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Abstract 

We report a comprehensive study of the efficacy of least-squares fitting of multidimensional 
spectra to generalized Kubo lineshape models and introduce a novel least-squares fitting metric, 
termed the Scale Invariant Gradient Norm (SIGN), that enables a highly reliable and versatile 
algorithm. The precision of dephasing parameters is between 8× to 50× better for nonlinear 
model fitting compared to the CLS method, which effectively increases data acquisition 
efficiency by one to two orders of magnitude. Whereas the center-line-slope (CLS) method 
requires sequential fitting of both the nonlinear and linear spectra, our model fitting algorithm 
only requires nonlinear spectra, but accurately predicts the linear spectrum. We show an 
experimental example in which the CLS time constants differ by 60% for independent 
measurements of the same system, while the Kubo time constants differ by only 10% for model 
fitting. This suggests that model fitting is a far more robust method of measuring spectral 
diffusion than the CLS method, which is more susceptible to structured residual signals that are 
not removable by pure solvent subtraction. Statistical analysis of the CLS method reveals a 
fundamental oversight in accounting for the propagation of uncertainty by Kubo time constants 
in the process of fitting to the linear absorption spectrum. A standalone desktop app and source 
code for the least-squares fitting algorithm are freely available with example lineshape models 
and data. We have written the MATLAB source code in a generic framework where users may 
supply custom lineshape models. Using this application, a standard desktop fits a 12-parameter 
generalized Kubo model to a 106 data-point spectrum in a few minutes. 
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Introduction 

The Kubo lineshape is a common model of spectral diffusion in frequency fluctuation 
correlation functions (FFCFs) owing to its simple, closed-form expression and flexibility to 
describe the limiting cases of homogeneous and inhomogeneous dephasing.1 As the FFCF is not 
a direct experimental observable, a variety of approximate metrics have been used to extract an 
approximate FFCF from 2D frequency resolved line shapes in two-dimensional infrared (2D IR) 
spectra. Some of these approaches include the nodal-line slope,2-4 dynamic linewidth,5 
ellipticity,6, 7 covariance,8 spectral phase slope,9 inhomogeneity index,10 eccentricity,11 center line 
slope (CLS),12 inverse center line slope (invCLS),13, 14 and the correlation coefficient obtained by 
a 2D Gaussian fit.15 The most popular among these has been the CLS, which, relative to some 
other metrics, is more reliable at lower SNR, is invariant to lineshape interference from 
anharmonic peaks or phase twist, and is invariant to apodization time for time constants and 
relative amplitudes.16 

There are, however, several shortcomings of the CLS method, which are also characteristics 
of most of the other common metrics. First, it is unreliable for characterizing relatively fast 
processes due to the short-time approximation,12, 13 which, following second-order cumulant 
expansion, ignores dephasing during coherence times. Second, it requires a second step of fitting 
to the linear absorbance spectrum to obtained absolute values for Kubo amplitudes and 
homogeneous dephasing. This fitting is problematic in situations where the linear absorption is 
either unavailable or unreliable due to dilute reporters, weak extinction coefficients, or spectral 
congestion. Furthermore, linear absorption spectra are often inaccurate near the baseline, which 
can distort the resulting fit parameters. Third, absolute values of Kubo amplitudes and 
homogeneous dephasing are sensitive to the apodization time, meaning results may vary 
depending on the duration of coherence time measured or how quickly the apodization filter 
tapers to zero.16 Fourth, the CLS method still requires a remarkably high SNR (e.g. ~100:1) to 
yield reliable results. 

Model fitting to the nonlinear waiting-time-dependent spectra provides a natural solution to 
these issues. Directly fitting the data to a user-supplied lineshape model does not depend on the 
short-time approximation. It allows users to match the time/frequency domain(s) in which they 
collect data, and thereby mitigate apodization bias. It does not depend on fitting the linear 
absorption spectrum, and therefore, enables accurate measurements of spectral diffusion in a 
variety of scenarios that were previously inaccessible. Finally, as we will show, model fitting is 
reliable at far lower SNR (e.g. 10:1), is far less susceptible to structured residual signals than the 
CLS method, and yields reliable uncertainties for the measured lineshape parameters. 

This manuscript provides a comprehensive study of how fitting generalized Kubo lineshapes 
to multidimensional spectra compares to the CLS method in terms of the accuracy, precision and 
reliability of the resulting parameters. While Garret-Roe and coworkers have shown several 
examples of model fitting 2D IR waiting-time series using the fmincon function in 
MATLAB,17-20 a comparison of accuracy between model fitting and the CLS method by fitting 
to simulated spectra, where true values of parameters are known, has been missing. We find our 
model fitting routine improves precision over the CLS method by 8× to 15× on average for 
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Kubo time constants and 8× to 50× for Kubo amplitudes and homogeneous dephasing, which is 
due in part to a novel figure of merit used in our fitting algorithm that we refer to as the scale 
invariant gradient norm (SIGN). We find that numerical instabilities associated with some fitting 
parameters appearing nearly indistinguishable at certain points in parameter space are the 
primary cause of sudden ceasing, which could be mistaken for local minima. Importantly, the 
SIGN readily identifies these events, which enables swift correction by our fitting algorithm. 

We begin the manuscript by describing our approach, including a description of the least-
squares fitting program, estimation of error, the introduction of the scale invariant gradient norm, 
a brief review of multicollinearity (or ill-conditioning) in fitting problems, preprocessing of data 
prior to fitting, and description of hardware and software used in measurements and least-squares 
fitting. We then examine several experiments including a side-by-side comparison of model 
fitting and the CLS method for 100 trials of simulated data, fitting with too many or too few 
Kubo components, fitting to low SNR data, fitting to data with phasing errors, fitting to 
experimental data, and fitting to undersampled data. We then conclude with a discussion of 
recommended practices for model fitting. 

Methods and Materials 

A. Least-Squares Fitting Algorithm 

The Gauss-Newton algorithm is a common approach for model fitting.21 Within the least-
squares routine, experimentally measured data (provided as a multidimensional input) are 
concatenated into a one-dimensional vector 𝐃𝐃 (ND × 1) where information regarding 
dimensionality is preserved in the ordering of data. Throughout the text we use bold letters to 
denote vectors and matrices. We denote the residual between data 𝐃𝐃 and lineshape model 𝐌𝐌(𝐩𝐩) 
by 𝐫𝐫 in Eq. 1 where 𝐩𝐩 (Np × 1) is a vector of variable fitting parameters. We define “parameter” 
as any number subject to change with the measured system (e.g. the center frequency, 
homogeneous lifetime, etc.), while the preceding adjectives “constant” or “variable” refer to the 
status of a parameter during least-squares fitting. For generalized least-squares, the cost function 
C(𝐩𝐩) (a.k.a. χ2) is equal to the quadratic form in Eq. 2 where 𝐕𝐕𝐃𝐃 (ND × ND) is proportional to 
the data variance-covariance matrix,22 and superscript 𝐓𝐓 denotes the transpose. In the simplest 
case of uniform and uncorrelated noise, 𝐕𝐕𝐃𝐃 is equal to the identity matrix and the cost function 
C(𝐩𝐩) = |𝐫𝐫|𝟐𝟐. For more complicated cases of noise, a detailed discussion of 𝐕𝐕𝐃𝐃 is provided 
section B below. 

 𝐫𝐫 = 𝐃𝐃 −𝐌𝐌(𝐩𝐩) Eq. 1 

 C(𝐩𝐩) = 𝐫𝐫𝐓𝐓𝐕𝐕𝐃𝐃−𝟏𝟏𝐫𝐫 Eq. 2 

 The objective of least-squares fitting is to minimize Eq. 2 subject to 𝐩𝐩. Because 𝐫𝐫 depends 
nonlinearly on 𝐩𝐩, minimizing the cost function C(𝐩𝐩) requires an iterative process: 𝐩𝐩𝐢𝐢+𝟏𝟏 = 𝐩𝐩𝐢𝐢 +
𝚫𝚫𝐩𝐩. At each iteration, the second order Taylor series shown in Eq. 3 locally approximates C(𝐩𝐩) 
where 𝛁𝛁𝛁𝛁 (1 × Np) and 𝛁𝛁𝛁𝛁𝛁𝛁 (Np × Np) are the gradient and Hessian of C(𝐩𝐩) with respect to 𝐩𝐩. 
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 Applying the gradient 𝛁𝛁 to Eq. 2, we find a more useful expression for 𝛁𝛁𝛁𝛁 in Eq. 4 given in 
terms of 𝐫𝐫, 𝐕𝐕𝐃𝐃, and the Jacobian 𝐉𝐉 (ND × Np) which is a matrix composed of partial derivatives 
𝜕𝜕𝐌𝐌/𝜕𝜕pk computed by finite-difference approximation. 

