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Abstract

As a favorable alternative and complement of experimental techniques, compu-

tational tools on top of ab initio calculations have played an indispensable role in

revealing the molecular details, thermodynamics and kinetics in catalytic reactions.

The static computational strategy, which recovers the reaction thermodynamics and

kinetics based on the calculations of a few stationary geometries at zero temperature

and some ideal statistic mechanics models, is the most popular approach in theoret-

ical catalysis due to its simplicity. In comparison, the ab initio molecular dynamics

(AIMD) is a well-tested approach to provide more precise descriptions of catalytic pro-

cesses, however, experiencing a significantly expensive computational cost in the direct

ab initio calculation of potential energy and gradients. Here we proposed a highly effi-

cient dynamic computational strategy for the calculation of thermodynamic and kinetic

properties in heterogeneous catalysis on the basis of neural network potential energy

surface (NN PES) and MD simulations. Taking CO adsorbate on Ru(0001) surface

as the illustrative model catalytic system, we demonstrated that our NN-PES-based

MD simulations can efficiently generate the reliable smooth two-dimensional potential-

of-mean-force (2-D PMF) surfaces in a wide range of temperatures (from 300 to 900

K), and thus temperature-dependent thermodynamic properties can be obtained in a

comprehensive investigation on the whole PMF surface rather than a rough estimation

using ideal models based on a few optimized geometries. Moreover, MD simulations

offer an effective way to describe the surface kinetics such as the CO adsorbate on-

surface movement, which goes beyond the most popular static estimation based on

calculated free energy barrier and transition state theory (TST). By comparing the

results obtained in the dynamic and static approaches, we further revealed that the

dynamic strategy significantly improves the predictions of both thermodynamic and

kinetic properties as compared to the popular ideal statistic mechanics approaches such

as harmonic analysis and TST. It is expected that this accurate yet efficient dynamic

strategy can be a powerful tool in understanding reaction mechanisms and reactivity

of a catalytic surface system, and further guides the rational design of heterogeneous
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catalysts.

1 Introduction

The continuous demand for the sustainable development of our society requires the develop-

ment of more active, more selective, and less expensive catalytic processes to eventually solve

energy and environmental problems. Revealing the catalytic molecular mechanism and their

corresponding statistical thermodynamic information is not only a central issue in catalytic

science, but also provide a useful guide for the further rational design of the efficient catalytic

processes.1–4 Although an enormous amount of experimental effort has been conducted for

molecular mechanism in heterogeneous catalysis,5–8 there is still experimental technical dif-

ficulties of obtaining molecular information directly. Theoretical and computational tools

thus have become an indispensable approach for revealing the molecular details as well as

the thermodynamics in catalysis.

Nowadays, theoretical calculations become really common in the field of catalysis. This,

aligned with the rapid development in theoretical methods as well as the enormous growth

in computational power. The static computational strategy is the most common approach

in theoretical catalysis,2 in which only the limited stationary states at zero temperature are

localized. The thermodynamics at specific conditions is computed by using the partition

functions of ideal models. The ideal gas expressions are typically used for translational

and rotational contributions of free molecules while the harmonic approximation is used for

vibrational partition functions. This approach is computationally economical and thus has

been widely used in theoretical catalysis. However, the reliability of this static approach

depends on whether the realistic conditions significantly deviates from the ideal models.2

The value of computational results for catalysis lies on whether the reliable computa-

tional thermodynamics at the specific condition could be obtained in theoretical approach.

Notably, reaction temperature often plays a significant role in the activity as well as the
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selectivity for a catalytic reaction.9–13 Accurate calculation of the temperature-dependent

thermodynamics in catalysis is thus critical for revealing the correct molecular mechanism

and further guiding the rational design of more efficient catalytic processes. However, the

degree of deviation between the realistic conditions and ideal models should closely relate

to the temperature, which makes the reliability of temperature-dependent thermodynamics

from the common static computational approach be doubted. Therefore, development an

alternative computational strategy for theoretical catalysis that going beyond the common

static computational strategy becomes necessary for calculating the reliable temperature-

dependent thermodynamics.

