. Here, the 1st state is 
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selected and its free energy is set to zero. Then, the relative free energy of each state could be written as, 

1

1 , 1

1

k

k k i i

i

A A A
−

+

=

=  =                                                                                                                   (7).

 

The procedure could be applied to both the alchemical and the configurational CVs. Combining the free 

energy profiles along these two CVs, the two-dimensional free energy surface depicting the variation of the 

thermodynamic profile in the configurational and alchemical spaces is obtained. The subscripts are altered in 

the multi-dimensional case. There are 1K  states and the state is numbered by 1k  for the configurational CV, 

while there are 2K  states and the state is numbered by 2k  for the alchemical CV. The reference state 11A  has 

a free energy of zero, and the relative free energy of the state ( )1 2,k k  is expressed as, 

1 2

1 2 1 1 2 1 1 1

1 1

1,11 , 1 ,1, 1,1 , , , 1

1 1

k k

k k k k k k i i k j k j

i j

A A A A A
− −

+ +

= =

=  + =  +                                                                      (8).

 

Here, 
11,11kA  is the free energy difference between the reference configurational state 1 and the 

configurational state 1k  at the 1st alchemical state, and 
1 2 1, 1k k kA  represents the perturbation term to change 

the alchemical state from 1 to 2k  at the 1k th configurational state. The statistical fluctuation of the free 

energy estimates often makes the PMF noisy. Thus, the free energy profiles are smoothed with some curve 

fitting methods. Here, we use the Savitzky-Golay filter to increase the signal-to-noise ratio.  

 The unidirectional perturbation framework presented above is a simple alternative to our previous BAR-

based scheme. The free energy estimates could be obtained by performing initial configurational sampling in 

each Hamiltonian state, pulling the system between neighboring states, and using the EXP, GEXP or aW  

estimator to get the free energy difference. However, we expect to further accelerate the simulations by 

introducing the selection criterion for initial configurations. The idea of the selection criterion arises from 

the fact that the ensemble of nonequilibrium configurations should include equilibrium snapshots.73, 74, 77 

Therefore, the last configurations of the i-to-(i+1) pulling simulations could possibly include the equilibrium 

structure(s) in the (i+1)th state. For small perturbations (i.e., slow pulling speeds), the existence of such 

equilibrium configuration(s) is expected to be extremely possible. Therefore, the initial configuration for the 

next stage (i.e., the (i+1)-to-(i+2) segment) could be obtained by selecting some of the last configurations of 

the i-to-(i+1) segment. Here, we employ the naïve Jarzynski’s scheme, where the configuration with the 

work closest to the EXP estimate is selected.73-78 An illustration of the ASMD selection criterion is presented 

at the center of Fig. 1b. The configuration with the microscopic work closest to the EXP estimate is 
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considered as an independent sample extracted from the equilibrium ensemble. The ASMD simulation with 

the JI criterion is used to construct the free energy profile along the configurational CV, and the obtained 

initial configuration in each stage is also used to initiate the alchemical transformation. In this way, the need 

for equilibrium sampling in each intermediate is totally eliminated, thus accelerating the staged SMD 

simulations.  

Although the selection criterion is useful to speed up the simulation, it has some drawbacks. First, the 

whole nonequilibrium pulling simulations are initiated from a single configuration, which leads to some 

correlations of the trajectories. As a result, the nonequilibrium works do not follow the requirement of the 

free energy estimators. There could be some biases in the free energy estimates, and the estimate of the 

corresponding statistical uncertainty is not theoretically rigorous. Whether this initial-configuration-induced 

bias would be significant requires some numerical tests. Second, although the whole pulling process is 

divided into a series of shorter segments, as the simulation starts from one segment (e.g., the reference state), 

all later segments need to wait for the output of the previous segments. Such inter-segment dependency leads 

to the poor parallelizability of ASMD simulations. Parallelization is possible only for the trajectories in the 

current segment and the computation of intra- and inter-molecular interactions in each simulation box. The 

former leads to trajN  independent jobs for each segment, which could be run in parallel delightfully. 

However, the later parallelization suffers from parallel slowdown, and its efficiency depends on the size of 

the system, the details of the distributed computation and so on. Although the two parallelization schemes 

could be used simultaneously, the efficiency of the parallel computing is not as good as the previous BAR-

based scheme, where all segments are independent and there are segments traj*N N  pulling simulations that 

could be run in parallel pleasingly. The limited parallelizability of ASMD simulations slows down the results 

output, which is further aggravated by the poor statistical behavior of the EXP estimator. The unidirectional 

EXP estimator often requires longer pulling times and larger sample sizes than the bidirectional BAR. Thus, 

a much longer waiting time is needed before user feedback, which is not a satisfactory behavior for protocol 

tests. However, the situation could be bettered to some extent if there are a series of similar systems (e.g., 

mutants of the same protein-ligand complex) under investigation. These similar systems could be simulated 

with the same protocol independently.   

 Convergence check is indispensable in free energy simulations. It ensures the reproducibility and the 

reliability of the simulation outputs, and thus should be tested in the first place. In the normal cases, we often 

monitor the sample-size and pulling-speed dependence of various ensemble averages.34, 59, 78, 100, 104, 105 As 
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the free energy is the generating function for other thermodynamic properties, we often focus on the free 

energy difference and the corresponding statistical uncertainty.35, 100, 104, 105 Convergence is achieved when 

the free energy profile does not change with larger sample sizes or slower pulling speeds. The convergence 

diagnostics in the current ASMD case is a bit different. As the ASMD simulations along the configurational 

CV uses a predefined number of trajectories trajN , we need to rerun the simulations with different trajN  and 

check whether the results are invariant of this value. As the alchemical transformation is initiated from the 

configurations obtained during the ASMD simulations along the configurational CV and is finished in a 

single stage, we only need to test whether the number of trajectories is sufficient to converge the alchemical 

perturbation. The test of the pulling speed in ASMD simulations follows the same procedure as the normal 

staged SMD simulations. The same simulation procedure is repeated with different pulling speeds, and the 

convergence is reached when the free energy profile does not change with slower pulling speeds.   

 A final note we would add on the perturbation network is that the multi-dimensional nonequilibrium 

framework for Hamiltonian variation is not necessarily limited to the configurational-alchemical CV case. 

The configurational CV could be altered to some alchemical CVs. For instance, in relative or absolute 

binding free energy calculation, the mutation or annihilation/creation of the ligand(s) is described with an 

alchemical CV. The configurational CV in the above perturbation network could be replaced by this 

alchemical CV and the indirect free energy calculation could be used to obtain the higher-level free energy 

variation along that alchemical CV. Namely, the multi-dimensional nonequilibrium pulling is performed in 

the alchemical-alchemical case, with the first alchemical CV describing the changes of the ligand and the 

second alchemical CV specifying the level of theory. As the free energy profile along the alchemical CV is 

generally not useful, performing only end-state corrections could be more efficient. Then, the 

nonequilibrium transformation network is composed of two parts. The first one is the ASMD simulation 

along the alchemical CV describing the ligand change, and the second part is the ASMD simulation to 

perturb the level of theory.  