Eq. 5 provides an expression for 𝛁𝛁𝛁𝛁𝛁𝛁 in terms of the residual-weighted Hessian of the model 
(𝐇𝐇j,k = 𝐫𝐫T𝐕𝐕𝐃𝐃−𝟏𝟏𝜕𝜕2𝐌𝐌/𝜕𝜕pj𝜕𝜕pk). Simply put, the most salient difference between several popular 
algorithms is in how they compute 𝛁𝛁𝛁𝛁𝛁𝛁. Newton’s algorithm computes it exactly as 𝛁𝛁𝛁𝛁𝛁𝛁 =
2�𝐉𝐉T𝐕𝐕𝐃𝐃−𝟏𝟏𝐉𝐉 − 𝐇𝐇�.21 Gauss-Newton computes it approximately as 𝛁𝛁𝛁𝛁𝛁𝛁 = 2𝐉𝐉T𝐕𝐕𝐃𝐃−𝟏𝟏𝐉𝐉. Levenberg-
Marquardt computes a more stable approximation 𝛁𝛁𝛁𝛁𝛁𝛁 = 2�𝐉𝐉T𝐕𝐕𝐃𝐃−𝟏𝟏𝐉𝐉 + λ𝟙𝟙�,21, 23, 24 or some 
variation thereof,25 where 𝜆𝜆 is known as the damping parameter and 𝟙𝟙 is the identity matrix. 
Finally, Steepest Descent simply assumes 𝛁𝛁𝛁𝛁𝛁𝛁 = 𝟙𝟙.21 The advantage of the Gauss-Newton 
algorithm over Newton is time saved in not computing 𝐇𝐇, which is usually quite significant. 
Newton is also susceptible to convergence problems far from the global minimum, unlike the 
other algorithms mentioned. The Gauss-Newton approximation is often justified because near the 
global minimum the residual 𝐫𝐫 is relatively small and mostly random with zero mean, implying 
𝐇𝐇 is negligible. The Levenberg–Marquardt algorithm interpolates between the limiting cases of 
Gauss-Newton (𝜆𝜆 → 0) and Steepest Descent (𝜆𝜆 → ∞). The advantage of Levenberg–Marquardt 
is the added stability of inverting 𝛁𝛁𝛁𝛁𝛁𝛁 due to the λ𝟙𝟙 term, however, this is irrelevant in our case 
as our algorithm guards against singular 𝛁𝛁𝛁𝛁𝛁𝛁 (Section C below). The disadvantage of 
Levenberg–Marquardt is that successful optimization for λ is difficult to predict and usually 
requires a dynamic routine. Furthermore, as λ increases, Levenberg–Marquardt behaves more 
like Steepest Descent which is slower to converge near minima because 𝛁𝛁𝛁𝛁𝛁𝛁 → λ𝟙𝟙 ignores the 
true curvature of C(𝐩𝐩). Therefore, we have chosen the Gauss-Newton approximation in Eq. 5. 

 𝛁𝛁𝛁𝛁𝛁𝛁 = 2�𝐉𝐉T𝐕𝐕𝐃𝐃−𝟏𝟏𝐉𝐉 − 𝐇𝐇� ≈ 2𝐉𝐉T𝐕𝐕𝐃𝐃−𝟏𝟏𝐉𝐉 Eq. 5 

The minimum of Eq. 3, 𝚫𝚫𝐩𝐩, is obtained using the MATLAB syntax 𝚫𝚫𝐩𝐩 = −𝛁𝛁𝛁𝛁𝛁𝛁\𝛁𝛁𝛁𝛁𝐓𝐓 where 
”\” corresponds to the MATLAB function mldivide, which solves the linear system of 
equations in Eq. 6. Note that 𝛁𝛁𝛁𝛁𝛁𝛁 may not be invertible on occasion. As is standard practice with 
nonlinear fitting routines, 𝚫𝚫𝐩𝐩 undergoes a quality check at the end of each iteration to ensure the 
move is productive. In particular, the program uses a backtracking line search subject to the 
Armijo condition. And finally, the program compares the new position 𝐩𝐩𝐢𝐢+𝟏𝟏 = 𝐩𝐩𝐢𝐢 + 𝚫𝚫𝐩𝐩 to the 
parameter boundaries provided by the user and corrects 𝚫𝚫𝐩𝐩 if necessary. 

 𝛁𝛁𝛁𝛁𝛁𝛁 ∙ 𝚫𝚫𝐩𝐩 = −𝛁𝛁𝛁𝛁T Eq. 6 

Occasions may arise in which the solution for 𝚫𝚫𝐩𝐩 in Eq. 6 is inaccurate or unacceptable in a 
directional sense. Consequently, iterative changes in 𝚫𝚫𝐩𝐩 approach zero even though 𝛁𝛁𝛁𝛁 is clearly 
nonzero. We refer to this as algorithmic stalling. Stalling is a separate issue from a local 
minimum in that 𝛁𝛁𝛁𝛁 = 𝟎𝟎 in a local minimum. We find that simply sending 𝐩𝐩 to a random point 

 C(𝐩𝐩 + 𝚫𝚫𝐩𝐩) ≈ C(𝐩𝐩) + 𝛁𝛁𝛁𝛁𝚫𝚫𝐩𝐩 +
1
2
𝚫𝚫𝐩𝐩T𝛁𝛁𝛁𝛁𝛁𝛁𝚫𝚫𝐩𝐩 Eq. 3 

 𝛁𝛁𝛁𝛁 = −2𝐫𝐫T𝐕𝐕𝐃𝐃−𝟏𝟏𝐉𝐉 Eq. 4 
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within user supplied boundaries, which we refer to as a random restart, is a reliable strategy for 
resolving a stall. This approach is closely related to multistart,26 which is a shotgun strategy for 
problems plagued by local minima. 

B. Uncertainty of Fit and Nonuniform Noise 

The parameter variance-covariance matrix 𝐕𝐕𝐩𝐩 (Np × Np) given by Eq. 7 provides the 
uncertainty of the variable fitting parameters assuming that 𝐩𝐩 is located at the global minimum.22 
We provide a derivation of Eq. 7 in SI section D. 

 𝐕𝐕𝐩𝐩 =
C(𝐩𝐩)

ND − Np
�𝐉𝐉T𝐕𝐕𝐃𝐃−𝟏𝟏𝐉𝐉�

−1
 Eq. 7 

Note that Eq. 7 assumes 𝐕𝐕𝐃𝐃 (ND × ND) is proportional to the data variance-covariance 
matrix. If noise is uncorrelated across 𝐃𝐃, but not necessarily uniform, then 𝐕𝐕𝐃𝐃 is a diagonal 
matrix with elements proportional to the variance of each datum. For example, if datum 𝑖𝑖 is 
averaged twice as much as datum 𝑘𝑘, then 𝐕𝐕𝐃𝐃−𝟏𝟏𝑖𝑖𝑖𝑖/𝐕𝐕𝐃𝐃

−𝟏𝟏
𝑘𝑘𝑘𝑘 = 2/1, and hence, the convenience of 

referring to 𝐕𝐕𝐃𝐃−𝟏𝟏 instead of 𝐕𝐕𝐃𝐃. We emphasize that 𝐕𝐕𝐃𝐃 need only be proportional to the true 
variance-covariance matrix in Eq. 7 since C(𝐩𝐩) ∝ 𝐕𝐕𝐃𝐃−𝟏𝟏 and �𝐉𝐉T𝐕𝐕𝐃𝐃−𝟏𝟏𝐉𝐉�

−1 ∝ 𝐕𝐕𝐃𝐃. If noise is both 
uncorrelated and uniform across 𝐃𝐃, then 𝐕𝐕𝐃𝐃−𝟏𝟏 is the identity matrix. 

Accounting for correlated noise more generally is challenging because the nondiagonal data 
variance-covariance matrix 𝐕𝐕𝐃𝐃 of size ND × ND might easily occupy a terabyte of memory for 
multidimensional spectra. Hence, for feasibility sake, our program assumes 𝐕𝐕𝐃𝐃 is diagonal which 
is typical for most other fitting programs. Consequently, the fitting algorithm is most optimal for 
spectra with uncorrelated noise. While conventional referencing schemes are unreliable for 
achieving uncorrelated noise, calibrated referencing schemes are known to achieve virtually 
uncorrelated noise,27-29 which can also be realized using 100 kHz Yb laser systems.30-32 
Nevertheless, SI section F provides a comparison of model fitting to edge-pixel referenced27 and 
unreferenced data, which suggests that model fitting to unreferenced data is still reliable setting 
aside the expected gain in uncertainty from the larger noise. 