Molecular dynamics (MD) is a well-tested approach to obtain the thermodynamics of

the target system by going beyond static stationary states and sampling phase space more

broadly.2,14,15 However, the computational cost for this dynamic computational strategy is

significantly higher than the common static computational strategy. Catalytic processes

generally involve breaking and formation of chemical bonds, clearly implies the necessity

of employing ab initio electronic structure methods, instead of the more economical clas-

sical force fields, in the simulations, to provide a reasonably accurate description of the

complicated electronic/chemical interactions. ab initio MD (AIMD) simulation is thus an

appropriate choice for studies of catalysis, however, AIMD simulation achieves a reason-

able length to provide meaningful thermodynamics is still challenging. Therefore, the most

important aspect for using dynamic computational strategy in catalysis is to overcome the

limitation of time scales in AIMD simulations. On one hand, proper enhanced sampling

approaches could be introduced to allow an accelerated search in the phase space and thus

fast thermodynamic properties evaluation. On the other hand, development of an efficient

and accurate strategy to replace the direct ab initio calculations on system’s energy and

force is another approach to achieve a converged sampling more efficiently.

Various enhanced sampling strategies have been developed so far for accelerating phase

space sampling, including but not limited to the approaches of umbrella sampling (US),16
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replica exchange,17,18 simulated tempering,19,20 transition path sampling,21 metadynamics

(MTD),22,23 adaptive biasing force,24 temperature accelerated molecular dynamics (TAMD),25–28

and integrated tempering sampling (ITS),29,30 as well as some strategies of combining two

enhanced sampling methods, such as ITS-MTD method developed by Gao et. al.,31 ITS-US

and ITS-TAMD methods developed by us.32,33 Recently, the enhanced sampling methods

were combined with AIMD simulations to solve some issues in heterogeneous catalysis.2,34,35

It’s worth mentioning that we have provided a dynamic computational strategy by combin-

ing ITS method and AIMD simulation for the temperature-dependent thermodynamics of

CO diffusion on Ru(0001) surface.35 Although the enhanced sampling method indeed sig-

nificantly improves the sampling efficiency, the computational cost is still awfully expensive

for achieving a converged sampling. Limited thermodynamic information only at three tem-

perature was gave in our previous ITS enhanced AIMD simulations. Therefore, we have

been aware of that such enhanced AIMD based dynamic computational strategy is still too

expensive to face the realistic issues in catalysis. Further reducing the cost in calculation of

system’s energy and force is necessary.

Construction of the accurate global potential energy surface (PES) could avoid the ex-

pensive direct ab initio calculations. Actually, an accurate PES is essential for the theoretical

research in chemical reaction dynamics. In the past few decades, development of fitting tech-

niques of ab initio electronic structure data has made the construction of accurate global

PESs possible for multidimensional molecular systems.36 More recently, the artificial neural

network (NN) methods have displayed powerful in construction of the complex PES, which

promotes the wide utilization of NN PES on the chemical reaction dynamics for multidi-

mensional molecular systems.37–40 The NN PES also gives hope for dealing with the more

realistic chemical issues. Actually, some limited NN PES MD simulations have appeared in

the material and catalysis science.41

The adsorption and activation of CO molecule on a transition metal surface is often a crit-

ical elementary step for the catalytic conversion of CO into the high added-value chemicals,
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such as Fischer-Tropsch reaction,42–44 CO2 reduction,45–47 and coal to ethylene glycol,48–50

etc. Given the fact that there exist many active sites on the surface, presumably with dif-

ferent binding affinity to the substrates, intermediates, as well as transition states, a proper

description of the adsorbate adsorption and movement between different sites on surface is

thus clearly important for a correct understanding of the catalytic process. It is worth noting

that CO molecule adsorbed on a transition metal surface is a prototype system for molec-

ular chemisorption,51 and the diffusion of CO molecule on metal surfaces in fact involves

breaking and formation of metal-carbon bonds, very much like a typical chemical reaction

process. This fact clearly implies the economical classical force fields cannot make a reliable

description for the adsorption and movement for CO on surface.