 

3. Computational Details  

The Hamiltonian perturbation framework could be used to change various details of the system. In the 

current numerical test, we focus on the change of the QM theory. We still use the dihedral flipping system 

formed by caps of biomolecules N-methylacetamide (NMA) formed by ACE-NME (caps of protein) in 

vacuo as an example. The reaction coordinate used to describe the dihedral flipping is the backbone C-C-N-

C dihedral. We explore the configurational space with some computationally feasible Model A (e.g., SQM 
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levels), and then perform alchemical transformations to obtain the results under another Hamiltonian Model 

B, e.g., ab initio QM or still some SQM Hamiltonians. An illustration of the thermodynamic cycle for the 

indirect free energy simulation is presented in Fig. 1b. In our previous works, we have considered SQM 

Hamiltonians of Austin Model 1 (AM1), the Parametrized Model number 6 (PM6) and the Modified Neglect 

of Diatomic Overlap (MNDO), and ab initio QM ones such as the Hartree-Fock method (HF), the second-

order perturbation theory (MP2), the Becke 3-parameter Lee–Yang–Parr (B3LYP) functional, and the 

ωB97X-D functional. This time we consider another SQM Hamiltonian with good accuracy but is less 

frequently used. Recife Model 1 (RM1)106 is an improved version of AM1. It provides better descriptions of 

various observables and thus is considered as a target SQM Hamiltonian in the current work. The HF 

method is still used as an ab initio target in this work. Therefore, in this work, we aim at obtaining the RM1 

and HF results indirectly with the selection-criterion-based multi-dimensional nonequilibrium pulling 

simulations. The above indirect free energy calculations at (S)QM levels are relatively easy to converge.34 

However, when MM Hamiltonians are included in the indirect simulations, e.g., indirect SQM results from 

MM simulations and MM-to-SQM perturbations, the convergence behavior is not good. Thus, we also 

consider the challenging case that the indirect RM1 free energy simulation of the same NMA system is 

performed by combining direct free energy simulations with AMBER14SB107 and the AMBER14SB-to-

RM1 nonequilibrium perturbations.  

The nonequilibrium trajectories are simulated independently and a single core is distributed to each 

trajectory. This avoids the parallel slowdown that degrades the performance of the simulation. In Table S1, 

we present the single-core timing data. The costs of the SQM simulations are extremely similar, and thus 

only one value is reported for all SQM Hamiltonians. The HF simulation is much more costly than the SQM 

ones, and the MM simulation is much faster than the SQM ones.    

As a single structure is used to spawn the whole ASMD pulling process, we test the influence of using 

different configurations as the initial seed. The ASMD pulling starts at the 0° state, which is used as the 

reference state with a free energy of zero. The system is constructed in vacuo and equilibrated for 50 ps 

under the AMBER14SB107 force field. Then, we shift to the computationally efficient Hamiltonian (e.g., 

AMBER14SB or SQM levels) and equilibrate the system for another 50 ps. Finally, we perform the 

production run to extract independent configurations to investigate the influence of the initial seed, and 

extract 8 configurations every 90 ps to avoid any possible correlations between the initial seeds (the 

autocorrelation time of this system is sub-ps).   

The whole dihedral flipping process from 0° to 360 ° is divided into 120 segments with 3 ° increments. 
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The force constant of 2000 kcal/mol·rad2 is used to achieve the stiff spring limit. As for the pulling speed 

and the sample size for each segment, some related statistics of ASMD simulations could be obtained from 

our previous works.78 Our previous experience on the dihedral flipping case indicates that 20-sample and 40-

sample estimates are identical in the configurational pulling. Thus, the sample size in each segment along 

the configurational CV is 20. The simulation outcome shows a higher sensitivity on the pulling speed. The 

pulling speed of 8 ps per 5º was used in our previous work, which corresponds to a pulling time of 

approximately 5 ps for the 3º segment used in this work. The previous work is performed under the MM 

Hamiltonian while in the current work we use some SQM Hamiltonians. As the fluctuations under different 

Hamiltonians are different, some tests should be performed on the pulling speed to ensure that our results are 

converged on this degree of freedom. 5 ps, 10 ps, and 15 ps are tested for the current 3º segment in the 

configurational space. The alchemical transformation uses the initial configurations obtained with the 

selection criterion in the ASMD simulations along the configurational CV. In the previous BAR-based case, 

bidirectional alchemical transformations finished in several time steps are sufficient to converge the 

results.34 In the current EXP-based case, the statistical efficiency is a bit worse and thus we employ longer 

pulling times for the alchemical transformation. The relaxation time between successive perturbations is set 

to 1 time step and the transformation is finished in 10 or 100 time steps, corresponding to a change of 0.1 or 

0.01 per time step for the alchemical order parameter.   

In all MD simulations, the time step is set to 0.5 fs to ensure stable and accurate dynamics,89 and 

Langevin dynamics108 with the collision frequency of 5 ps-1 are implemented for temperature regulation at 

300 K. As the simulation is performed in vacuo, there is no cutoff applied in our simulations. Note that 

although the current numerical experiment is performed in vacuo, the Hamiltonian-variation framework 

could be straightforwardly applied in condensed-phase simulations, which has been performed in our 

previous works.34, 59 We use the AMBER109 suite for MD simulations and Gaussian 09110 for ab initio QM 

calculations. All statistical analyses are obtained with homemade codes.  

 

4. Result and discussion 

4.1. (S)QM-from-SQM Simulations.  

The pulling-speed and sample-size dependence of the estimates.  

 As discussed in the last part of the methodology section, the convergence diagnostics should be 

performed in the first place before analyzing detailed results. We choose the target RM1 Hamiltonian as an 

example. The pulling-speed dependence of the free energy profile in direct free energy simulations at the 
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RM1 level is presented in Fig. 2a. The results from nonequilibrium pulling initiated from 3 different initial 

seeds are presented. The 10 ps/segment (i.e., 20000 steps) PMF is virtually identical to the 15 ps/segment 

results, and minor differences are observed for the 5 ps/segment result. The systematic bias in the 5 

ps/segment estimate (i.e., 10000 steps) shows obvious dependence on the initial seed. Therefore, in the 

nonequilibrium pulling along the configurational CV, we use the pulling speed of 10 ps/segment. Note that 

there is no overestimation of the computational cost in the direct free energy simulation, which is crucial to 

obtain a fair estimate of the acceleration ratio of the indirect scheme. We then check the sample-size 

dependence of the indirect estimates obtained with the pulling time of 10 steps in the alchemical space. In 

Fig. 2b, the comparison between the indirect estimates obtained from the AM1 simulations with different 

sample sizes and different estimators for the AM1-to-RM1 perturbation from one initial seed and the direct 

RM1 PMF is presented. We can see that the 5-sample, 10-sample and 50-sample estimates obtained from the 

EXP, GEXP and aW  estimators are all identical, which indicates that the sample size is not a bottleneck for 

the convergence of the nonequilibrium free energy simulation. Namely, the estimates are numerically stable 

and could be converged easily. The difference between the indirect and direct estimates are small, but we 

expect to further minimize this deviation.  

The agreement between the EXP, GEXP and aW  estimates does not necessarily indicate the 

convergence of the nonequilibrium pulling simulations. The configurational sampling in the equilibrium 

perturbation scheme is performed in the equilibrium ensemble, while that in the nonequilibrium pulling case 

required by JI or CE is performed in both the equilibrium ensemble and the nonequilibrium pulling. The 

ASMD scheme uses a single structure to seed a series of nonequilibrium simulations, from which the 

microscopic nonequilibrium works are extracted. As a result, these microscopic nonequilibrium works are 

not independent and thus do not fully satisfy the assumption of the JI estimator. The inter-trajectory 

correlation is significant when the nonequilibrium pulling simulation is very short. For instance, when the 

nonequilibrium pulling is finished in just one step, the nonequilibrium work reduces to the energy difference 

in the equilibrium perturbation scheme, and the nonequilibrium works from different pulling simulations are 

exactly the same. Significant bias is introduced in this case. Further, the EXP, GEXP and aW  estimates are 

exactly the same, which provides no hints on the dissipation of the nonequilibrium trajectories. Therefore, to 

achieve a sufficient level of configurational sampling, the nonequilibrium trajectories should not be too short. 