C. Scale Invariant Gradient Norm �𝛁𝛁𝛁𝛁�� 

Stopping criteria are a notorious complication with fitting algorithms. They are often based 
on user specified thresholds. Three common examples are |𝚫𝚫𝐩𝐩| < 10−4, |C(𝐩𝐩i+1) − C(𝐩𝐩i)| <
10−5 or |𝛁𝛁𝛁𝛁| < 10−6. The threshold values of 10−4, 10−5 and 10−6 in these examples are 
arbitrary and may strongly depend on factors such as the scaling of parameters |𝐩𝐩|, data |𝐃𝐃|, 
noise |𝐕𝐕𝐃𝐃|, and number of data points ND. Therefore, users must reconsider these thresholds on a 
case-by-case basis, often empirically. To that end, we propose a new stopping criterion which we 
refer to as the scale invariant gradient norm, |∇C|� , defined in Eq. 8. We motivate this expression 

by unit analysis of |𝛁𝛁𝛁𝛁|: C(𝐩𝐩) cancels with the numerator of 𝛁𝛁𝛁𝛁 and each element of �diag�𝐕𝐕𝐩𝐩� 

cancels with a corresponding element of 𝜕𝜕𝐩𝐩i in the denominator of 𝛁𝛁𝛁𝛁. In Eq. 8, the numerator is 
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evaluated at iteration i, where 𝛁𝛁𝛁𝛁 is of size 1 × Np (Eq. 4) and �diag�𝐕𝐕𝐩𝐩� is of size Np × 1 (the 

diagonal root of Eq. 7), while C(𝐩𝐩) (a scalar, Eq. 2) in the denominator is evaluated at iteration i-
1 (evaluating at iteration i-1 is better behaved during random restarts). 

 

|∇C|� =
�𝛁𝛁𝛁𝛁�diag�𝐕𝐕𝐩𝐩��

𝑖𝑖
C𝑖𝑖−1(𝐩𝐩)

 
Eq. 8 

In addition to serving as a stopping criterion, |∇C|�  reliably indicates when the algorithm is 
stalled, which is resolved by random restart. Our stopping criteria require that the previous three 
iterations have |∇C|�  < 10−9 and have C(𝐩𝐩) within 10% of the lowest C(𝐩𝐩) encountered in all 
previous iterations, which provides some moderate protection against local minima. Regardless, 
we show that local minima are virtually nonexistent for three-level systems, so the second 
stopping criterion is somewhat moot. If an iteration does not meet stopping criteria, then the 
program checks for a stall. Our stalling criteria require that the last three iterations have less than 
1% deviation in |∇C|�  and less than 1% deviation in C(𝐩𝐩). The program also triggers a stall if 
𝛁𝛁𝛁𝛁𝛁𝛁 is singular, or nearly singular. If no stall is detected, then the program continues to the next 
iteration. 

D. Multicollinearity Considerations 

Considerations of multicollinearity, also known as ill-conditioning, are essential to 
developing a successful fitting model. We speculate that the limited application of 
multidimensional fitting algorithms in nonlinear spectroscopy to date is due in part to 
overlooking this aspect of models. A fitting problem is said to be multicollinear (or ill-
conditioned) if column vectors of the Jacobian 𝐉𝐉 are nearly linearly dependent, which causes 
instability in computing inverse matrices associated with 𝐉𝐉, such as the Hessian 𝛁𝛁𝛁𝛁𝛁𝛁−1 and 𝐕𝐕𝐩𝐩.33, 

34 Consequently, the calculation of 𝚫𝚫𝐩𝐩 in Eq. 6 may be inaccurate or unstable (i.e. a major cause 
of stalling) and covariances among those nearly linearly dependent parameters become 
overwhelming. In more extreme cases of multicollinearity, tiny perturbations of noise cause wild 
fluctuations in fitting parameters,35, 36 and error estimates become useless.33, 35, 37 

Not surprisingly, parameter redundancy, or indistinguishability between parameters, drives 
multicollinearity38 and should be avoided whenever possible. Here we list a few examples of 
multicollinearity. 

Example 1: Homogeneous dephasing is a limiting case of a Kubo lineshape where Thom−1  
approaches the product Δ2τ. In this case, Δ2 and τ are indistinguishable. Hence, homogeneous 
dephasing is modeled by a single fitting variable, Thom−1 . 

Example 2: We refer to a pair of Kubo components with similar correlation times (τ1 ≈ τ2), 
but different amplitudes (Δ12 ≠ Δ22) as degenerate. In this case, Δ12 and Δ22 become 
indistinguishable due to their linear dependence in the FFCF, corresponding to Δ12 exp(− t τ1⁄ ) +
Δ22 exp(− t τ2⁄ ) ≈ (Δ12 + Δ22) exp(− t τ1⁄ ). 
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Example 3: When modeling an isotropic response, the total homogeneous dephasing (THom) 
has three contributions from pure dephasing (T2∗), vibrational lifetime (TLT), and orientational 
relaxation (Tor) : 1/Thom = 1/T2∗ + 1/2TLT + 1/3Tor. If the waiting-time axis is sufficiently 
well-sampled to ensure linear independence of TLT, the remaining three lifetimes Thom, T2∗ and 
Tor are still multicollinear with one another. This is equivalent to trying to solve an algebraic 
equation for the values of 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧 given only that 𝑥𝑥 = 𝑦𝑦 + 5/2 + 𝑧𝑧/3. There are infinite 
possible answers. So, we reduce the number of unknowns to simply THom and TLT, without 
specifying T2∗ and Tor while fitting the isotropic response but enforce the boundary condition 
1/Thom > 1/2TLT. 

Example 4: Due to calibration error, the 0-1 peak may slightly differ in location on the pump 
and probe axes (e.g. <1 cm-1). Therefore, it is okay to model a calibration error along one of the 
axes, but modeling it along both axes, or modeling two calibration errors (one for each axis), 
would cause indistinguishability between the calibration error(s), the 0-1 center frequency and 
the anharmonic shift.  

A common measure of multicollinearity is the Variance Inflation Factor (VIF).34, 39 As the 
name suggests, the VIF is the factor by which the variance of a parameter inflates due to 
collinearity with other variable parameters. The VIF of the ith parameter may be computed 
empirically by measuring the variance over many simulated trials for two scenarios: (1) one in 
which all fitting parameters are varied during each fit (as is usual) and (2) only the ith parameter 
is varied during the fit and all other fitting parameters are held constant at their true values. Then 
the VIF is the ratio of the former to the latter. However, the empirical method may be time 
consuming, so we elect for the equivalent theoretical expression: Column vectors of the Jacobian 
𝐉𝐉 are normalized to �̂�𝐉 such that all diagonal elements of �̂�𝐉𝐓𝐓𝐕𝐕𝐃𝐃−𝟏𝟏�̂�𝐉 are equal to one. Then the VIF of 
the ith parameter is equal to the ith diagonal element of ��̂�𝐉𝐓𝐓𝐕𝐕𝐃𝐃−𝟏𝟏�̂�𝐉�

−1
.34, 39 To understand this, 

consider the limiting case of perfectly orthogonal model parameters and uniform, uncorrelated 
noise (i.e. 𝐕𝐕𝐃𝐃 is the identity matrix), then �̂�𝐉𝐓𝐓𝐕𝐕𝐃𝐃−𝟏𝟏�̂�𝐉 is the identity matrix, and hence, VIF is equal 
to 1 for every parameter. In the other limiting case in which any two or more parameters are 
perfectly linearly dependent, then �̂�𝐉𝐓𝐓𝐕𝐕𝐃𝐃−𝟏𝟏�̂�𝐉 is rank deficient, causing det(�̂�𝐉𝐓𝐓𝐕𝐕𝐃𝐃−𝟏𝟏�̂�𝐉) = 0, and the 
diagonal of ��̂�𝐉𝐓𝐓𝐕𝐕𝐃𝐃−𝟏𝟏�̂�𝐉�

−1
 blows up to infinity. For that reason, we recommend the true matrix 

inverse for testing VIF, not a pseudo inverse. 

E. Preprocessing Prior to Fitting 

We prefer to fit data in the original measurement domain, which is (τ1, Tw,ω3). Therefore, 
our model requires a Fast Fourier Transform (FFT) along the probe axis. The FFT assumes equal 
spacing along the probe axis, but, due to the spectrograph, our experimental data points are 
nonlinearly spaced along the probe axis. Therefore, to match the data and model in Eq. 1, users 
should preprocess the data by interpolating along a linear probe axis. This is a straightforward 
task using the spline function in MATLAB. The GUI version of our program does this 
automatically when loading data.  
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Time domain data are commonly padded by an equal number of zeros just prior to the 
Fourier Transform to enforce causality, which we call causal zero-padding. We refer to zero 
padding beyond this point as superfluous, but it is a common practice to interpolate the data in 
the frequency domain. More precisely, this approach results in sinc interpolation in the frequency 
domain. Sinc ringing is nearly always mitigated by choosing a non-rectangular windowing 
function to make the data smoothly taper to zero prior to zero padding.40 

Both superfluous zero padding and apodization manipulate data in different ways, and these 
perturbations will propagate into the fitting results. In fact, assuming the true parameters are 
known, the change in fitting parameters d𝐩𝐩 due to a perturbation in data 𝐝𝐝𝐃𝐃 is computed by Eq. 
S10. Therefore, we generally recommend fitting data in the original measurement domain 
without causal or superfluous zero padding, or apodization. When this is not an option, the data 
should be transformed back into the original measurement domain and the non-rectangular 
apodization window inverted to retrieve the original data. Careful consideration is needed when 
constructing the inverse window function (1) to avoid divide by zero or near divide by zero and 
(2) whether the original filter had ½ scaling of the DC component, which is common practice.40, 

41 

Data are collected using a pulse shaper42, 43 which ensures accurate phasing of all 2D IR 
spectra, though we have added an optional fitting parameter to account for a uniform zero order 
phasing error across all spectra. Results of model fitting to simulated data with phasing errors are 
provided in supporting information section G. 

