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Abstract

Accurate and affordable methods to characterize the electronic structure of solids

are important for targeted materials design. Embedding-based methods provide an

appealing balance in the trade-off between cost and accuracy - particularly when

studying localized phenomena. Here, we use the density matrix embedding theory

(DMET) algorithm to study the electronic excitations in solid-state defects with a
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restricted open-shell Hartree–Fock (ROHF) bath and multireference impurity solvers,

specifically, complete active space self-consistent field (CASSCF) and n-electron va-

lence state second-order perturbation theory (NEVPT2). We apply the method to

investigate an oxygen vacancy (OV) on a MgO(100) surface and find absolute devia-

tions within 0.05 eV between DMET using the CASSCF/NEVPT2 solver, denoted as

CAS-DMET/NEVPT2-DMET, and the non-embedded CASSCF/NEVPT2 approach.

Next, we establish the practicality of DMET by extending it to larger supercells for the

OV defect and a neutral silicon vacancy in diamond where the use of non-embedded

CASSCF/NEVPT2 is extremely expensive.

Quantum embedding theory offers an appealing solution for understanding the electronic

structures of extended systems where conventional quantum chemical methods are imprac-

tical.1 Various formulations of quantum embedding theory aims at describing a small region

of interest, i.e., a “fragment” or “impurity,” using an accurate yet expensive method while

treating the rest of the system at a lower level of theory, usually a mean-field method such as

Hartree–Fock (HF)2 or Kohn-Sham density functional theory (KS-DFT).3,4 Density matrix

embedding theory5–8 is a wave function-in-wave function embedding technique where the

environment of the fragment is effectively modeled with a bath constructed by a Schmidt

decomposition of a mean-field wave function.9 Recently, the DMET algorithm formulated

using a restricted closed-shell Hartree–Fock (RHF) bath for solid-state systems within the

framework of periodic boundary condition has been introduced independently by some of the

authors10 as well as by Cui et al..11 Our preliminary investigations revealed that DMET pro-

vides ground-state energies and band structures of simple solids like the periodic hydrogen

chain and polyyne.10

In this Letter, we investigate the performance of periodic DMET using the restricted open-

shell Hartree–Fock (ROHF) wave function as a bath in describing open-shell excited states

of point defects in solid-state systems. We implemented the complete-active space self-

consistent field (CASSCF)12–14 and strongly-contracted n-electron valence state second-order
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perturbation theory (NEVPT2)15–18 multireference methods as impurity solvers to capture

electron correlation of excited states. While CASSCF has been used as a DMET solver within

the molecular context,19 this is the first time that NEVPT2 is used as a high-level method

in DMET. Our tests on the oxygen vacancy on a MgO(100) surface show that using ROHF

as the low-level wave function in conjunction with the CASSCF/NEVPT2 solver offers an

accurate description of strongly correlated electrons. The approach proposed here does not

require the high-level wave function to break spin symmetry, as in the case in which the spin-

unrestricted Hartree–Fock (UHF) method is employed for the low-level wave function.20,21

The theory and implementation of DMET for lattice models5,22,23 and molecular systems

have been discussed extensively in previous publications. Readers are encouraged to refer to

these publications for more details.7,8

A spin-restricted Hartree–Fock wave function is used to intialize a periodic DMET calcula-

tion. The impurity is then defined using a set of localized orbitals in real space. We use the

maximally-localized Wannier functions (MLWFs),24,25 implemented in the wannier9026 code.

The translational symmetry is broken for defective solids and the unit cell is chosen to be

sufficiently large to avoid the interaction between periodic images of the defect. As a result,

the Brillouin zone can be adequately sampled at the Γ-point and a subset of Nimp MLWFs

at the chemical region of interest, for example those around the defective site, defines the

impurity. The bath is a set of orbitals representing the environment and is constructed using

the Schmidt decomposition,7 which for any single determinant requires only the one-body

reduced density matrix (1-RDM). The environment block (Denv) of the 1-RDM is diagonal-

ized, Denv = UλU∗, where λ is a diagonal matrix of eigenvalues λi (i = 1, 2, ..., Nenv where

Nenv is the number of the environment orbitals). The columns of the unitary matrix U cor-

responding to λi other than zero or two define the entangled bath orbitals; the remainder are

treated as a frozen core in the subsequent embedding calculation. For a RHF wave function,

the number of 0 < λi < 2 eigenvalues is at most Nimp. For a high-spin ROHF wave function,

it is straightforward to prove that the number of 0 < λi < 2 eigenvalues is at most Nimp+2S,
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where S is the total spin quantum number of the computational supercell. We thus denote

DMET using the RHF and ROHF bath as DMET@RHF and DMET@ROHF, respectively.