The calculation of the statistical error also has this problem. As the analytical formula of the statistical 

uncertainty requires independent works as input, the statistical error could be underestimated in ASMD 
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simulations. The initial-configuration-induced systematic bias is significant for the alchemical 

transformation due to the short length of such pulling simulation, but is very small for the configurational 

part, as the long pulling time in the latter simulations enables sufficient sampling in the nonequilibrium 

ensemble.  

 Although the EXP, GEXP and aW  estimates are virtually identical, obvious differences could be 

observed for their statistical errors. We focus on the alchemical perturbation to the RM1 level and the results 

obtained with the pulling speed of 10 ps/segment in the configurational space and the pulling time of 10 

steps in the alchemical space are presented in Fig. 3a. We can see that the statistical uncertainty of the EXP 

estimator is much smaller than the others for all of the three alchemical transformations from SQM 

Hamiltonians to the RM1 level considered in the current work. The GEXP and aW  estimators have 

extremely similar statistical uncertainties, which is expected considering the agreement between the free 

energy estimates obtained from these two estimators. The first term of GEXP is the ordinary average of the 

microscopic works aW , and the second term relates to the variance of the work distribution. When the 

GEXP and aW  estimates are virtually identical, the width of the work distribution is negligible, and the 

resulting statistical errors of these two estimators are extremely similar. Fig. 3b shows the dependence of the 

statistical uncertainty on the pulling speed in the configurational space for the AM1-to-RM1 transformation. 

Still, the EXP uncertainty is much smaller than the others. The statistical uncertainties obtained with the 

pulling speeds of 10 ps/segment and 15 ps/segment are extremely similar, which indicates that the pulling 

time in the configurational space is sufficiently long and the simulation outcome does not depend on this 

pulling speed.  

Indirect vs direct. 

 After testing the pulling speed and the sample size in nonequilibrium free energy simulations, we then 

test the probably most influencing parameter, the initial seed. As discussed in the previous part, the initial 

configuration has a larger impact on the alchemical part due to the short transformation length of the 

nonequilibrium pulling, while in the configurational space the lack of sampling in the equilibrium ensemble 

(i.e., the initial configuration) is compensated by the sampling in the nonequilibrium ensemble during the 

long pulling time. To provide a clearer presentation of the initial-configuration-induced bias, we compare 

the indirect estimates obtained from different initial seeds with the direct RM1 result. The indirect estimates 

obtained from PM6, AM1 and MNDO are presented in Fig. S1 and S2. If not explicitly mentioned, the 

alchemical perturbation is finished in 10 steps in these cases. 
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For the PM6 Hamiltonian, longer pulling time in the configurational space does not necessarily result in 

better indirect estimates, as shown in Fig. S1a-b. The indirect estimates with the pulling speed of 10 

ps/segment in the configurational space fluctuate around the direct RM1 result, as shown in Fig. S1a, c, d 

and e. This is expected as the sampling in the nonequilibrium ensemble is insufficient for the alchemical 

transformation. The situation could be bettered by performing longer pulling simulations in the alchemical 

space. As shown in Fig. S1f, the indirect result becomes closer to the direct RM1 estimate when the 

alchemical perturbation is finished in 100 steps.  

Systematic investigations at the AM1 and MNDO levels could be more informative. The indirect 

estimates obtained from ASMD simulations initiated from one initial configuration with the pulling speed of 

10 ps/segment in the configurational space and the pulling time of 10 steps in the alchemical space are 

presented in Fig. 4a, and the indirect estimates obtained from 8 initial seeds with the same pulling scheme 

are presented in Fig. S2a-h. We can see that the indirect estimates seem to fluctuate around the RM1 result. 

For some initial seeds, the accord between the indirect and direct estimates could be good, while for the 

others the agreement is not so satisfactory. The results obtained with slower pulling speeds in the 

configurational space are presented in Fig. S2i-k, from which we observe that longer pulling time in the 

configurational space does not help to improve the indirect estimates.  

As has been discussed above, to better the indirect estimate, we need to perform more sampling either in 

the equilibrium ensemble or in the nonequilibrium one. If we want to distribute the sampling in the 

equilibrium ensemble, we need more uncorrelated configurations to initiate the nonequilibrium alchemical 

transformation and average over these simulations to obtain a more accurate and stable estimate, which 

could be achieved by either equilibrating the initial configurations obtained with the selection criterion from 

one ASMD trail or performing multiple ASMD simulations initiated from different seeds along the 

configurational CV. The former scheme could be easily performed and the results are expected to be good, 

while the performance of the latter regime is not straightforward and thus our numerical test focuses on this 

scheme. The results averaged over 5 initial seeds are presented in Fig. 4b, from which we can see that the 

indirect estimate becomes more stable and smoother and the agreement between the indirect and direct 

estimates is improved. The mean absolute error (MAE) is calculated to provide some numerical metrics to 

assess the deviation of the indirect estimate from the direct result, which is presented in Table 1. We can see 

that the MAE of the initial-configuration-averaged estimate is much smaller than the individual estimates. 

Another way to improve the result is distributing the sampling in the nonequilibrium ensemble, namely 

lengthening the pulling time in the alchemical space. We employ a longer pulling time of 100 steps in the 
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alchemical transformation with a change of 0.01 per time step for 5 of the initial seeds, and the results are 

presented in Fig. 4c and Fig. S3a-d. The indirect estimates are effectively improved by using a slower 

pulling speed along the alchemical CV. Again, we use a longer pulling time in the configurational space in 

Fig. S3e-f, where we observe that the pulling speed in the configurational space has little impact on the 

simulation outcome. The indirect estimate could be improved by using both the slower-pulling-speed and 

initial-seed-averaging schemes, the result of which is shown in Fig. 4d. The MAEs of the 0.01 indirect 

estimates shown in Table 1 are smaller than the corresponding 0.1 components, and the seed-averaged result 

achieves an MAE of about 0.09 kcal/mol, which is technically speaking negligible in free energy 

calculations. The state-specified deviations of the indirect estimates from the direct reference PMF are 

presented in Fig. S4, from which we can see that the error of the indirect scheme is small in all 

configurational states. Although both the slower-pulling-speed and the initial-seed-averaging regimes could 

improve the indirect estimate, their relative efficiency could differ in practical cases. Practical considerations 

based on own experience are converging the sample size (i.e., initial seeds) first and then lengthening the 

pulling time for convergence check on this degree of freedom.  