F. Computer, Software and Computational Time 

We use a standard laptop to run model fitting and data analysis in MATLAB R2020a i.e. an 
Intel Core i7-8550U CPU @ 1.80GHz, 16 GB of RAM and (optionally) an NVIDIA GeForce 
GTX 1050 GPU, 4 GB GDDR5. The standalone desktop app (available for Windows and Mac 
users), MATLAB source code, and experimental data are freely available at 
https://github.com/kevin-robben/model-fitting. Detailed instructions for reproducing all data and 
analyses are provided in section H of the supporting information. 

The time needed to fit a single waiting-time series is approximately equal to ζ × ND × Np 
where ζ is a constant specific to the computer, ND is the number of data points and Np is the 
number of variable fitting parameters. The Jacobian 𝐉𝐉 requires 2Np unique calculations of the 
model 𝐌𝐌(𝐩𝐩) for the central finite-difference approximation, and hence, the bottle neck of the 
program is computing 𝐌𝐌(𝐩𝐩). We estimate ζ ≈ 1.3 × 10−7 minute/point/parameter for CPU 
computing on the laptop described above. For spectra smaller than 106 points, ζ is roughly the 
same between CPU and GPU computing. For spectra larger than 2 × 106 points, GPU 
computing reduces ζ by a factor of two or greater. 

Aside from GPU computing, computational time is reduced by fitting to fewer data points, 
which may be achieved by averaging more laser shots with the minimum necessary data points. 
For a simple three level system, the pump axis can be shortened to e.g. 16 data points with 
careful consideration of the rotating frame. This may be achieved by measuring just 16 points 

https://github.com/kevin-robben/model-fitting
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along the pump axis with e.g. 250 fs steps, or alternatively, by deleting excess data points along 
the pump axis in the frequency domain that fall outside the region of interest, and then 
transforming back to the time domain. However, as mentioned above in section E, careful 
consideration of the window function is needed when switching between time and frequency 
domains. 

G. Linear and 2D IR Measurements 

We collect FTIR measurement on a Bruker Tensor 27 with 1 cm-1 resolution. 2D IR 
measurements are collected at 2 kHz with ~150 fs pulses, centered at ~2150 cm-1 and magic-
angle polarization.27 The 2020 data are collected with 15 μJ pump energy and 200 mM MeSCN 
in DMSO. The 2021 data are collected with 2 μJ pump energy and 400 mM MeSCN in DMSO. 
Edge-pixel referencing subtracts correlated local-oscillator noise.27 The 2020 data are collected 
with a 4-pulse, real-valued phase cycle while the 2021 data are collected with an 8-pulse, 
complex-valued phase cycle. Comparative tests have led us to conclude that model fitting works 
equally well for fitting to real-valued or complex-valued free induction decays, given an equal 
number of laser shots. 

H. Lineshape Models 

Data are modeled as the isotropic response of a three-level system with FFCF(t) = δ(t)
THom

+
∑ Δ2 exp(−t/τi)𝑖𝑖  where the first term accounts for homogeneous dephasing and the summation 
accounts for multiple Kubo components when applicable. Homogeneous dephasing of the 1-2 
transition is modified during the second coherence time to account for lifetime broadening of the 
1-2 transition.44 Further details and complete equations are provided in supporting information 
section C. 

Results and Discussion 

A. Fitting Simulated Data 

First, we test the accuracy and precision of the algorithm by model fitting to simulated data 
and comparing the fit parameters to known, true values. We simulate the isotropic response of 
the C≡N stretch of MeSCN in H2O as characterized by Yuan and Fayer.45-47 We add Gaussian 
noise (SNR ~600:1) to the free induction decay to simulate experimental data. Here we define 
signal in the SNR calculation as the peak magnitude of the 0-1 transition of the transient 
absorption spectrum at zero waiting time. Our choice to simulate data with 600:1 SNR avoids 
occasional unphysical results that would otherwise occur in the CLS analysis of data with lower 
SNR over the course of 100 trials. Nevertheless, we also show that model fitting can be reliable 
for data with SNR of 10:1 (vide infra) subject to the expected increase in variance predicted by 
Eq. 7. 

The variable fitting parameters comprising 𝐩𝐩 are as follows: (1) the 0-1 peak amplitude A01 
(2) the 1-2 peak amplitude A12 (3) the 0-1 center frequency ω01 (4) a calibration mismatch error 
between the pump and probe axes δω1 (5) the anharmonicity ΔAnh (6) the 1st Kubo time constant 
τ1 and (7) squared amplitude Δ12 (8) the 2nd Kubo time constant τ2 and (9) squared amplitude Δ22 
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(10) a scaling factor for the Kubo amplitude of the 1-2 transition relative to the 0-1 β 
(i.e. Δ12(1-2) = β2Δ12(0-1) and Δ22(1-2) = β2Δ22(0-1)) (11) the inverse vibrational lifetime TLT−1 
and (12) the inverse homogeneous lifetime THom−1 . The calibration mismatch error δω1 effectively 
acts like a zero-order frequency shift along the pump axis which accounts for a finite error in the 
independent calibrations of the pump and probe axes. Though calibration errors are not present 
in the simulated data, we still treat the fitting as we would with experimental data, where this 
parameter may be necessary. δω1 is also useful for fitting to phase distorted data, as shown SI 
section G. The Kubo amplitude scaling factor β may partially account for situations where 
dephasing does not scale harmonically between the 0-1 and 1-2 transitions. We tend to find that 
fitting to inverse lifetimes and squared amplitudes, i.e. THom−1  and Δ2, is more stable than THom 
and Δ, which is not surprising given that THom−1  and Δ2 appear linearly in exponential arguments 
of the response function model. At the end of every iteration the program checks to ensure that 
the next movement 𝐩𝐩 + 𝚫𝚫𝐩𝐩 is within user-defined boundaries. This routine could be modified to 
ensure that Thom−1 > 1

2
TLT−1 + 1

3
Tor−1, which is a physical requirement.13 For the present cases of 

isotropic polarization, however, Tor is not known a priori, so we settle for Thom−1 > 1
2

TLT−1 in our 

boundary checks. Usually, 1
3

Tor−1 doesn’t contribute much to Thom−1 , so we think this is a 
reasonable approximation for convenience, though model fitting to polarization dependent 
spectra to fit Tor has been done.17 

For comparison, we also analyze the simulated data using the center-line-slope (CLS) 
method.12, 13 One feature of 2D Kubo lineshapes is that they are asymmetric in frequency and the 
asymmetry is, itself, frequency dependent (see Figure S1). This effect leads to inaccurate center-
line measurements when fitting the slices with a symmetric function. Therefore, we fit an 
asymmetric Lorentzian (Lorentzian + linear term + offset) to slices along the probe axis and then 
measure the peak of the asymmetric fitting function by numerically finding the extremum of the 
interpolated function to obtain the center-line points. This method provides a more accurate 
measure of the true centerline and perfectly agrees with Falvo’s analytical expression for 
calculating the CLS decay by double integration of the response function48 when tested on our 
simulated spectra. Fitting a biexponential model to the CLS decay yields the Kubo time 
constants. For this analysis, we include all waiting time points, including TW = 0. We measure 
homogeneous dephasing and Kubo amplitudes by fitting to the upper 80% of the linear 
absorption spectrum holding the Kubo decay times constant. Many baseline distortions are 
known to occur in FTIR measurements including interference fringes, atmospheric absorption, 
and scattering from scratched windows, particles and aggregates.49 Any subtle variation between 
background and sample measurements, such as path length, index of refraction, concentration 
and location of particles or aggregates, window scratches, temperature, pressure, atmosphere, 
and other conditions, can lead to residual distortions in background-subtracted FTIR spectra. 
These distortions, in addition to various forms of noise, are nontrivial to model so we do not 
include them in our simulation. In fact, to consider the best-case scenario for the CLS, we fit to a 
noiseless simulation of the linear absorption spectrum. Nevertheless, we note that in real 
samples, these contributions would all lead to even greater uncertainty for the lineshape 
parameters from the CLS method. 
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Figure 1 shows side-by-side comparisons of the lineshape parameters from both the CLS 
method (blue) and model fitting (red). For each trial, the code generates a new sampling of 
random noise for the spectra and chooses a random starting point for fitting 𝐩𝐩. Each panel shows, 
from left to right, the lineshape parameters: the squared amplitude of the first and second Kubo 
components (Δ12 and Δ22), the correlation time of the first and second Kubo components (τ1 and 
τ2), and the inverse homogeneous lifetime (THom−1 ). Panel (A) shows the results of all 100 trials 
plotted as the ratio of fit to true value. Video S1 shows fits to each of the CLS decays for all 100 
trials.  