In this contribution, we proposed an accurate and efficient dynamic strategy for the

temperature-dependent thermodynamics of heterogeneous catalysis, in which the NN PES

was constructed beforehand instead of the direct ab initio calculations. Using CO adsorbate

on Ru(0001) surface as the illustrative model catalytic system, our NN PES MD simulations

obtained the accurate temperature-dependent thermodynamics efficiently and generated the

reliable smooth two-dimensional potential-of-mean-force (2-D PMF) surfaces in a wide range

of temperatures that from 300 to 900 K. By proper considering the thermodynamic contri-

bution from the adsorbate in-plane motions that was missed when generating the 2-D PMF

surfaces, the free energy difference as well as the diffusion barrier between the two stable

adsorption sites (top and hcp) were unexpected found to increase rather than reduce with

temperature raising. Benefit from the high efficiency for our proposed dynamic strategy, the

temperature-dependent kinetics for the adsorbate on-surface movement can be calculated

directly from the converged sampling trajectories, which provides a chance to evaluate the

validity of transition state theory (TST) that is the most common approach for kinetics

calculation in theoretical catalysis. Our calculations indicated there is significant quantita-

tively deviation for TST in the adsorbate on-surface kinetics. Finally, we made a careful

comparison between the proposed dynamic computational strategy and the common static
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computational strategy, and further revealed the limitation of static computational strategy

in temperature-dependent thermodynamics. Our study clearly demonstrates the efficiency

and reliability of the dynamic computational strategy based on NN PES and MD simula-

tions, which is expected as a powerful tool for the statistical thermodynamics and kinetics

calculation in catalysis, in conjunction with the proper enhanced sampling approaches when

necessary.

2 Computational Methods

2.1 Density Functional Theory

All the potential energies were calculated using Perdew-Burke-Ernzerhof (PBE) functional52

with the VASP (Vienna ab initio Simulation Package) code,53,54 using the projector-augmented-

wave (PAW)55 method together with plane-wave basis sets to describe the electron-ion inter-

actions. The kinetic energy cutoff was set to 400 eV. The convergence criteria for the energy

calculations in self-consistent field was set to 1.0×10−5 eV. Integration over the Brillouin

zone was performed by using the Monkhorst-Pack scheme56 with 3×3×1 k-points, together

with a Gaussian smearing broadening of 0.1 eV.

2.2 Data Sampling and Potential Energy Surface

The PES was constructed with NN fitting to a data set sampled in the six dimensional space,

which has the following functional form

y = b3 +
K∑
k=1

w3
k · f 2

b2k + J∑
j=1

(
w2

j,k · f 1

(
b1j +

I∑
i=1

(
w1

i,j · xi

))) . (1)

in which xi is the coordinate vector of a configuration, and y is the corresponding potential

energy. I corresponds to the dimension of the PES, while J and K determine the structure

of a NN function. w1
i,j, w2

j,k, w3
k, b1j , b2k, and b3 are variable parameters of a NN function,
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which can be determined by training algorithms. With the activation function of two hidden

layers f 1 and f 2 chosen to be tanh, and noting the output of each neuron in hidden layers

as y1j and y2k, the gradient of potential energy, which is necessary for MD silulation, can be

obtained analytically by

dy

dxi

=
K∑
k=1

w3
k ·
(
1− (y2k)

2
)
·

J∑
j=1

(
w2

j,k ·
(
1− (y1j )

2
)
· w1

i,j

) . (2)

The lattice of Ru(0001) was simulated with 5 atom layers and 2× 2 supercell, results in 20

Ru atoms in a cell. The optimized lattice constant of 2.740 Å was used. The CO molecule

was scattered on the rigid Ru(0001) surface, with the height of geometry center of CO

molecule to the surface ranging from 1.4 to 7.5 Å. All the configurations were mapped to

the symmetrically unique intervals, as illustrated by the orange triangle in Figure S1. Bond

length of CO molecule ranges from 0.95 to 1.45 Å, which limits the potential energy of free

CO molecules to less than 3.5 eV.