Hitherto, we have gained some insights into using the ASMD-based indirect nonequilibrium free energy 

simulation scheme. We then employ the scheme to obtain the HF result indirectly. We still use the same 

pulling speed in nonequilibrium pulling, i.e., 10 ps/segment in the configurational space and 10 or 100 steps 

in the alchemical transformation. The MAEs of 7 trails with a change of 0.1 per step in the alchemical 

transformation and that of one trail with a change of 0.01 per step are presented in Table S2. We can see that 

the HF result could be obtained with the ASMD-based indirect scheme with an MAE ~0.25 kcal/mol. The 

previous RM1-from-SQM indirect simulations do not result in a speedup over the direct pulling in the 

configurational space, but the current HF-from-SQM one does accelerate the simulation. Thus, we then 

calculate the speedup of the indirect scheme. When performing free energy simulations in the 

configurational space, it requires 24 ns to converge the free energy profile. The pulling time of 10 steps is 

used for the alchemical transformation. 5 samples are sufficient to converge the alchemical term for each 

initial seed and 5 repeats/seeds are averaged to obtain the final indirect result with very good convergence 

behavior. When only a single initial seed is used and the initial conditions in ASMD segments are 

determined by the selection criterion, the need for equilibrium configurational sampling to obtain the initial 

configurations is eliminated and thus eq  is set to zero. However, to grab different initial seeds to perform a 

seed-averaging procedure, short equilibrium sampling in each intermediate state is required. However, as the 

autocorrelation time is much shorter than the pulling time in each segment, this computational cost is still 



18 / 53 
 

negligible. The simulation time at the HF level is scaled by the simulation speeds in Table S1 to obtain the 

effective sampling time at the SQM level. The resulting speedup of the indirect scheme is about 1000-fold, 

as shown in Table 2. Here, the computational cost of the ps-length further sampling for more initial seeds is 

not included in the calculation. However, this contribution is negligible and has little effect on the 

acceleration ratio. If we use the pulling time of 100 steps for the alchemical transformation, the resulting 

indirect estimate would be extremely accurate and the speedup would be about 200 folds. The computational 

speedup could also be compared with the statistics of the BAR-based scheme in our previous work,34 which 

is presented in Table S3. As the BAR-based scheme achieves faster convergence than the ASMD regime in 

the configurational sampling,78 the speedup of the ASMD-based indirect scheme is relatively modest 

compared with the ~1000-fold speedup shown in the previous table. However, the speedup of the indirect 

scheme is still two orders of magnitude.  

Some more insights about speedups.  

In the BAR-based scheme, the speedup of the indirect scheme could be approximated as72  

( )
NEW,conf AB eq AB

NEW,conf NEW,alchem AB AB eq

* *
speedup

* 2

t t

t t

 

  

+
=

+ + +
                                                                   (9). 

Here, ABt  represents the relative computational cost of a single evaluation of energetics under the two 

Hamiltonians, which is used to scale the sampling times under different Hamiltonians to make them directly 

comparable. The exact value of this term depends on the selection of the two models/Hamiltonians and the 

practical implementation (e.g., software) when performing the calculation. NEW,conf  is the pulling time in 

each segment along the configurational CV, which is determined by the magnitude of perturbation along this 

CV. NEW,alchem  denotes the pulling time in alchemical transformations. eq  is the statistical inefficiency or 

the sampling cost required to get an independent initial condition. The equation is valid under the following 

four assumptions.72 First, the equal-sample-size rule is applied to all segments in the multi-dimensional 

nonequilibrium pulling perturbation network. For more detailed discussions about the differences between 

the equal-time and equal-sample-size protocols, please refer to our previous works.59, 72, 78, 104, 105 Second, the 

pulling times in the forward (from Hamiltonian A to Hamiltonian B) and backward (from B to A) 

alchemical transformations are the same NEW,alchem . Third, the pulling times in all segments along the 

configurational CV are the same NEW,conf . Fourth, the autocorrelation times in all microstates are the same 

eq . In the SQM-to-QM case, as the computational cost of the ab initio QM level is much higher than the 
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SQM one ( AB 1t ) and the pulling time along the configurational CV NEW,conf  is short and similar to the 

statistical inefficiency eq  due to the high statistical efficiency of BAR, the computational cost of the direct 

SQM free energy simulation under the model A in the denominator is negligible. As a result, the speedup of 

the indirect scheme could be further simplified to the ratio of the sampling time in the direct QM free energy 

simulation to that in the SQM-to-QM perturbation, namely 

NEW,conf eq

NEW,alchem eq

speedup
 

 

+
=

+
                                                                          (10). 

The above equation tells us that the acceleration ratio of the bidirectional perturbation network depends on 

the length of the pulling time along the alchemical pathway, that along the configurational CV, and the 

equilibrium autocorrelation time due to the need of generating the initial conditions. Due to the stratified 

protocol and the high statistical efficiency of bidirectional perturbations, the pulling time along the physical 

CV is similar to the autocorrelation time, and the pulling time along the alchemical CV depends on the 

similarities of the two Hamiltonians (i.e., models A and B). Whether NEW,conf  is longer than NEW,alchem  

determines whether the indirect scheme is faster or more computationally efficient than direct simulations. 

Another point in the above equation is that the equilibrium sampling eq  is non-negligible in practical 

situations. When the autocorrelation time is much longer than the pulling time along both CVs, the direct 

and indirect schemes are of similar efficiencies and thus the merit of indirect simulations vanishes.  

 However, the situation is different in the current ASMD case. All transformations are performed 

unidirectionally and no equilibrium sampling is required (or very short ps-length in the initial-seeds-

averaging procedure). To get a more detailed insight into the acceleration ratio in this situation, we then 

derive the formula of the speedup ratio under the current unidirectional nonequilibrium perturbation network 

with selection-criterion-based ASMD pulling. For the direct free energy simulations along the 

configurational CV, the computational costs under the two models A and B are  

direct,B segments traj NEW,conf ABcost * * *N N t=                                                                       (11), 

direct,A segments traj NEW,confcost * *N N =                                                                               (12). 

As the systematic bias in direct free energy simulations could be effectively eliminated by lengthening the 

pulling time along the configurational pathway, there is no need to generate equilibrium samples and thus no 

eq  exists in the above equations. For the alchemical transformation, the initial-seeds-averaging procedure 
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seems necessary to remove the systematic bias, and we consider the number of seeds to be seedsN . As has 

been discussed previously, there are basically two ways to obtain the initial seeds. The first one is generating 

independent configurations in the initial state and repeating the whole ASMD pulling along the 

configurational pathway, which requires short ps-length sampling in the initial reference state and seedsN  full 

ASMD pulling along the configurational CV. The second one is equilibrating the close-to-equilibrium 

configuration obtained with the selection criterion from one ASMD trail, which requires short ps-length 

sampling in each segment. As only a single ASMD trail is defined in the computational cost of Eq. (12), the 

second scheme is considered in the following derivation. Note that the computational cost of the first 

scheme could be similarly derived. In the second scheme, for each initial seed, the number of pulling 

trajectories along the alchemical pathway is traj,alchemN . Then, the A-to-B unidirectional alchemical 

transformation costs  

( )A-to-B segments seeds traj,alchem NEW,alchem AB eqcost * * * *N N N t = +                                                   (13). 

The speedup of the indirect scheme can be expressed as  
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In the current illustrative calculations (dihedral flipping in ACE-NME), the number of trajectories along the 

configurational CV and the total number of trajectories along the alchemical CV are similar, i.e., 

traj seeds traj,alchem*N N N . Thus, the above speedup could be further simplified as  

NEW,conf AB

NEW,conf NEW,alchem AB seeds eq

*
speedup

* *

t

t N


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=

+ +
                                                                     (15). 

The numerator is solely the pulling time along the configurational CV under the target Hamiltonian B, while 

the denominator is composed of the pulling time along the configurational CV under the Hamiltonian A, the 

A-to-B alchemical transformation term, and the short equilibration procedure to grab several initial seeds 

under the Hamiltonian A. Due to the low statistical efficiency of unidirectional estimators, the pulling time 

along the configurational space  NEW,conf  is often much longer than the autocorrelation time eq . Further, the 

number of seeds is often small (~5 in the current illustrative calculations). As a result, the last term in the 

denominator is much smaller and even negligible compared to  NEW,conf , and the equation could be further 
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simplified as  
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+
                                                                                         (16). 