Panel (B) shows the results for an individual trial (selected at random) with 95% confidence 
intervals derived from the covariance of the fit in Eq. 7. Corresponding plots of (B) for every 
single trial (Video S2) confirm that, for the model fitting approach, the true values fall within the 
confidence intervals for ~95% of trials. In contrast, the CLS method grossly underestimates the 
confidence intervals for the Kubo amplitudes and homogeneous dephasing. In calculating these 
confidence intervals for the CLS method, it was assumed that the Kubo time constants were 
known with absolute certainty, which is currently the standard treatment. In reality, the Kubo 
time constants obtained from CLS fits are uncertain, with reported errors ranging from 5-50%.45, 

46, 50, 51 This additional uncertainty must be accounted for when fitting the linear absorption 
spectrum if we hope to achieve accurate uncertainties for homogeneous dephasing and Kubo 
amplitudes. Accounting for this effect involves propagating the uncertainty of the Kubo time 
constants through the standard variance-covariance matrix of the linear absorption fit to obtain 
the modified variance-covariance matrix (Eq. S14), which we derive in supporting information 
section E. To the best of our knowledge, CLS error bars have never been reported using Eq. S14.  

Panel (C) shows the average values and 95% confidence intervals over 100 trials where 
model fitting improves precision over the CLS method by 8 × to 15 × for Kubo time constants 
and 8 × to 50 × for Kubo amplitudes and homogeneous dephasing. That true values fall within 
the intervals in (C) suggests the model fitting is highly accurate and reliable when provided an 

Figure 1. Dephasing parameters by CLS method (blue) and model fitting (red) of simulated 
2D IR waiting time series. (A) Fit parameters from all 100 trials. (B) Fit parameters obtained 
from an individual trial (chosen at random) with 95% confidence intervals estimated from 
covariance of fit. (C) Average of fit parameters over all 100 trials with 95% confidence interval 
calculated from standard error of the mean, with inset showing a zoom-in of the true-value line. 

https://youtu.be/7FJCR0fogkk
https://youtu.be/3eqEChFN_E4
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appropriate model for the data. On the other hand, the CLS method is inaccurate by 5-10% on 
average. 

Propagation of error difficulties aside, fitting dephasing parameters to the linear absorption 
spectrum is severely ill-conditioned even with the constraints afforded by the CLS method. 
Figure 2 shows VIFs (see Material and Methods section D) for three different scenarios. Panel 
(A) is for naively fitting to the upper 80% of the linear absorbance spectrum with a linear 
response model that includes an amplitude (A01), all five dephasing parameters 
(THom−1 , τ1,Δ12, τ2,Δ22), and a constant offset (c), which is a scenario that is well known to yield 
poorly constrained fitting parameters. The resulting VIFs range between 108 and 1012. As an 
example, consider the result of Δ12 with a VIF of 1012 which is the inflation that is expected in the 
variance of Δ12 because one, or more, covariances exist between Δ12 and other fitting variables. If 
the other six parameters were held constant while fitting Δ12, then the uncertainty of Δ12 should 
decrease by a factor of 1,000,000 (i.e. √1012). In this scenario, the uncertainty of every 
parameter is so large that any tiny perturbation in the noise causes massive fluctuations in values 
of the fitting parameters. These results clearly demonstrate that naively fitting all dephasing 
parameters to the linear absorbance spectrum is an ill-conditioned problem, consistent with prior 
expectations.40, 52 

Panel (B) shows results for fitting to the upper 80% of the linear absorbance spectrum using 
constraints on the time constants similar to what is done in the CLS method. Here we consider 
the cases where the Kubo time constants are known with absolute certainty (squares) or 10% 
uncertainty (circles). For the more realistic case of uncertain time constants, VIFs range between 
109 and ~1011, which imply roughly ~100,000× inflation in the uncertainties of Kubo amplitudes 
and homogeneous dephasing, give or take an order of magnitude. This result explains the large 
variance seen in panel (A) of Figure 1, and the necessity of simulating data with a 600:1 SNR in 
the 2D IR spectra to obtain reliable results for the CLS method. VIFs differ by four to five orders 
of magnitude between absolutely certain and uncertain Kubo time constants, which implies error 
bars on Kubo amplitudes and homogeneous dephasing are underestimated by two orders of 

Figure 2. The variance inflation factor (VIF) is a measure of multicollinearity (or ill-
conditioning) in least-squares regression. Plots of VIFs for (A) naively fitting all dephasing 
parameters (with scaling and offset) to a linear absorption spectrum, (B) the CLS method and 
(C) model fitting. Larger VIFs reflect higher multicollinearity. 
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magnitude. Indeed, this result is observed for the CLS method in Figure 1(B) and Video S2. 
Finally, panel (C) shows VIFs for model fitting to the 2D IR waiting-time series. For non-
dephasing parameters, including the vibrational lifetime, all VIFs are less than 10, meaning 
multicollinearity is negligible for these parameters. On the other hand, VIFs range between 100 
and 3,000 for the remaining dephasing parameters, implying inflated uncertainties between 30× 
to 50×. Though significant, the inflation of uncertainties in Kubo amplitudes and homogeneous 
dephasing remains two to four orders of magnitude smaller than for the CLS method.  

In addition to comparing model fitting to the CLS method, we are also interested in 
evaluating the robustness of the model fitting approach to variations in the chosen model, which 
may not always be known a priori. Figure 3 shows plots of C(𝐩𝐩) and |∇C|�  versus fitting iteration 
for three scenarios in which the fitting model 𝐌𝐌(𝐩𝐩) has one less (left), the same number 
(middle), and one more (right) Kubo component(s) than are actually present in the simulated 
data 𝐃𝐃. We start with analysis of the middle panels (C) and (D), which correspond to the fitting 
results shown in Figure 1. Plots of C(𝐩𝐩) in panel (C) show that C(𝐩𝐩) is useful for broadly 
comparing the quality of fit for a given iteration of 𝐩𝐩 but is not particularly useful for 
understanding convergence because progress near the global minimum is difficult to evaluate on 
a relative scale. On the other hand, |∇C|�  shows simple and reproducible behavior that clearly 
indicates convergence. The variation of |∇C|�  with iteration shows three phases. First, when 𝐩𝐩 is 
far away from a minimum of the cost function, the gradient is ~10−1. Next, 𝐩𝐩 reaches the 

Figure 3. Plots of the cost function and SIGN for modeling with too few (A, B), the correct 
number (C, D), and too many (E, F) Kubo components. Each trial corresponds to a random 
sampling of noise and random starting point for 𝐩𝐩. Dashed line is associated with stopping 
criterion.  

https://youtu.be/3eqEChFN_E4
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neighborhood of a minimum where the second order approximation of C(𝐩𝐩) in Eq. 3 is highly 
accurate, and hence, |∇C|�  rapidly descends many orders of magnitude in as little as 2-3 iterations. 
Finally, 𝐩𝐩 reaches the minimum of C(𝐩𝐩) but |∇C|�  approaches an asymptote. This asymptote 
should be essentially invariant at the global minimum because |∇C|�  is, effectively, the relative 
roundoff error in C(𝐩𝐩), and hence, is determined by accumulated roundoff errors in Eq. 8 on top 
of machine precision (~2 × 10−16). In a few cases, |∇C|�  descends halfway and stalls. The 
algorithm responds to stalling by restarting from a new randomly generated 𝐩𝐩 within the user-
supplied boundaries corresponding to the sudden increases seen in both plots (C) and (D). The 
dashed line in (C) is a user defined limit associated with the stopping criteria (section C of 
Materials and Methods). Video S3 shows fitting trajectories for every trial. 

Panels (A) and (B) show plots of C(𝐩𝐩) and |∇C|�  for 100 trials of fitting a one-Kubo model to 
data simulated by a two-Kubo lineshape. Compared to (C) and (D), fitting is far less susceptible 
to stalling and converges significantly faster, which suggests C(𝐩𝐩) is more convex over a wider 
range of 𝐩𝐩. Past a point of |∇C|� ≈ 10−7, the second order approximation of C(𝐩𝐩) is less effective 
and converges at a moderately slower rate. Fitting trajectories in Video S4 show 𝐩𝐩 consistently 
reaches the same global minimum for all 100 trials. 