The data set was firstly constructed with about 10000 configurations obtained from the

ab initio dynamics reported in 2015.35 A primitive set of NN PESs can be obtained with

NN fittings to the initial data set. After that a large number of quasi-classical dynamics

trajectories have been calculated on the PES. From these trajectories, those configurations

which show large deviation in potential energies obtained from different primitive NN PESs

are further calculated with DFT and added to the data set. The NN fittings, quasi-classical

dynamics, as well as DFT calculations were repeated iteratively. This configuration selection

scheme has been proved to be efficient in PES construction for both gas phase reactions

and gas-surface interaction systems.40,57 In total 56007 configurations have been selected

finally for PES construction. (see Figure S2 for the potential energy distribution of all the

configurations). With a NN function of 6-40-40-1, the global PES has a total fitting error of

3.82 meV.
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2.3 Molecular Dynamics Simulation and Thermodynamics Calcu-

lation

The Molecular dynamics (MD) simulations were carried out in the canonical ensemble

from 300 to 900 K, with the Nosé-Hoover thermostat58,59 for temperature controlling. The

velocity-verlet algorithm60,61 was employed to update the velocities and coordinates with a

time step of 0.5 fs. The energy and force were obtained directly from the NN PES. The 2-D

PMF surfaces were generated from the MD trajectories using the two in-plane coordinates

of the carbon atom as the reaction coordinates. It is worth noting that the thermodynamic

contribution of the two in-plane modes of adsorbate is missed in a 2-D PMF surface scheme.

Therefore, relative free energy for the adsorbate on a specified on-surface site was evaluated

by considering the occupation probability of adsorbate not only on a local minimum point

but also within a region near degeneracy in free energy (setting as 1 kcal/mol in this work)

around the local minimum point. Similarly, the free energy barrier for adsorbate diffusion

was evaluated by considering the occupation probability of adsorbate on a 2-D area of the

PMF with the close free energy (within 1 kcal/mol above the transition state, illustrated as

Figure S3 in the supporting material). The rate constant of barrier corssing k is evaluated

by TST as

k =
kBT

h
exp

[
−∆̸=

r G
ø
m

RT

]
, (3)

where ∆̸=
r G

ø
m is the free energy barrier.

In addition, the rate constants have also been directly calculated from the diffusion

time of MD trajectories. The diffusion time of a diffusion process was recorded from the

trajectory’s first entering of the top region to it’s first entering of the hcp region. A typical

diffusion process was shown in Figure S4. The diffusion rates were directly calculated from

the average diffusion time by

k =
1

taverage
. (4)

As a comparison, the common static computational strategy was also conducted for
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thermodynamic properties evaluation. The static structure calculations were carried out

with a maximum Hellmann-Feynman force tolerance of 0.01 eV/Å. The climbing image

nudged-elastic band (CI-NEB) method was utilized to locate the transition state structure.

Numerical calculation of the second derivatives of the transisiton state provided the harmonic

vibrational frequencies and corresponding normal modes. A geometrical displacement of 0.01

Å was used for all vibrational calculations.
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Figure 1: Model of Ru(0001) surface and 2-D PMF surfaces of CO adsorbate on the Ru(0001)
surface along the fractional coordinates a and b of carbon atom on the surface plane. (a)
Ru(0001) surface with a 2×2 supercell in the lateral directions; (b) PMF at 300K; (c) PMF
at 600 K; (d) PMF at 900 K.
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3 Results

3.1 2-D PMF surfaces at different temperatures.

The highly efficient in the current NN PES for calculating the interaction between the ad-

sorbate and surface makes it possible to achieve the converged sampling by a long length

simulation. The temperature-dependent thermodynamics were obtained from MD simula-

tions for a total time of 3.5 µs at each of seven different temperatures, ranging from 300 to

900 K. The obtained 2-D PMF surfaces for CO adsorbate on Ru(0001) surface are illustrated

in Figure 1 and Figure S5 with respect to the fractional coordinates a and b of the carbon

atom of CO adsorbate on the surface plane.