The first term in the denominator is the contribution of the direct free energy simulation under the model A, 

while the second term arises from the A-to-B unidirectional pulling. Some basic insights about their sizes 

could be seen in Table 2 and S1, where the two terms in the denominator are of similar magnitudes and thus 

the equation cannot be further simplified. We then can compare the dependence of the speedups in the 

current ASMD Eq. (16) with the previous BAR-based case Eq. (9). Compared with the BAR-based case, the 

acceleration ratio of the ASMD case does not have the contribution from the equilibrium sampling at the 

computationally costly Hamiltonian B ( eq AB*t ), and the equilibrium sampling at the computationally 

feasible Hamiltonian A ( eq ) is also negligible due to the selection criterion and the significant length of 

NEW,conf . As the computational costs between the two models A and B ( ABt ) must be larger than 1 to achieve 

computational gains for the indirect scheme, we consider a special case that  ABt  is a large number ~3000, 

namely the current HF-from-SQM case. For the BAR-based case, the speedup ratio in Eq. (9) reduces to Eq. 

(10), where in the denominator the contribution from the direct free energy simulation under the model A 

becomes negligible but the cost of equilibrium sampling still exists. By contrast, for the ASMD-based case, 

the contribution of the direct free energy simulation under the model A in Eq. (16) is still non-negligible, as 

shown in Table 2. Therefore, the basic differences between the acceleration ratios of the current ASMD and 

the previous BAR-based schemes lie in the contributions from equilibrium sampling for initial conditions 

and the direct free energy simulation under the computationally feasible model A. However, a key feature 

that remains unchanged is that the main contribution of the computational costs of the indirect scheme still 

comes from the alchemical transformation.  

 

4.2. Indirect SQM-from-MM Simulations.  

 The above examples of indirect free energy simulations at SQM and QM levels provide evidence of the 

applicability of the multi-dimensional ASMD framework for Hamiltonian variations. The perturbation 

between SQM and QM Hamiltonians in the ACE-NME dihedral flipping case is relatively easy to converge 

due to the similarities of these models.34 We then test the protocol in a challenging case, where the same 

ACE-NME system is selected but the two end states (i.e., Model A and B in Fig. 1) in the alchemical 

perturbation are MM and SQM Hamiltonians. Such MM-to-SQM perturbation is very difficult to converge 
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or get rid of the systematic bias even in this simple system, as shown in our previous work.59 The 

computationally efficient Model A is AMBER14SB,107 while the target SQM level is still RM1. The same 

computational protocol as the previous SQM-to-QM simulations is used in this case. Namely, we conduct 

direct MM simulations with the pulling speed of 10 ps per 3 ° segment and the sample size of 20 in each 

segment, after which nonequilibrium MM-to-SQM transformations are performed in 100 time steps with a 

perturbation speed of 0.01 per time step for the alchemical order parameter. The initial-seed-averaged results 

are presented in Fig. 5. We can see that even with long pulling time (100 time steps), the alchemical 

perturbation is still biased and the indirect PMF is obviously different from the direct RM1 result. Therefore, 

longer pulling time is required for fully converged results. We thus repeat the alchemical transformation with 

a slower pulling speed of 1000 time steps (0.001 per time step) and the results are also presented in Fig. 5. 

Still, obvious differences between direct and indirect RM1 results could be observed. The computational 

cost of the indirect scheme with 100 time steps for the alchemical transformation is shown in Table 3, where 

the computational cost of the indirect scheme is still much lower than the direct scheme. The relative 

efficiency of the 1000-time-steps protocol is about 1.5, which suggests that the indirect scheme is still 

computationally cheaper than direct free energy simulations even with 1000 time steps (i.e. 5 ps) for 

alchemical transformation. However, for both the 0.01 and 0.001 protocol, the agreement between the direct 

and indirect results are not very good, which indicates that the indirect scheme could be unreliable and 

inefficient in indirect SQM-from-MM simulations. The relative efficiency becomes 1 when the alchemical 

transformation is performed in 7.8 ps (~1560 time steps). Although we could further lengthen the alchemical 

transformation, the indirect scheme is already not a computationally efficient option. Thus, here we try 

another solution of changing/refining the low-level description to improve the phase space overlap between 

different Hamiltonians.111, 112  

 The non-satisfactory convergence behavior in indirect SQM free energy simulations arises from the 

dissimilarities of MM and SQM Hamiltonians.113, 114 We thus seek for a better MM model that is more 

similar to the target SQM model to improve the convergence. The generalized force-matching scheme115 is 

employed to refit the AMBER14SB force field. The basic idea of the method is to optimize a force field that 

reproduces the energy, the atomic force,116 and other selected properties of a target Hamiltonian 

simultaneously.115 In our force-matching fitting, the energy and every component of the atomic forces117 are 

included in the objective function, and the initial/reference model used to initiate the refitting is 

AMBER14SB. The configurational ensemble used is generated in a 20 ns gas-phase unbiased simulation 

with the original AMBER14SB parameters. As the backbone dihedral under investigation has a partial 
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double-bond character and the free energy barrier along its flipping pathway is rather high (~ 10 kcal/mol), 

some enhanced sampling techniques should be employed to sample this degree of freedom thoroughly. As 

the configurational sampling in this phase aims at extracting representative structures rather than obtaining 

correct thermodynamic distributions in a specific state, a high temperature of 1300 K is used in the unbiased 

simulation to improve the sampling efficiency. The weight of each sample in parameter optimization could 

influence the refitting outcome, but for simplicity we apply the uniform weighting scheme, which would not 

lead to significant problems. The sampling interval is set to 2 ps according to autocorrelation analysis. Note 

that other schemes such as the dihedral scan or biasing specific CV (e.g., the backbone dihedral) could also 

be used to generate the configurational ensemble. In order to avoid overfitting and the existence of 

unphysical results (e.g., unreasonable force constants), the parameter space to explore is restrained in the 

neighborhood of the AMBER14SB parameter set with the L2 (harmonic) regularization term. The atom-type 

symmetry of force field parameters is also included in the optimization. Only the bonded interactions 

including the bond stretching, angle (bending), and dihedral terms are refitted, and the non-bonded terms 

including the atomic charges and vdW terms remain fixed. As our target level is RM1, this SQM model is 

used to calculate the reference data. The resulting refitted force field (force-matching RM1 or FM-RM1) 

produces a description that is more similar to the target RM1 Hamiltonian. To assess the quality of the 

refitted force field in reproducing the RM1 energetics, we re-generate 10 ns trajectories at 1300 K and 300 K, 

respectively, and calculate the root-mean-squared error (RMSE) and MAE of the energy with the original 

parameter set (i.e., AMBER14SB) and the newly fitted model. The higher temperature (i.e., 1300 K) enables 

the evaluation of the accuracy of the energetics in the ensemble that the configurations used in refitting are 

generated. As both high-energy and low-energy regions are explored, this high-temperature evaluation 

reflects the quality of the refitted model in the whole relevant configurational space. By contrast, the low-

temperature (300 K) set only samples local fluctuations and thus is used to evaluate the accuracy of the 

refitted model in the low-energy regions/minima. The correlations between the MM and target RM1 

energetics are presented in Fig. S5, where we can see that in the refitted model yields smaller deviations 

from the reference RM1 result in both the high- and low-temperature situations. Namely, both the high- and 

low-energy regions are described in a more accurate way by the new model. We also calculate the RMSE of 

atomic forces from these structures. Upon refitting the AMBER14SB force field, the RMSE of atomic forces 

is improved from 23.9 kcal/(mol·Å·atom) to 13.1 kcal/(mol·Å·atom) for configurations sampled at 300 K 

and from 37.6 kcal/(mol·Å·atom) to 25.0 kcal/(mol·Å·atom) for configurations generated at 1300 K. The 

accuracy improvement is more pronounced for the ensemble of configurations generated at the high 
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temperature, which indicates that the original force field (i.e., AMBER14SB) does provide a good 

description of the simulated system in low-energy regions.  