Following the Schmidt decomposition, the high-level wave function, |Ψimp〉, which formally

diagonalizes the impurity Hamiltonian, Ĥimp, in the combined Fock space of the impurity and

bath orbitals can be determined by any high-level solver of choice, for instance, CASSCF or

NEVPT2. All calculations are performed using our in-house pDMET code27 and the PySCF

package for electron integral and quantum chemical solvers.28,29 The calculations are all per-

formed without enforcing any spatial symmetry. We will refer to the CASSCF or NEVPT2

calculations performed at the Γ-point without the use of DMET as non-embedding references

or the full calculations. The computational methods used in this study are described in the

Supporting Information (SI).

First, we consider the oxygen vacancy (OV) in magnesium oxide. This point defect plays

a crucial role in energy storage and photoelectrochemical applications of metal oxides.30–32

The oxygen vacancy exists both in the bulk as well as on the surface of the oxide. We

investigate the performance of our method in calculating the first singlet-singlet and singlet-

triplet excitations of a neutral oxygen vacancy, denoted here as OV, on the (100) monolayer

of MgO. In particular, the removal of an oxygen atom (O) from the ionic crystal composed

of the O2− and Mg2+ ions results in two electrons trapped in the cavity left by the missing

oxygen, denoted as a F-center (or a color center). The Mg18O18 model of OV is shown in

Fig. 1a. The full space group of this monolayer model system contains the D4h point group

as a subgroup, and the two localized defect orbitals transform as the a1g and a2u irreducible

representations, as shown in Fig. 1b (see Section S01 of the SI for more details on how

the defect states are identified). Although the gaps between the valence band (VB) and

conduction band (CB) obtained by RHF(S=0) and ROHF(S=1) are similar, the positions

of the a1g and a2u orbitals with respect to the valence band maximum depend on the spin

imposed in the mean-field calculation, as shown in Fig. 1c. Later, we extend our calculations

to larger unit cells as shown in Fig. 1d. In the DMET calculations, we consider three impurity
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clusters of expanding size to investigate how the choice of the impurity cluster affects the

excitation energies (see Fig. 1e). The CASSCF and NEVPT2 methods are used as high-

level solvers and the impurity is embedded in either the RHF or ROHF mean-field wave

function. An active space of two electrons in two orbitals is employed in all calculations

because there are two electrons and two defect orbitals localized at the F-center. The same

active space was previously used.33 We compare our embedding results with non-embedding

Γ-point calculations on Mg18O18 at the same level of theory. The ground-state wave function

for the F-center mainly consists of the a↑↓1g determinant, leading to a 1A1g state. The first

singlet excited-state, 1A2u, results from the linear combination of the a↑1ga
↓
2u and a↓1ga

↑
2u

determinants with an equal weight of ca. 48 %. Similarly, the first triplet excited-state,

3A2u, is the a↑1ga
↑
2u determinant.
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Figure 1: Oxygen vacancy on a Mg18O18 layer: (a) Top view of the F-center on the (100)
surface. (b) Top and side view of two defect orbitals a1g and a2u from the ROHF(S=1)
calculation. The isosurface of orbitals is 0.03. (c) Relative energy of defect orbitals with
respect to the valence band maximum. The Fermi energy (or valence band maximum) is set
to 0; (d) Oxygen vacancy models with different numbers of layers: Mg18O18, Mg36O36, and
Mg54O54. The top layer corresponds to (a) in each of these cases; The gray atom highlights
the oxygen vacancy. (e) Three different impurity clusters considered in the DMET calcu-
lations. For Mg36O36 and Mg54O54, the Mg atom right below the vacancy is also included,
resulting in OV+Mg5O4 instead of OV+Mg4O8.
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Table 1: Vertical excitation energies (in eV) of the oxygen vacancy on the MgO(100) surface
obtained using DMET with CASSCF and NEVPT2 as the solvers compared to CASSCF
and NEVPT2 results at Γ-point. “Reference” here indicates the non-embedded Γ-point
CASSCF and NEVPT2 calculations. The extrapolated CAS-DMET and NEVPT2-DMET
energies from the linear regression are labeled as “Extrap”. All results are obtained using a
(2,2) active space.