The PMF surfaces clearly show the existence of two distinct thermodynamically stable

CO binding sites, top and hcp. The top site is more favored than hcp site at all the simulated

temperatures. This agrees with the previous experimental and theoretical results,62,63 and

confirms the reliability of this newly reported PES. As shown in Figure 1 and Figure S5, with

increasing temperature, the 2-D PMF surfaces grow flatter and flatter, which means the dis-

tribution of CO adsorbate at different surface sites becomes more and more uniform, agreeing

with the observed increased presence of CO at higher coordination sites with temperature

raising in the previous spectroscopic experiments.64–66

3.2 Temperature-dependent thermodynamics for CO adsorbate on

the stable binding sites of surface.

The PMF surfaces show that there are two stable CO binding sites, top and hcp, on the

Ru(0001) surface. First, we quantitatively describe the binding free energy difference between

the two sites by only considering the local minimum point on top and hcp sites, respectively.

As shown in the blue line of Figure 2a (noted as the “PMF point” approach), the calculated

binding free energy difference between top and hcp sites becomes smaller as temperature

increases, in line with the observed PMF surfaces. However, the thermodynamic contribution
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Figure 2: Temperature-dependent (a) free energy difference and (b) corresponding contribu-
tion from enthalpy and entropy between top and hcp sites calculated based on PMF surfaces.

of in-plane modes of adsorbate has been missed if only the local minimum point in 2-D

PMF surface was considered. Instead, the missed contribution from the in-plane modes

could be largely included when the occupation probability was calculated by considering

CO adsorbate in a region other than a single local minimum point. Therefore, the relative

adsorption free energy on a stable binding site was evaluated based on the local minimum

point with additional near degeneracy region (within 1 kcal/mol) around the point. As

shown in Figure 1, the near degeneracy region in top site is obviously larger than that in hcp

site, suggesting the more freeness for CO adsorbate movement on the top site.

The distribution of CO adsorbate at top and hcp regions still becomes more and more
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uniform with the rising of temperature (see Table S1). However, it is unexpected to find

that their variation of relative free energy exhibits an opposite trend. As shown in the red

line of Figure 2a (noted as the “PMF region” approach), the free energy difference between

top and hcp regions increases as temperature raising, in contrary to the intuition. Further

analysis of the contribution from enthalpy and entropy revealed that, as shown in Figure 2b,

the entropic effect plays an important role in the temperature-dependent free energy change.

As the more freeness for adsorbate movement on the top site, adsorption of CO molecule

on top site should be facilitated by entropic effect, resulting in the observed unexpected

temperature-dependent thermodynamic properties.

3.3 Diffusion kinetics of CO adsorbate between the two stable

binding sites on surface.

Diffusion of adsorbates is the primary means for accomplishing two crucial events required

for catalysis: the encounter of different reaction partners to form the reactant complex and

the arrival at an active site which provides strong affinity for the active intermediate of the

reaction. The PMF surfaces clearly show significant barriers separating different binding

sites. The diffusion of CO adsorbate should quite likely follow a typical jumping-among-

minima behavior, making an elementary process in surface catalysis. The diffusion kinetics

could be obtained based on the calculated free energy barrier in conjunction with TST, likely

the most common approach in theoretical catalysis. Moreover, we would like to mention

another approach to calculate the diffusion kinetics based on the dynamic protocol proposed

here, that is, calculating the diffusion rate constant (k) directly from the average diffusion

time of MD trajectories jumping from one adsorption site to another. Based on adequate

sampling, such approach undoubtedly possesses a more accuracy since the intrinsic error of

TST can be properly avoided.

As mentioned above, definition of a proper region around the local minimum point is

necessary for evaluating the thermodynamics for a specified binding site. Similarly, defi-
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nition of a proper region around the saddle point is necessary for calculating the kinetics.