 We then repeat the multi-dimensional ASMD simulations to obtain the RM1 PMF indirectly from direct 

MM (refitted AMBER14SB) simulations and nonequilibrium MM-to-RM1 perturbations, the results of 

which are presented in Fig. 5. Compared with the indirect RM1 estimates obtained from AMBER14SB 

sampling, the refitted force field provides estimates closer to the direct RM1 result. Thus, the refitted model 

(i.e., refitted AMBER14SB) serves as a better model in indirect free energy simulations. The convergence of 

the indirect scheme could be achieved with 100 time steps for the alchemical order parameter, leading to an 

acceleration ratio close to the statistics shown in Table 3. We should note that although the indirect estimate 

is improved upon MM refitting, the accord between the direct and indirect estimates is still not as good as 

the previous examples where transformations between SQM or ab initio QM Hamiltonians are performed. 

To further improve the indirect estimate, longer nonequilibrium pulling or more elaborate refitting of the 

MM force field could be considered.  

 

5. Conclusion  

The combination of the alchemical and configurational free energy simulations provides a 

computationally feasible alternative to obtain the thermodynamics at ab initio QM levels. The free energy 

landscape obtained from enhanced sampling simulations under a computationally feasible Hamiltonian 

could be perturbed to that under another Hamiltonian with the alchemical method. In our previous works, we 

constructed a multi-dimensional nonequilibrium pulling framework for Hamiltonian variation based on 

bidirectional pulling and bidirectional reweighting. The BAR-based method is generally applicable and the 

acceleration of the indirect method is about an order of magnitude compared with the direct free energy 

simulations under some ab initio QM Hamiltonians. As bidirectional pulling could be costly in some cases, 

in the current work, we alter the bidirectional perturbation framework to a unidirectional one and use the 

exponential average, its Gaussian approximated form, and the ordinary average to estimate the free energy 

difference. The staged SMD simulation is further accelerated with the selection criterion for the initial 

configuration used to spawn nonequilibrium trajectories. This ASMD-based Hamiltonian variation 

framework is more than 100-fold faster than the direct free energy simulations under some ab initio QM 

Hamiltonian.  

A worth noting behavior of the ASMD-based scheme is the distribution of the sampling. In the normal 

staged SMD pulling with JI or CE for free energy estimates, equilibrium sampling in each intermediate state 
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is performed to obtain the initial configuration for kicking off the pulling simulations. The sampling is 

distributed in both the equilibrium ensemble and the nonequilibrium counterpart. However, as the 

nonequilibrium trajectories are initiated from one initial configuration in ASMD simulations, some 

alternations of the simulation scheme are required. We can distribute some sampling times in the 

equilibrium ensemble by equilibrating the initial configuration obtained from the selection criterion, or 

performing ASMD simulations from different initial seeds to obtain more initial configurations. In this way, 

more independent initial configurations are obtained and nonequilibrium alchemical pulling simulations 

from these uncorrelated configurations could improve the convergence behavior of the indirect scheme. 

Alternatively, we can sample only in the nonequilibrium ensemble by pulling it slower in the alchemical 

space, which also improves the convergence behavior of the indirect scheme. The initial-seed-averaging and 

slower-pulling-speed schemes could be combined to achieve better numerical behaviors.  

Although the JI-based ASMD scheme could be efficient for multi-dimensional nonequilibrium pulling, 

there are still some weaknesses. As the whole pulling simulation is initiated from one or several 

configurations, the nonequilibrium pulling in the configurational space is performed in a serial way. 

Specifically in the current dihedral flipping case, the simulation is initiated from the 0º state and the pulling 

is performed from this reference state to the other in a serial manner. The 3º-to-6º pulling simulations need 

to wait for the outcome of the 0º-to-3º simulations, and the 6º-to-9º pulling simulations need to wait for the 

outcome of the 3º-to-6º simulations. This inter-segment dependence limits the efficiency of parallelism and 

we can only parallelize the nonequilibrium trajectories of the current segment. Although the calculation of 

the energetics of each simulation could also be parallelized, the efficiency of this parallel computation is 

degraded compared with the delightfully parallel BAR-based scheme even for parallel-optimized dynamic 

engines (i.e., the so-called parallel slowdown due to communications overhead). A factor that further 

aggravates this parallel issue is the need for slower pulling speeds when using the exponential average. 

Compared with bidirectional reweighting, the lower statistical efficiency of EXP requires a longer pulling 

time to obtain converged estimates and thus the waiting time for each segment is lengthened. The overall 

outcome of these factors is a longer waiting time before user feedback, which is not a satisfactory property 

for protocol diagnosing. However, if the user already has some experiences on the convergence behavior of 

the system (e.g., after the protocol testing procedure), or if there are a series of systems with similar 

properties (e.g., a series of mutants of some protein-ligand complexes), the EXP-based ASMD scheme could 

save the computational costs significantly. Note that the tests of a series of different protocols could also be 

performed independently, and the parallelization in this case could also be useful. However, the user still 
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needs to wait for the output of the longer/longest protocol with the higher/highest reliability before he/she is 

able to confirm whether the faster protocols are reliable.  

 

Supporting Information Description  

The single-core timing information of SQM and ab initio QM simulations, MAEs of the indirect estimates 

at ab initio QM levels, comparison between the direct and indirect estimates at the RM1 level initiated from 

different seeds with different pulling speeds, the quality of energetics produced by the AMBER14SB and the 

force-matching refitted force fields are provided in the supporting information. 
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Table 1. Mean absolute error of the indirect RM1 estimates in kcal/mol. 8 different initial seeds are used to 

initiate the multi-dimensional ASMD pulling. The pulling speed in the configurational space is 10 ps per 3º 

segment. Two pulling speeds including a change of 0.1 per time step and 0.01 per time step are tested in the 

alchemical space. The errors for the averaged indirect estimates over the last 5 initial configurations are also 

shown. We can see that the systematic errors of the indirect estimates are reduced upon increased pulling 

time in the alchemical space. Also, the seeds-averaged results are significantly improved over independent 

trails.  

 

Hamiltonians                             

Trail 

0.1 to RM1 0.01 to RM1 

AM1 MNDO AM1 MNDO 

1 0.44  0.28  0.23  0.07  

2 0.37  0.43  0.13  0.15  

3 0.43  0.41  0.13  0.13  

4 0.37  0.70  0.11  0.14  

5 0.27  0.22  0.23  0.12  

6 0.79  1.13  - - 

7 0.35  0.37  - - 

8 0.21  0.34  - - 

average over 5 trails 0.11  0.30  0.08  0.10  
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Table 2. Efficiency comparison of direct and indirect free energy simulations under the HF Hamiltonian. 

The calculation of the computational cost is similar to the case of our previous BAR-based method. There 

are segmentsN  segments in stratified pulling and the number of realizations in each segment is trajN . The total 

simulation time in the direct scheme is given by segments traj NEW eq* *( )N N  + , while the total simulation time 

in the indirect scheme is the sum of segments,SQM traj.SQM NEW,SQM eq,SQM* *( )N N  +  at SQM level and 

traj,SQM->QM NEW,SQM->QM eq,SQM*( )N  +  in the SQM-to-QM correction. As the selection criterion eliminates the 

equilibrium sampling for initial configurations, eq  becomes 0. The simulation time at QM level is scaled by 

the ratio of computational cost under QM Hamiltonian and that under SQM Hamiltonian in Table S1 to 

provide the effective simulation time at SQM level, enabling the direct comparison between computational 

costs of different levels of theory. Note that the sample size for the correction term is the sum of 5 repeats of 

the 10-step SQM-to-QM transformation, corresponding to the sample size of 25 for the SQM->HF 

perturbation. If the pulling time of 100 steps is used for the alchemical transformation, the speedup of the 

indirect method would be about 200 folds.  