Panels (E) and (F) show plots of C(𝐩𝐩) and |∇C|�  for 20 trials of fitting a two-Kubo model to 
data simulated by a one-Kubo lineshape. The many jumps in both plots are evidence of frequent 
stalling and random restarts, which is opposite of the behavior seen in panels (A) and (B). We 
ran this experiment for only 20 trials due to the large number of iterations, the resulting crowding 
in the plots, and the larger memory requirement for the video.  

Fitting trajectories in Video S5 show many examples of stalling and abnormal convergence 
corresponding to panels (E) and (F) in Figure 3. Stalling occurs when a single fitting iteration, 
ending with |𝚫𝚫𝐩𝐩| ≈ 0, starts an insidious cycle where 𝐩𝐩 doesn’t change and so the algorithm is 
doomed to repeat itself barring some intervention. This is distinct from local or global minima 
because stalling also requires |∇C|� > 10−9, which implies 𝐩𝐩 is not a minimum of C(𝐩𝐩). Two 
scenarios for which stalling may occur are (1) 𝚫𝚫𝐩𝐩 is accurate in direction but |𝚫𝚫𝐩𝐩| is limited by a 
boundary condition which causes |𝚫𝚫𝐩𝐩| ≈ 0 or (2) multicollinearity among fitting parameters 
leads to a nearly singular 𝛁𝛁𝛁𝛁𝛁𝛁 which results in an erroneous vector direction of 𝚫𝚫𝐩𝐩 (Eq. 6) and 
hence, 𝚫𝚫𝐩𝐩 is unable to reduce the cost function and so |𝚫𝚫𝐩𝐩| ≈ 0. Figure 4 illustrates three such 
examples of stalling. For each example, the top panel (A), (C), or (E) shows fitting trajectories of 
Kubo amplitudes (y-axis) versus time constants (x-axis) where the dashed line reticles mark the 
“true” value from the simulation input, and the bottom panel (B), (D), or (F) shows the plot of 
SIGN versus iteration for the fit. The first example in the left panel of Figure 4 shows the case of 
boundary stalling, in which the direction 𝚫𝚫𝐩𝐩 is accurate for further minimizing the cost function, 
but the location 𝐩𝐩 + 𝚫𝚫𝐩𝐩 is outside of the user-defined boundary for at least one of the parameters 
(in this case τc ≤ 10). Convergence (|∇C|� ≪ 1) is impossible in the case of regular boundary 
stalling and the program readily detects the constant value of |∇C|�  and resolves the stall with a 
random restart. 

https://youtu.be/OcwDMr8RQjE
https://youtu.be/UL23pn9Py78
https://youtu.be/nd1Ttuke0Hw
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The second example in the center panel shows the formation of a degenerate pair of Kubo 
components (i.e. having the same time constant). Plots of VIFs shown in Videos S3 and S5 are 
perfect examples of multicollinearity when a degenerate pair align. When a degenerate pair align 
(τ1 ≈ τ2), the FFCF reduces to Δ12 exp(− t τ1⁄ ) + Δ22 exp(− t τ2⁄ ) ≈ (Δ12 + Δ22) exp(− t τ1⁄ ) and 
hence, the amplitudes Δ12 and Δ22 are linearly dependent and therefore indistinguishable. As 
shown in many examples of Video S3 (e.g. trial 5, iteration 26) and Video S5 (e.g. trial 3, 
iteration 111) the VIFs and condition number always explode to infinity when pairs align. In 
every case, the program detects the blow up and reacts by random restart. 

The third example in the rightmost column shows a null Kubo component (i.e. Δ2 = 0), 
which is a special case of boundary stalling. It is tempting to think convergence with Δ2 = 0 
should be possible, and examples of this are in fact observed (e.g. Video S5, trial 1, iteration 24), 
but there are several cases in which stalling occurs instead (e.g. Video S5, trial 5, iteration 26). 
Numerical analysis (not shown) reveals that stalling here is caused by inflated estimates of |∇C|�  
stemming from near unity covariance(s) with the null component τc, which is a form of 
multicollinearity. This is not surprising given the uncertainty of τc is infinite for a true null 
component. In any case, we did not identify a scenario in which the program converged to an 
inaccurate fit after accounting for degenerate pairs, which implies that local minima are 
extremely rare for a three-level system assuming accurately phased spectra. 

Figure 4. Select examples of stalling or unusual convergence. Plots (A) and (B) show an 
example of boundary stalling. Plots (C) and (D) show an example of stalling due to 
multicollinearity between degenerate Kubo components. Plots (E) and (F) show an example in 
which one component approaches the true value and the other approaches null (i.e.  Δ2 = 0), 
where either stalling or convergence may occur. 

https://youtu.be/OcwDMr8RQjE
https://youtu.be/nd1Ttuke0Hw
https://youtu.be/OcwDMr8RQjE
https://youtu.be/nd1Ttuke0Hw
https://youtu.be/nd1Ttuke0Hw
https://youtu.be/nd1Ttuke0Hw
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Figure 5 shows the results for fitting to data with a much lower SNR of 10:1. Simulation 
parameters are representative of a cyanylated cysteine residue in the Calmodulin protein.53 The 
second Kubo component is treated as static on the timescale of the waiting-time measurements 
by holding 𝜏𝜏2 constant at 1 ns. The transient absorption spectrum in (A) and the 2D IR spectrum 
in (B) at TW = 0 ps illustrate just how modest the quality of the raw data is at 10:1 SNR. 
Dephasing parameters in (C) from model fitting for all 100 trials show a distribution that rarely 
exceeds 10-25% of the true values. Any analysis based on the CLS method would be hopeless at 
this 10:1 SNR. An example of dephasing parameters for an individual trial in (D) shows that the 
95% confidence intervals accurately reflect the variance seen in (C), which shows that the 
calculated uncertainties are reliable for low SNR data. Indeed, each of the individual results for 
the 100 trials in panel (D) of Video S6 validates the 95% confidence intervals. Panel (E) shows 
the average over all 100 trials with corresponding 95% confidence intervals calculated from the 
standard error of the mean confirming the accuracy of model fitting for this example. Fitting 
trajectories seen in Video S7 are similar to the case of MeSCN in H2O previously shown in 
Figure 1 and Video S3 above. Some occasions of stalling do occur which the program readily 
resolves. As expected, there is a decrease in the precision of the modeling results due to the 
increase in the noise. 

Figure 5. Model Fitting to low SNR 2D IR waiting-time series. Simulation is representative 
of a cyanylated cysteine residue in the protein Calmodulin, where Δ22 is static relative to the 
vibrational lifetime. Examples of (A) transient absorption and (B) 2D spectrum with SNR of 
10:1. (C) Fit parameters from 100 trials. (D) Fit parameters obtained from an individual trial with 
95% confidence intervals estimated from covariance of fit. (E) Average of fit parameters over all 
100 trials with 95% confidence interval calculated from standard error of the mean. 

https://youtu.be/wcDJQKpECO0
https://youtu.be/9Hz_EU6m53k
https://youtu.be/OcwDMr8RQjE
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B. Fitting Experimental Data 

For MeSCN in DMSO, we have measured and analyzed two independent data sets. One 
comes from our previous publication on edge-pixel referencing, and we refer to these as the 2020 
data.27 We have also collected a new set of data that we will identify as the 2021 data. The 
original motivation for collecting the 2020 data was to compare data processed by two different 
referencing schemes. We were, therefore, not motivated to account for the background solvent 
response. On the other hand, in the 2021 data the pump pulse is lower in energy by ~8× 
compared to the 2020 measurements, and we have subtracted the solvent background for this 
measurement. The other notable differences between the data sets are the concentration (2020 is 
200 mM, 2021 is 400 mM), the pathlength (2020 is 100 μm, 2021 is 50 μm), and that the 2020 
data have significantly higher SNR due to more averaging and larger signal strength because of 
the higher pump energy. Figure 6 (A) shows the results of the CLS analysis of the two data sets. 
Having accounted for the background response, the CLS in the 2021 data set exhibits a single 
exponential decay, in contrast to what is seen in the 2020 data. In addition, the CLS decay times 
differ by 60% between data sets (5.8 ps vs. 3.3 ps) even if we only fit the long-time scale 
component for the 2020 data.  