Accordingly, the diffusion barrier can be calculated based on the occupation probability

difference of CO adsorbate between the defined TS region and the corresponding local min-

imum region. The calculated diffusion barriers based on PMF surfaces for CO adsorbate

moving from top to hcp region were illustrated as gray bars in Figure 3a. The corresponding

diffusion rate constants (k) can be further evaluated based on TST and were illustrated as

a gray line in Figure 3b, noted as the “PMF region + TST” approach. As a comparison,

the free energy differences between TS and top sites displayed on 2-D PMFs were shown as
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black bars in Figure 3a. On the other hand, the diffusion rate constants were calculated

directly from the average diffusion time of MD trajectories, and illustrated as a blue line in

Figure 3b, noted as the “MD” approach. The corresponding diffusion free energy barriers

can be backstepped based on TST and illustrated as blue bars in Figure 3a, noted as the

“MD + TST” approach. Our results showed that the diffusion barriers calculated by the

“PMF region” and “MD + TST” approaches both increase with the rise of temperature,

in consistent with the variation of relative free energy between top and hcp regions with

temperature change shown in Figure 2a. However, there is significant difference in high

temperature limit for the calculated kinetics by these two approaches, which can be mostly

attributed to the limitation of TST. As shown in Figure 3a and Table S2, we took the ab-

solute percentage difference (APD) to evaluate the deviation in the backstepped free energy

barrier from TST based on the calculated k by the “MD” approach. As shown, the APD

is as high to 30.4% at T = 900 K, and is showed to reduce along with the decreasing of

temperature. When temperature drops below 500 K, the APD is reduced to within 10%.

Meanwhile, As shown in Figure 3b and Table S2, the deviation of k based on the free energy

barrier and TST was also evaluated. As shown, the TST underestimated the k by 38.8%

at 300 K, and increased dramatically to 184.4% when temperature is raised to 900 K. In

contrast, the free energy differences (noted as “PMF point” approach in Figure 2a) show

an opposite trend with the change of temperature, mainly due to the lack of two in-plane

modes considered in free energy calculations. It is also found in Figure 3b that, different to

TST rates based on PMF barriers, the directly calculated rates from diffusion time of MD

trajectories show an obvious non-Arrhenius property, which should be close to the practical

motif of an elementary process in heterogeneous catalysis.67,68

3.4 Comparison of the dynamic and static strategies.

The static computational strategy, which is based on the relative potential energy and har-

monic vibrational frequencies of an optimized transition state, is the most common strategy
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Figure 4: Temperature-dependent (a) free energy barrier and (b) free energy difference for
CO adsorbate diffusion from top to hcp region calculated based on dynamic strategy (the
“PMF region” approach) and static strategy, respectively.

in theoretical catalysis. However, its reliability depends on the degree of the realistic con-

ditions deviation from the ideal models. Here the benchmark results from dynamic compu-

tational strategy provide us a chance to go beyond the ideal model so that reach a higher

accuracy compared to statistic thermodynamic properties. As shown in Figure 4 and Table

S3, although the variation tendency for the temperature-dependent thermodynamics between

static and dynamic computational strategies is consistent, the static strategy significantly

underestimates both the relative free energy and diffusion barrier between top and hcp re-

gions. Our calculations indicated the APD for the calculated relative free energy from static
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strategy against that from dynamic strategy are in the range of 30% to 37%. The difference

of calculated free energy barriers shown in Figure 4a will introduce APD of 159.4% to 265.6%

in the diffusion rate, as listed in Table S3. Moreover, the deviation for static strategy are

shown to increase along with the raising of temperature. At the high temperature limit of 900

K, result from static strategy cannot even reach chemical accuracy. These findings suggest

that, there is indeed significant deviation for description of the adsorption and movement for

adsorbate on surface by using the common static strategy, especially in a high temperature.

4 Discussion

In the computational investigation on catalysis, the static computational strategy is the

most common approach, in which the limited stationary states at zero temperature are

localized and subsequently based on the partition functions of ideal models to obtain the

thermodynamics at the realistic experimental conditions. Therefore, the reliability of static

computational strategy depends on whether the ideal models are deviated from the realistic

conditions. In comparison, MD simulations is a well-tested approach to obtain the thermo-

dynamics as well as the kinetics of the target system by going beyond ideal models. The

reliability of the dynamic computational strategy in statistical thermodynamics depends on

whether the converged sampling can be achieved.