 

Terms 

 

 

   

Simulation    

eq  for each 

initial 

configuration 

(ps) 

NEW  in 

each 

segment 

(ps) 

Number of 

segments 

Number of 

realizations per 

segment 

Total simulation time 

(ps) scaled to SQM 

Hamiltonian 

Relative 

efficiency 

direct SQM 0 10 120 20 24000.00  3343.64  

SQM->HF 0 0.005 120 25 50154.60  - 

HF->SQM - - - - 0.00  - 

indirect HF - - - - 74154.60  1082.16  

direct HF 0 10 120 20 80247357.45  1.00  
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Table 3. Efficiency comparison of direct and indirect free energy simulations under the SQM Hamiltonian. 

There are 
segmentsN  segments in stratified pulling and the number of realizations in each segment is trajN . The 

total simulation time in the direct scheme is given by segments traj NEW eq* *( )N N  + , while the total simulation 

time in the indirect scheme is the sum of segments,SQM traj.SQM NEW,SQM eq,SQM* *( )N N  +  at MM level and 

traj,SQM->QM NEW,SQM->QM eq,SQM*( )N  +  in the MM-to-SQM correction. As the selection criterion eliminates the 

equilibrium sampling for initial configurations, eq  becomes 0. The simulation time at SQM level is scaled 

by the ratio of computational cost under SQM Hamiltonian and that under MM Hamiltonian in Table S1 to 

provide the effective simulation time at MM level, enabling the direct comparison between computational 

costs of different levels of theory. Note that the sample size for the correction term is the sum of 5 repeats of 

the 100-step MM-to-SQM transformation, corresponding to the sample size of 25 for the MM->SQM 

perturbation. If the pulling time of 1000 steps (i.e. NEW =5 ps) is used for the alchemical transformation, the 

relative efficiency of the indirect method would be about 1.5.  

 

Terms 

 

 

   

Simulation    

eq  for each 

initial 

configuration (ps) 

NEW  in each 

segment (ps) 

Number of 

segments 

Number of 

realizations per 

segment 

Total 

simulation 

time (ps) 

scaled to MM 

Hamiltonian 

Relative 

efficiency 

direct MM 0 10 120 20 24000.00  40.39  

MM->SQM 0 0.5 120 25 60578.06  - 

MM->SQM - - - - 0.00  - 

indirect SQM - - - - 84578.06  11.46  

direct SQM 0 10 120 20 969249.03  1.00  
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Fig. 1. a) An illustration of the Hamiltonian perturbation framework via EXP-based multi-dimensional 

nonequilibrium free energy calculations. The Hamiltonian perturbation is performed between neighboring 

states with nonequilibrium transformations. The Hamiltonian of the system at the 1k th configurational state 

and 2k th alchemical state is represented as 
1 2,k kH . The target free energy landscape is at the Hamiltonian 

state 2 2K = . The indirect scheme performs direct free energy simulations at the Hamiltonian state 2 1k =  to 

explore the configurational space, and adds the 
1 ,1kH -to-

1 ,2kH  correction term to perturb the thermodynamic 

profile to the result at the target Hamiltonian state. The unidirectional arrows represent unidirectional pulling 

and unidirectional reweighting of the EXP or JI estimator. Only the transformations described with solid 

arrows are performed due to efficiency considerations in nonequilibrium free energy simulations. b) The 

thermodynamic cycle describing the dihedral flipping process with different descriptions of the ACE-NME 

system. The reaction coordinate is the backbone C-C-N-C dihedral. The free energy simulation exploring the 

configurational space is performed at some computationally efficient levels (i.e., model A), and the A-to-B 

perturbation term is used to obtain the thermodynamic profiles at the target levels (i.e., model B). An 

illustration of the ASMD selection criterion is shown at the center of the thermodynamic cycle. The 

configuration with the microscopic work closest to the EXP estimate is considered as an equilibrium 

configuration and thus is used as the initial configuration for the next pulling segment along the 

configurational CV and also to initiate the alchemical pulling transformation.  
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Fig. 2. a) The free energy profiles in the direct free energy simulation under the RM1 Hamiltonian with 

different pulling speeds. The number in the legend represents the number of MD steps for each 

nonequilibrium trajectory in each segment. As we are using 0.5 fs time steps, the pulling times of 10000 

steps, 20000 steps and 30000 steps are equivalently 5 ps, 10 ps and 15 ps. The bias in the 5 ps/segment 

estimate shows seed-dependence, and the pulling speed of 10 ps per segment is sufficiently slow for 

converged estimates of the free energy profiles. b) The indirect estimates at the RM1 level with different 

sample sizes for the correction term in one seeding SMD trail. The alchemical order parameter is varied in 

10 MD steps with a change of 0.1 per step. We can see that the 5-sample, 10-sample and 50-sample 

estimates with different estimators are virtually identical.  
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Fig. 3. The statistical uncertainty for the correction terms. a) The multi-dimensional SMD simulation is 

initiated from the 1st configuration with the pulling speed of 10 ps/segment. The AM1, MNDO and PM6 

Hamiltonians are used to explore the configurational space, and the correction term is used to perturb the 

results to the RM1 level. As the differences between different SQM Hamiltonians and the target RM1 are 

different, the statistical errors for different SQM-to-RM1 corrections obtained from the same estimator are 

different. The statistical error of the GEXP estimator is extremely similar to that of the ordinary average Wa, 

due to the negligible dissipation or the width of the work distribution. As a result, the GEXP and the Wa 

estimates are virtually identical. b) The AM1-to-RM1 correction averaged over 5 initial configurations. The 

pulling speed of 0.1/step is used along the alchemical CV, while two pulling speeds of 10 ps/segment and 15 

ps/segment are used along the configurational CV. We can see that the statistical error shows little 

dependence on the pulling speed in the configurational space.  
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Fig. 4. Comparison between the direct and indirect results at the RM1 level with the pulling speed of 10 ps 

per 3º segment for nonequilibrium pulling in the configurational space. a) and c) are obtained from the same 

initial configuration to initiate the multi-dimensional ASMD simulation, while b) and d) are the averaged 

results over 5 initial configurations. For a) and b), the alchemical order parameter is varied in 10 MD steps 

with a change of 0.1 per step, while for c) and d), the alchemical CV is changed in 100 MD steps with a 

perturbation of 0.01 per time step. More detailed results for different initial configurations and pulling 

speeds are given in Fig. S2 and S3.   
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Fig. 5. Comparison between the direct and seeds-averaged indirect results at the RM1 level obtained from 

direct MM simulations and MM-to-RM1 transformations. The force fields used are AMBER14SB and its 

refitted version. The pulling speed along the configurational CV is set to 10 ps/segment, and the alchemical 

order parameter is varied in 100 or 1000 time steps.  
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Table S1. The timing information (in ns/day) of MM, SQM and QM calculations on a computing node with 

384 GB memory and the CPU used is Intel(R) Xeon(R) Platinum 8160. A single core is used for this 

benchmark, which avoids the influence of parallelization-related issues. As the nonequilibrium trajectories 

are independent, the practical simulation speed is the same as these statistics. As the memory on each 

computing node is very large, no memory-related issue in QM calculations would influence the speed of 

calculation. The basis set of 6-31G* is employed in ab initio QM calculations. Different SQM simulations 

are of very similar computational costs, while the speed of ab initio QM calculations depends on the level of 

theory. Here, we only tested the HF Hamiltonian.  