Excitation Method Impurity cluster CASSCF NEVPT2
1A1g → 3A2u DMET@RHF OV+Mg4 2.70 3.22

OV+Mg4O4 1.78 2.53
OV+Mg4O8 1.37 2.18
Extrap 1.10 1.98

DMET@ROHF OV+Mg4 1.30 1.91
OV+Mg4O4 1.32 2.09
OV+Mg4O8 1.32 2.12
Extrap 1.33 2.18

Reference 1.33 2.19

1A1g → 1A2u DMET@RHF OV+Mg4 5.38 5.11
OV+Mg4O4 3.96 3.68
OV+Mg4O8 3.30 3.05
Extrap 2.88 2.62

DMET@ROHF OV+Mg4 3.27 3.17
OV+Mg4O4 3.26 3.05
OV+Mg4O8 3.25 3.00
Extrap 3.25 2.97

Reference 3.25 2.95

Table 1 shows the vertical excitation energies for the OV system. The excitation energies are

overestimated by DMET using the RHF(S=0) bath. The deviation with respect to CASSCF

for the largest impurity cluster OV+Mg4O8 is ca. 0.04 and 0.05 eV for the singlet-singlet

and singlet-triplet excitation, respectively. For the ROHF(S=1) bath, the smallest impurity

cluster OV+Mg4 already agrees well with CASSCF, with a deviation of 0.02-0.03 eV for both

transitions. The excitation energies obtained using OV+Mg4O8 are almost identical to the

CASSCF references. These results suggest that the bath constructed from a ROHF(S=1)

wave function is superior to that from the RHF(S=0) wave function. Interestingly, we find

a linear dependence between the NEVPT2 excitation energies and the inverse of the number
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of embedding orbitals as shown in Figure 2, which suggests that it is realistic to extrapolate

the NEVPT2-DMET energy to the one corresponding to the full system. It should be noted

that similar convergence patterns have been observed and linear extrapolation techniques

have been used in recent studies.34,35 Our extrapolations for the ROHF(S=1) bath result in

a deviation of only 0.02 and 0.01 eV for the singlet-singlet and singlet-triplet excitation, re-

spectively between the embedding and non-embedding calculations. The same extrapolation

for the RHF(S=0) bath does not provide good agreement with the reference, highlighting

the importance of a good DMET bath for both accuracy and efficiency for our embedding

scheme.

Figure 2: NEVPT2-DMET excitation energies of OV using (a) RHF(S=0) bath and (b)
ROHF(S=1) bath as a function of Nao/Nemb where Nao is the number of basis functions of
the entire system and Nemb is the number of embedding orbitals. The 1A1g → 1A2u and 1A1g

→ 3A2u transition are highlighted in blue and red, respectively. The extrapolated energy is
indicated with the “Full” label. The reference NEVPT2 energy for each excitation is also
given.

We extend our study to the oxygen vacancy on the MgO surfaces containing two or three

layers, resulting in Mg36O36 and a Mg54O54 respectively (see Figure 1d). For these systems,

we use a larger active space of two electrons in eight orbitals with s and p character localized

at the defect (shown in the SI). The non-embedding CASSCF or NEVPT2 calculations for

these models are not possible with our current computational capabilities. However, within

the embedding framework, such calculations are possible. We investigate the performances

of CAS-DMET and NEVPT2-DMET in calculating the singlet-singlet and singlet-triplet
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excitation energies (shown in Table 2). The surface models with increasing number of layers

allow us to study the convergence of the excitation energy with respect to the thickness

of the slab. It is observed that although the S0 → S1 excitation energies differ by 0.5-

0.6 eV when moving from a single- to a double-layer model, the difference between the

two- and three-layer models is about 0.1 eV for both S0 → S1 and S0 → T1 excitations.