Figure 6(B) shows the comparison of the 0-1 and 1-2 CLS decays for the 2021 data set. The 
two transitions have different initial CLS values (0.3 for the 0-1 and 0.4 for the 1-2) and the CLS 
decay of the 1-2 transition appears to be marginally faster than the 0-1 peak. We therefore model 
spectral diffusion of the 0-1 transition as ⟨δω01(t)δω01(0)⟩ = δ(t)/Thom + Δ2exp (−t/τ) and 
the 1-2 transition as ⟨δω12(t)δω12(0)⟩ = δ(t)/Thom + β2Δ2exp (−t/τ) where β is a unitless 
scaling factor that accounts for the larger 1-2 CLS amplitude seen in Figure 6(B). We also 
account for the effect that the shorter 1-2 vibrational lifetime has on the 1-2 dephasing during the 
second coherence time.40, 44 

 Figure 7 shows plots of (A) the cost function and (B) |∇C|�  for model fitting to the 2020 data. 
A first attempt to model the data with a two-Kubo lineshape (blue) does not converge and clearly 
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Figure 6. CLS of MeSCN in DMSO. (A) Comparison between 2020 data (magenta squares) 
and 2021 data (black circles). 2021 data is background subtracted prior to CLS analysis while 
2020 data is not. (B) Comparison between 0-1 (black circles) and 1-2 (blue triangles) CLS for 
2021 data. 
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resembles the results in Figure 4(E) and (F) 
for a model with too many Kubo components. 
A second attempt to model the data using a 
one-Kubo model (orange) immediately 
converges, implying the data are best modeled 
by a one-Kubo lineshape. Table 1 shows 
results for all ten fitting variables. Our earlier 
analysis of the 2020 data reported a 
vibrational lifetime of 75 ± 4 ps, which agrees 
with TLT−1 reported by model fitting in Table 1 
(inverting to 72.5 ± 0.3 ps). On the other hand, 
our earlier report of 5.8 ± 0.3 ps for the CLS 
time constant is 60% larger than the Kubo 
time constant reported by model fitting of the 
same data, 3.57 ± 0.04 ps. Importantly, 
however, the model fitting value of the 2020 data 
agrees well with the CLS time constant of 3.3 ± 
0.3 ps for the 2021 data and the model fitting 
Kubo time constant of 3.28 ± 0.02 ps for the 2021 
data. 

Figure 8 shows 2D IR spectra of 2020 data in 
panels (A) and (D) for waiting times of 0.4 ps and 
50 ps, and corresponding best-fit model spectra in 
panels (B) and (E). Qualitatively, the model 
appears consistent with the data in terms of shape 
and scale. A closer look at the residuals in panels 
(C) and (F), however, reveals the presence of a 
structured response at both waiting times. This 
residual response is roughly 10% of the amplitude 
of the total signal and is also present at similar 
magnitude in the 2021 data. 

The waiting-time dependent residuals differ in 
shape between the 2020 and 2021 data around the 
0-1 peak (Videos S8 and S9), but for frequencies 
less than 2035 cm-1 are similar around the 
diagonal, particularly at early waiting times. 
Differences around the 0-1 peak likely cause the 
discrepancies in the CLS decays shown in Figure 
6A. To show this more clearly, we overlay the 
centerlines of the experimental spectra in the left 
and right panels of Videos S8 and S9. Close 
inspection of the right panel in Video S8 reveals 

Figure 7. Plots of (A) cost function and 
(B) scale invariant gradient norm for one 
(orange) and two (blue) Kubo component 
models fitted to 2020 data. 

# Parameter Fitted Value 
1 A01 16.56 ± 0.04 arb. unit 
2 A12 18.73 ± 0.04 arb. unit 
3 ω01 2153.319 ± 0.006 cm-1 
4 δω1 0.137 ± 0.007 cm-1 
5 ΔAnh 25.483 ± 0.009 cm-1 
6 β 1.138 ± 0.003 unitless 
7 TLT−1 0.01379 ± 0.00003 ps-1 
8 THom−1  0.229 ± 0.003 ps-1 
9 τ 3.57 ± 0.04 ps 
10 Δ2 14.8 ± 0.1 cm-2 

Table 1. Fitting parameters for 2020 data. 

https://youtu.be/1BPlzRgPiGE
https://youtu.be/WxwiD7DwLTw
https://youtu.be/1BPlzRgPiGE
https://youtu.be/WxwiD7DwLTw
https://youtu.be/1BPlzRgPiGE
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the structured feature responsible for the slower CLS decay in the 2020 data which is not present 
in the 2021 data (Video S9). We must caution against over interpreting the residual here. One 
should not conclude that the residual reflects the “unmodeled” part of the lineshape where the 
model 𝐌𝐌(𝐩𝐩) and Jacobian 𝐉𝐉 are nonzero. The best fit model is influenced by both “modeled” and 
“unmodeled” parts of the experimental lineshape such that C(𝐩𝐩) is minimized. On the other 
hand, in the region below 2135cm-1 along the diagonal, the residual does accurately reflect the 
“unmodeled” lineshape because 𝐌𝐌(𝐩𝐩) and 𝐉𝐉 are virtually zero and therefore the residual 𝐫𝐫 in this 
region cannot influence the model fit by Eq. 4. 

We note three interesting features of this lower frequency response at early waiting time. 
First, as shown in Videos S8 and S9, the phase of the signal oscillates as a function of waiting 
time with a ~1.3 ps period (~25 cm-1). Second, the signal initially appears stretched along the 
diagonal and dephases with a lifetime of 1-2 ps. Third, as shown in both videos, the intensity of 
the residual response is roughly 10% of the peak 2D IR signal in both 2020 and 2021 data, which 

Figure 8. Plots of (A and D) 2020 data, (B and E) model fit result and (C and F) residual for 
Tw= 0.4 ps and 50 ps, respectively. Residual in (C) shows a structured response which is 
unaccounted for by the model. 

https://youtu.be/WxwiD7DwLTw
https://youtu.be/1BPlzRgPiGE
https://youtu.be/WxwiD7DwLTw
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implies a third-order response. We suspect this may be a resonantly enhanced wave packet of 
low-frequency Raman modes (e.g. the methyl torsion) anharmonically coupled to the C≡N 
stretch, similar to what has been seen in a variety of other oscillators.54-56 At longer waiting 
times, the residual appears as a vertical peak shift of the 0-1 transition coincident with the 
vibrational lifetime, which is characteristic of hot ground state absorption.56-59 

Figure 9(A) shows the linear absorbance spectrum for 2021 data obtained using the probe 
beam and upconversion spectrometer (black, solid) and using an FTIR (blue, dashed). We 
subtracted DMSO backgrounds in both spectra, offset and scale the FTIR spectrum to best match 
the probe spectrum via linear least-squares, but the FTIR spectrum remains notably narrower 
than the probe spectrum. We attribute this to different instrument response functions between the 
two measurements. For example, the FTIR spectrum is influence by factors such as apodization, 
scan length and vignetting of light along moving optics,49 while the probe spectrum is influenced 
by the resolving power of the spectrometer and the bandwidth of the 800 nm pump utilized in 
upconverting the infrared light prior to the spectrometer. 

  The third trace in Figure 9A (red, dashed) is the linear response predicted by model fitting 
to the 2D IR waiting time series (scaled and offset to best match the spectrum measured with the 
probe beam). The strong match between the predicted response and probe spectrum is 
independent validation of model fitting. For comparison, Figure 9B shows linear absorption fits 
to the FTIR spectrum for the CLS method. FTIR lineshapes can be unreliable near the baseline 
due to the difficulties with imperfect background subtraction, especially for dilute solutions of 
weak chromophores, and therefore, we show results for fitting to the upper 90%, 80% and 70% 
of the linear absorbance spectrum. We float the homogeneous lifetime, Kubo amplitude, linear 
scaling and offset as fitting variables while holding the Kubo correlation time constant at 3.3ps. 
We see that 80% provides a reasonable balance between quality of fit and distortions as a result 
of the baseline, which is in line with the recommendation by Kwak and coworkers.13 It is notable 
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Figure 9. (A) Linear absorption spectra as measured by the probe (black, solid), FTIR (blue, 
dot-dashed), and simulated with parameters obtained by model fitting the 2D IR waiting time 
series (red, dashed). (B) Results of the CLS method fitting to the upper 90% (blue, dashed), 
80% (green, dashed) and 70% (orange, dashed) of the probe spectrum (black, solid) to obtain 
the Kubo amplitude and homogeneous dephasing. 
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that the linear absorption predicted by model 
fitting in Figure 9A is still a higher quality fit than 
the 90% case for the CLS analysis. 

 We now examine the efficacy of model fitting 
of undersampled data with the sampling masks 
illustrated in Figure 10. There are 47 waiting time 
spectra in the entire series, but the first two (Tw = 
0 and 200 fs), where pump and probe overlap, are 
susceptible to spurious nonresonant and time-
ordering signals. Hence, we omit these spectra 
from model fitting in each case and “fully 
sampled” data corresponds to the 45-point mask. 
We generate masks by keeping every kth point left 
and right of 1 ps, where k is an integer number. 
For example, the 15-point mask samples every 
third point left and right of 1 ps. We base this on 
the guiding principle that every mask should 
include a waiting time point ~2× earlier than the 
shortest process expected to occur in the lineshape 
and ~2× later than the vibrational lifetime. 
Knowing a priori that the homogeneous lifetime 
is ~2 ps and vibrational lifetime is ~75 ps, we 
include points around 1 ps and 150 ps in every 
mask. For other -SCN systems more generally, 
one can reasonably assume that the shortest 
observable process is likely no faster than ~0.8 ps 
and the vibrational lifetime is between 30-80 ps. 