 

     Hamiltonian                               

Terms 
SQM HF MM 

speed(ns/day) 46.5 0.013907 1877.92 

speedup(SQM/QM) 1.00  3343.64  0.02  
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Table S2. Mean absolute error of the indirect estimates at ab initio QM levels in kcal/mol. 7 different initial 

configurations are tested to initiate the multi-dimensional ASMD pulling. The pulling speed in the 

configurational space is 10 ps per 3º segment. The alchemical perturbation is finished in 10 time steps with a 

change of 0.1 per step in the first 7 trails, while the last trail 0.01 uses 100 steps.  

 

Hamiltonians                             

Trail 

HF 

AM1 MNDO RM1 

1 0.31  0.35  0.60  

2 0.83  0.79  1.33  

3 0.88  0.54  0.93  

4 0.56  0.91  0.75  

5 0.50  0.44  0.67  

6 0.81  1.21  0.47  

7 0.52  1.23  0.67  

0.01 0.20  0.30  0.21  
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Table S3. Efficiency comparison of direct and indirect nonequilibrium free energy simulations with the 

current JI-based ASMD method and the previously proposed BAR-based method. The total simulation time 

in direct scheme is given by segments traj NEW eq* *( )N N  + , while the total simulation time in the indirect 

scheme is the sum of segments,small traj,small NEW,small eq,small* *( )N N  +  under the SQM Hamiltonian and 

traj,small->large NEW,small->large eq,small traj,large->small NEW,large->small eq,large*( ) *( )N N   + + +  in the SQM-to-QM correction. 

segmentsN  is the number of segments and trajN  is the number of realizations per segment. The simulation time 

under the QM Hamiltonian is scaled by the ratio of computational cost QM/SQM in Table S1 to provide the 

effective simulation time at the SQM level, enabling the direct comparison between computational costs 

from methods. The statistics for the BAR-based method are borrowed from our previous work, Phys. Chem. 

Chem. Phys. 2019, 21, 21942-21959. As the BAR-based method is faster than ASMD in the construction of 

the free energy profiles in the configurational space, its computational cost of the direct free energy 

simulation (3.78 ns in the reference) is smaller than the ASMD one (24 ns). Therefore, the speedup of the 

multi-dimensional ASMD method is relatively modest compared with the ~1000-fold speedup shown in the 

previous table.  

 

Terms 

 

 

   

Simulation    

eq  for each 

initial 

configuration 

(ps) 

NEW  in 

each 

segment 

(ps) 

Number of 

segments 

Number of 

realizations per 

segment 

Total simulation time 

(ps) scaled to SQM 

Hamiltonian 

Relative 

efficiency 

direct SQM 0 10 120 20 24000.00  526.62  

SQM->HF 0 0.005 120 25 50154.60  - 

HF->SQM - - - - 0.00  - 

indirect HF - - - - 74154.60  170.44  

direct HF 0.05 0.5x2=1 180 20 12638958.80  1.00  
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Fig. S1. Comparison between the direct and indirect estimates of the free energy profiles at the RM1 level 

initiated from different seeds (i.e., configurations) with different pulling speeds along the configurational 

CV or the alchemical CV. The configurational space is explored with the ASMD scheme with 20 samples in 

each stage at the PM6 level, and the RM1 result is obtained by the combination of the PM6 result and the 

PM6-to-RM1 unidirectional pulling. The pulling time ‘x ps’ denotes the pulling time for each segment along 

the configurational CV. The nonequilibrium transformation in the alchemical space is performed in 5 fs (i.e., 

10 time steps with a change of 0.1 per step) for the first 5 subplots, while a smaller perturbation (0.01 per 

time step) and thus a longer pulling time is used for the last subplot. The exponential average EXP, the 

Gaussian approximation GEXP, and the ordinary average Wa are extremely similar, leading to overlaps of 

these curves in the plot. We can see that different initial configurations could lead to different systematic 

errors with a faster pulling speed along the alchemical CV, which could be eliminated when a slower pulling 

speed is employed.  
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Fig. S2. Comparison between the direct and indirect estimates of the free energy profiles at the RM1 level 

initiated from different seeds (i.e., configurations) with different pulling speeds along the configurational 

CV. The nonequilibrium transformation in the alchemical space is performed in 5 fs (i.e., 10 time steps with 

a change of 0.1 per step). The configurational space is explored with the ASMD scheme with 20 samples in 

each stage under the AM1 or MNDO Hamiltonians, and the RM1 result is obtained by the combination of 

the AM1 or MNDO result and the AM1-to-RM1 or MNDO-to-RM1 unidirectional pulling. The pulling time 

‘x ps’ denotes the pulling time for each segment along the configurational CV. 8 different initial 

configurations are used for the seeding SMD simulations with the pulling speed of 10 ps per segment in the 

first 8 subplots a-h), while the first 3 configurations are used to initiate the seeding SMD simulations with a 

slower pulling speed of 15 ps per segment for the last 3 subplots i-k). The exponential average EXP, the 

Gaussian approximation GEXP, and the ordinary average Wa are extremely similar, leading to overlaps of 

these curves in the plot. Different initial configurations introduce different systematic errors, and averaging 

over these configurations could eliminate this systematic error, as shown in the main article. The pulling 

speeds of 10 ps/segment and 15 ps/segment along the configurational CV have little influence on the 

systematic error of the indirect results, as the latter is mainly introduced in the alchemical perturbation term. 
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Fig. S3. Comparison between the direct and indirect estimates of the free energy profiles at the RM1 level 

initiated from different seeds (i.e., initial configurations) with different pulling speeds along the 

configurational CV. The nonequilibrium transformation in the alchemical space is performed in 50 fs (i.e., 

100 time steps with a change of 0.01 per step). The configurational space is explored with the ASMD 

scheme with 20 samples in each stage under the AM1 or MNDO Hamiltonians, and the RM1 result is 

obtained by combining the AM1 or MNDO result and the AM1-to-RM1 or MNDO-to-RM1 unidirectional 

pulling. The pulling time ‘x ps’ denotes the pulling time for each segment along the configurational CV. 

Different initial configurations are used for the seeding SMD simulations with the pulling speed of 10 ps per 

segment for the first 4 subplots a-d), while the first 2 configurations are used to initiate the seeding SMD 

simulations with a slower pulling speed of 15 ps per segment for the last 2 subplots e-f). The exponential 

average EXP, the Gaussian approximation GEXP, and the ordinary average Wa are extremely similar, 

leading to overlaps of these curves in the plot. Compared with the indirect estimates obtained with a faster 

pulling speed along the alchemical CV shown in the previous figure, the current results are much closer to 

the direct free energy estimates, which indicates that the sampling in the nonequilibrium ensemble 

successfully eliminates the systematic bias introduced in the alchemical perturbation term. The pulling speed 

in the configurational space have little impact on the outcome.  
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Fig. S4. The deviation of the indirect EXP, GEXP and Wa estimates from the direct result at the RM1 level 

for the initial-seed-averaged simulations with 100 steps in the alchemical transformation.  
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Fig. S5. The correlations between the MM and SQM (RM1) energetics calculated from 10 ns trajectories 

generated at 1300 K and 300 K. The sampling interval is 2 ps and there are 5000 independent configurations 

in total. The RMSE and MAE of the original parameter set and the newly fitted force-matching set are also 

presented. The RMSE of atomic forces is also improved from 23.9 kcal/(mol·Å·atom) to 13.1 

kcal/(mol·Å·atom) at 300 K and from 37.6 kcal/(mol·Å·atom) to 25.0 kcal/(mol·Å·atom) at 1300 K.  

 

 

 

 