Moreover, the in-plane expansion of the layer model only slightly changes the excitation

energies (see Section S05 of the SI). Unfortunately, there has yet been no consensus on the

S0 → S1 excitation energy of the surface F-center. The S0 → S1 excitation is estimated to

be about 1-5 eV by different experimental techniques.36–38 Computationally, the quantum

mechanics/molecular mechanics (QM/MM) approach using the multireference configuration

interaction (MRCI) method as the QM solver on a cluster model of OV predicts an excitation

energy of 3.24 eV and 1.93 eV for the S0 → S1 and S0 → T1 excitations;39 our CAS-DMET

and NEVPT2-DMET calculations predict excitation energies 0.3-0.4 eV higher than this

particular reference.
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Table 2: Vertical excitation energies (in eV) of the oxygen vacancy on the MgO(100) surface
obtained using CAS-DMET and NEVPT2-DMET using an (2,8) active space. The extrap-
olated CAS-DMET and NEVPT2-DMET energies from the linear regression are labeled as
“Extrap”. The values preceeded by a star correspond to the experimental measurement.

Excitation Layers Impurity cluster CASSCF NEVPT2 Literature

S0 → T1 Mg18O18 OV+Mg4 1.93 1.98

1.9339

OV+Mg4O4 1.97 2.07
OV+Mg4O8 1.98 2.13
Extrap 1.99 2.11

Mg36O36 OV+Mg4 2.19 2.19
OV+Mg4O4 2.25 2.25
OV+Mg4O5 2.26 2.28
Extrap 2.32 2.35

Mg54O54 OV+Mg4 2.20 2.13
OV+Mg4O4 2.26 2.19
OV+Mg4O5 2.28 2.21
Extrap 2.35 2.28

S0 → S1 Mg18O18 OV+Mg4 3.48 3.37

3.2439

*2.3036

*1.0, *1.3, *2.4, *3.437

*1.2, *3.6, *5.338

OV+Mg4O4 3.46 3.34
OV+Mg4O8 3.45 3.30
Extrap 3.45 3.29

Mg36O36 OV+Mg4 4.01 3.90
OV+Mg4O4 3.97 3.86
OV+Mg4O5 3.91 3.75
Extrap 3.87 3.70

Mg54O54 OV+Mg4 3.90 3.79
OV+Mg4O4 3.87 3.75
OV+Mg4O5 3.81 3.67
Extrap 3.77 3.62

Next, we discuss electronic excitations in the neutral silicon vacancy (SiV0) in diamond, a

typical qubit candidate and a bulk defective system.40 In particular, we compute the first

three singlet and first five triplet excitation energies, which have been studied previously us-

ing KS-DFT41–43 as well as density functional-based embedding techniques.44–46 The ground

state of SiV0 is a triplet, therefore, the use of a ROHF low-level wave function is necessary.

Three models of increasing unit cell size representing the SiV0 vacancy in diamond have been
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explored as shown in Figure 3a. We considered two choices for the impurity cluster: SiC6

and SiC12 as shown in Figure 3b. We report the excitation energies computed using the

SiC12 impurity cluster in Table 3. The excitation energies computed using the smaller SiC6

impurity cluster are reported in the SI. As one can expect, finite-size errors have a significant

effect on the evaluation of excitation energies for both CAS-DMET and NEVPT2-DMET.

The excitation energies differ by ca. 0.2-0.5 eV when moving from the SiC52 to the SiC126

unit cell, but only about 0.1 eV when moving from SiC126 to SiC214. Additionally, we have

used a finite cluster (SiC54H78) to compute excitation energies and have compared them

with the periodic calculations. In Table 3, the excitation energies are compared with other

computational and experimental values. Strictly speaking, the experimental number (1.31

eV) is a zero-phonon line (ZPL) and should not be directly compared to the vertical excita-

tion energies. We are not aware of experimental data for the vertical excitation energy. The

vertical excitation energies are expected to be larger depending on the excited state mini-

mum. All our excitation energies are higher than those reported by Ma et al.44,45 We also

note that Ma et al. used an active space of (16,9) and evaluated its convergence by adding

only more doubly occupied orbitals. Here, we use a different active space of (10,12), which

includes more unoccupied orbitals from the conduction band. The active orbitals (shown in

the SI) are localized around the defect and have s-like, p-like and d-like characters from the

silicon atom and the 6 surrounding carbon atoms which form the dangling SiC bonds. The

singlet-triplet gaps for the SiC214 model are within 0.1 eV of the cluster calculations. The

CASSCF and CAS-DMET triple-triplet excitations for SiC214 differ by 0.15-0.25 eV whereas

the cluster NEVPT2 and NEVPT2-DMET differ by 0.3-0.5 eV.
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Figure 3: Neutral silicon vacancy in carbon diamond: (a) Three supercell models: SiC52,
SiC126, and SiC214. (b) The impurity clusters used in our DMET calculations: SiC6 and
SiC12

.