 Figure 11 shows plots of C(𝐩𝐩) and |∇C|�  for all 
sampling masks. As noted earlier, the cost 
function scales linearly with ND, which explains 
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Figure 10. Masks used in undersampling 
the waiting time TW of MeSCN in DMSO. 
Each row corresponds to a different sampling 
mask. Black dots represent the inclusion of a 
2D spectrum in fitting for a given waiting time. 
In all cases, we exclude the first 300 fs of 
waiting time to avoiding spurious nonresonant 
and time-ordering signals from pulse overlap.  

Figure 11. Plots of (A) the cost function 
C and (B) the scale invariant gradient norm 
|∇C|�  versus fitting iteration for series of 
undersampled waiting time Tw. Dashed line 
in (B) is associated with stopping criterion. 
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the varying magnitudes of C(𝐩𝐩) in Figure 11(A). 
On the other hand, the scale invariant gradient 
norm has no dependence on ND, and hence, |∇C|�  
is similar in scale for every mask. 

Figure 12 shows dephasing parameters 
obtained by the CLS method (left column) and 
model fitting for every sampling mask (right 
column). The 60% discrepancy between Kubo 
time constants in panel (A) is a reflection of the 
CLS decays in Figure 6(A). In contrast, Kubo 
time constants obtained by model fitting in (D) 
differ by just 10% between the 2020 and 2021 
data sets. This shows that model fitting is far more 
consistent and reliable for estimating Kubo time 
constants than the CLS method. The results in (D) 
also show that Kubo time constants are consistent 
across all undersampled versions of 2021 data. It 
is remarkable that model fitting to just two 
waiting time spectra yields precision comparable 
to that of CLS method for 45 waiting time points. 
In practice, we do not recommend fitting to only 
two waiting time spectra as we would not expect 
this to work for multi-Kubo lineshapes. 

Kubo amplitudes and homogeneous dephasing 
obtained by the CLS method shown in (B) and (C) 
reflect the linear absorption fits in Figure 9(B). 
Kubo amplitudes and homogeneous dephasing 
obtained by model fitting in (E) and (F) show 
consistent values across all undersampled versions 
of 2021 data. There does appear to be a systematic 
depression of 15% in the homogeneous dephasing 
rate from left to right, but this difference is small 
in comparison to the uncertainty of the CLS 
method. Finally, results in (F) also show a 40% 
discrepancy between homogeneous dephasing 
rates obtained by model fitting between the 2020 
and 2021 data sets. Some of this difference may 
be the result of background subtracting only the 
2021 data set, or inaccuracies in inverting the 
apodization window required for the 2020 data 
(i.e. Materials and Methods Section E). Nonetheless, this 40% discrepancy is still small in 
comparison to the uncertainty seen in the CLS method. 

Figure 12. Comparison of dephasing 
parameters obtained by CLS Method and 
Modeling Fitting. Plot (A) shows Kubo time 
constants obtained by CLS method for 2020 
and 2021 data. Plots (B) and (C) are Kubo 
amplitudes and homogeneous dephasing 
obtained by CLS method for 2021 data. This 
is plotted for three different fitting ranges of 
linear absorption (see Figure 9B) to 
demonstrate how sensitive these parameters 
are to the linear absorption spectrum. Plots 
(D), (E) and (F) correspond to model fitting 
of 2021 data as a function of the number of 
waiting time points used in fitting. Model 
fitting to 2020 data also shown for 
comparison. Error bars are 95% confidence 
intervals estimated from covariance of fit. 
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Conventional wisdom says that model fitting of multidimensional spectra is a problem 
riddled by local minima. In the several hundred trial examples of model fitting shown here, our 
program encounters and resolves many algorithmic stalls, but not a single local minimum is 
observed. The distinction is important. It is difficult, and often impossible, to distinguish a local 
minimum from the global minimum, but stalling is always distinguishable using |∇C|� . Though 
we have only shown that local minima are exceptionally rare for a simple three-level system, it is 
reasonable to believe this should apply to more advanced models including coupled oscillators, 
assuming reasonable separation between peaks, and more complicated lineshape functions. 
Therefore, conventional wisdom should be updated: model fitting is far less a problem of local 
minima as it is of multicollinearity and boundaries, which are manageable. 

C. Recommended Practices for Model Fitting 

 We summarize the following recommendations for model fitting. 

1. For faster performance, limit the number of data points. See Materials and Method 
Section F for suggestions. 

2. We strongly discourage superfluous zero padding or apodizing data prior to fitting as 
these effects will propagate into fitting results. We recommend fitting to data in the 
original measurement domain. See Materials and Methods section E for more 
information. 

3. When applicable, users should enable a zero-order phase fitting parameter to account for 
residual phasing errors (see SI section G). The presence of spectrally correlated shot-to-
shot noise (a.k.a. local-oscillator noise) likely limits the ability to accurately phase data, 
particularly with the projection slice theorem. Therefore, we do not recommend model 
fitting for phase distorted apparatuses without prior removal of shot-to-shot noise. 

4. Calibrated referencing schemes greatly improve precision of fitting parameters by 
removing correlated shot-to-shot noise. For example, we found edge-pixel referencing 
reduced uncertainties by a factor of 10 over unreferenced data.  

5. The relative variance across data (e.g. due to non-uniform averaging across different 
waiting time spectra) should be accounted for using 𝐕𝐕𝐃𝐃−𝟏𝟏. This is straight-forward using 
our GUI interface. See Material and Methods section B for more information. 

6. Fitting happens simultaneously across all spectra, and therefore, consistency is required 
among factors that affect the magnitude of the nonlinear signal throughout the entire 
experiment (e.g. constant pump power, constant intensity ratio between probe and local 
oscillator, consistent normalization factors if non-uniformly averaging along waiting time 
spectra). 

7. For best performance, tune the initial parameters to reasonably match the model and data 
prior to fitting. Our GUI interface provides real-time update of the lineshape model for 
comparison with the data across several different plots to greatly help with this process. 

8. For best performance, boundary conditions should strike a reasonable balance between 
narrow enough to avoid too many random restarts and wide enough to avoid boundary 
stalling. Again, our GUI interface is very helpful here. 
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9. Start by fitting a one-Kubo model and then add more components. For best performance 
with two or more components, avoid degeneracy by restricting the boundary conditions 
of each time component to a different time scale (e.g. 0.1 – 2.0 ps and 1.0 – 10 ps). Use 
the time constant from the one-Kubo component fit to estimate the dividing line between 
the two time scales with comfortable overlap to avoid over constraining. With the 
exception of null components, convergence will not occur for models having more Kubo 
components than truly present in the data. Note that it is practically impossible to resolve 
a Kubo correlation time much longer than the vibrational lifetime due to low SNR at 
longer Tw, which is similarly true for the CLS method. 

10. When exploring different models, VIFs are a useful tool for monitoring multicollinearity. 
Plots of VIFs are readily generated in our GUI app.  

Conclusion 

We introduce a scale invariant gradient norm (SIGN) capable of identifying, and 
distinguishing between, algorithmic stalling and convergence at a local or global minimum. Our 
model fitting algorithm accurately estimates all lineshape parameters with superior precision and 
accuracy compared to the CLS method. We show how to infer when a model has too many, or 
too few, Kubo components for a data set based on the behavior of the SIGN. Interestingly, we 
find no evidence of local minima when fitting to a multi-Kubo lineshape of a three-level system. 

Though analysis of simulated spectra suggests the CLS method is reliable in retrieving Kubo 
time constants, we have shown an experimental example in which the CLS time constants differ 
by 60% between independent measurements of the same system. In contrast, Kubo time 
constants obtained by model fitting only differ by 10%, which suggests model fitting is a far 
more reliable and consistent means of measuring spectral diffusion over the CLS method. 
Furthermore, we revealed a fundamental oversight in propagation of error with the CLS method, 
which led us to show that error bars for Kubo amplitudes and homogeneous dephasing obtained 
by fitting the linear absorbance spectrum are unreliable. In contrast, model fitting yields reliable 
error bars over a wide range of scenarios with upwards of 50× better precision than the CLS 
method. 

While the scope of this study is limited to the isotropic response of a simple three-level 
system, we expect model fitting to the anisotropic response should work equally as well. We 
plan to explore this in a follow up study in addition to more complicated lineshape models, such 
as coupled oscillators, overlapping ensembles, and underdamped oscillatory FFCFs. 
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