Table 3: Singlet and triplet excitation energies (in eV) of SiV0 computed using CAS-DMET
and NEVPT2-DMET using the SiC12 impurity cluster shown in Figure 3b. The Table
shows excitation energies for the SiC52, SiC126 and SiC214 unit cells. The excitation energies
reported under the “SiC54H78 cluster” column have been calculated using CASSCF and
NEVPT2 calculations on a finite cluster SiC54H78. All calculations use an active space of
(10,12). Computational values from literature are also included. The experimental value is
the zero-phonon line and not a vertical excitation energy

State
CAS-DMET NEVPT2-DMET SiC54H78 cluster Literature

SiC52 SiC126 SiC214 SiC52 SiC126 SiC214 CASSCF NEVPT2 Comput. Expt.
T0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
T1 2.84 2.37 2.26 2.71 2.51 2.39 2.10 2.10 1.58344

T2 2.97 2.51 2.44 2.76 2.55 2.47 2.19 2.16 1.568,421.59444 1.3147

T3 3.03 2.54 2.44 2.85 2.55 2.46 2.25 2.14 1.568,421.59444 1.3147

T4 3.41 3.21 3.16 2.82 2.67 2.61 3.04 2.14 1.79244

S1 0.59 0.52 0.50 0.17 0.48 0.51 0.56 0.54 0.33644

S2 0.60 0.52 0.50 0.19 0.47 0.51 0.56 0.53 0.33644

S3 1.45 1.37 1.36 0.71 1.12 1.14 1.44 1.10 0.58344

Finally, we comment on the scaling of NEVPT2-DMET as compared to the reference NEVPT2

calculations. The computational cost of DMET is mainly dominated by the cost of the mul-
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tireference calculations within the embedding space. The evaluation of the four-body reduced

density matrix (4-RDM) required in NEVPT2 suffers from a scaling of O[Ndet×N8
act], where

Ndet is the number of determinants (or configuration state functions, i.e., CSF) and Nact is

the number of active orbitals. NEVPT2-DMET has this step in common with NEVPT2.

However, for a small number of determinants, the cost scaling in practical applications is

controlled by the size of the parameter space, rather than the evaluation of the 4-RDM. The

strongly contracted formalism18 employed throughout this work has an overall parameter

space of O[Ndet + N2
inactN

2
vir],

48 where Ninact and Nvir are the number of inactive (doubly

occupied) and virtual (empty) orbitals, respectively. For, again, a small number of deter-

minants, the computational cost of NEVPT2 will therefore exhibit an approximate scaling

of O[N2
inactN

2
vir]. NEVPT2-DMET removes unentangled orbitals from the parameter space,

and therefore has a lower effective Ninact and/or Nvir than the corresponding NEVPT2 calcu-

lation. If all Ncore unentangled orbitals are doubly occupied, the scaling of NEVPT2-DMET

becomes O[(Ninact − Ncore)
2N2

vir]; if they are all empty, the scaling of NEVPT2-DMET be-

comes O[N2
inact(Nvir−Ncore)

2]. The advantage of the embedding treatment will become more

significant for realistic applications using large basis set where the defect concentration is in

fact very low. Therefore, the defect is often embedded in a large environment whose many

unentangled orbitals can be excluded within the DMET framework.

In summary, we have generalized our periodic DMET to open-shell solids with the Brillouin

zone sampled at the Γ-point in order to study the excited states of point defects. We have

explored the performance of CASSCF and NEVPT2 as the high-level impurity solvers within

the framework of density matrix embedding for solid-state systems. Our initial applications

of the method demonstrate a good agreement between the embedding and the non-embedding

calculations which are computationally expensive for the systems studied here. We have

utilized DMET to compute CASSCF/NEVPT2 excitation energies in supercells where the

non-embedding calculations become intractable. This paves the way for the applicability of

multireference methods on a regular basis for periodic systems. We note that an algorithmic
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improvement over the expensive computation of the exact exchange for periodic systems

could further enhance the applicability of our method for large-scale computations of solid-

state defects. Furthermore, the simple extension of the bath to open-shell solids introduced in

this work can be generalized to the k-point sampling of the Brillouin zone to study magnetic

ordering in solids. We envision that the method proposed here will be used in the future to

study quantum materials and extended systems containing lanthanides and actinides.
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