The dynamic computational strategy based on AIMD simulations has been used to face

some issues in heterogeneous catalysis.2 However, the expensive computational cost in AIMD

simulations greatly limited its wide applications. The NN PES provides an accurate and

efficient computational approach by avoiding most expensive ab initio calculations. There-

fore, a dynamic computational strategy by combination of NN PES and MD simulations has

been proposed here for efficient evaluation of temperature-dependent thermodynamics for

heterogeneous catalysis. We have constructed a 6-D NN PES for CO adsorbate on Ru(0001)

surface, which can fully reproduce the potential energy and gradients at ab initio level.
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Base on it, converged sampling by MD simulation has been carried out for the temperature-

dependent thermodynamics of CO adsorption and diffusion on the surface. Benefit from our

highly efficient dynamic computational strategy, the temperature-dependent thermodynam-

ics have been obtained from a total of 3.5×103 ns long MD simulations at each of seven

temperatures, that is 300 ∼ 900 K.

We obtained the smooth 2-D PMF surfaces for CO adsorbate on Ru(0001) surface at 300

∼ 900 K (see Figure 1 and S5), displaying the intuitive pictures of temperature-dependent

thermodynamics. However, the thermodynamic contribution of adsorbate in-plane motion

is missed when the phase space is projected to a 2-D PMF surface. We thus proposed

here using a properly defined region other than a single local minimum (or saddle) point

to include the contribution of adsorbate in-plane motion. Our results unexpectedly showed

that the relative free energy between top and hcp sites increases rather than reduces as the

temperature raising, being contrary to the intuition (see Figure 2). The PMF surfaces in

Figure 1 and S5 obviously suggest that the free energy curve in top site is flatter than that

in hcp site, in agreement with our previous results that the frequency of the two in-plane

modes is lower in the top site,35 and further suggests the top site has less steric interactions.

Therefore, the in-plane motion is easier in the top site, which makes the adsorption and

movement of CO molecule on top site is more facilitated by entropic effect, resulting in the

observed counterintuitive temperature-dependent thermodynamic properties.

In the common computational treatment in theoretical catalysis, the reaction kinetics

are mostly obtained from the combination of calculated free energy barrier and TST. Our

proposed efficient dynamic computational strategy can not only provide the free energy bar-

rier by a proper statistical protocol, but also calculate the diffusion rate constant (k) directly

from the average diffusion time of MD trajectories. It means the evaluation of kinetics is not

necessary to rely on the TST in our newly provided dynamic computational strategy, which

provides a benchmark to evaluate the validity of TST. As shown in Figure 3 and Table S2,

there is significant deviation for the calculated kinetics in TST, indicating the limitation of
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TST for reaction kinetics, or at least for the on-surface diffusion processes. Our calculations

showed the deviation for TST is particularly significant at high temperature. Such as, the

APD for diffusion barrier is as high to 30.4%, and the rate constant k is even overestimated

by an APD value of 184% at 900 K. The deviation of TST is shown to reduce along with the

drop of temperature. It has been proved again that TST is improper for the kinetics of low

barrier process, further revealing the necessity for using dynamic computational strategy in

direct evaluation of the more accurate catalytic kinetics in quantitative. It is also suggested

that the non-Arrhenius behavior of an elementary process, which should be universal in dy-

namics, can only be accessed by the direct computation of k from the average diffusion time

of MD trajectories.

Our proposed dynamic computational strategy also provides a chance to evaluate the

reliability of the common static computational strategy. As shown in Figure 4 and Table S3,

there is significant deviation for static computational strategy in quantitative, in which the

APD for the calculated thermodynamics and kinetics are within the range of 30% to 37%

and 157% to 266%, respectively, revealing the limitation of ideal statistical models. We are

pleased to find that there is consistent variation tendency for the temperature-dependent

thermodynamics between static and dynamic computational strategies, indicating the appli-

cability of static computational strategy in qualitative for such simple case. However, the

deviation of static computational strategy is expected to be further increased when faced

with the more complex realistic catalytic systems. The dynamic computational strategy thus

become necessary if the quantitatively accurate description for catalytic processes and the

further catalyst rational design are required.

5 Conclusion

In summary, we have proposed an efficient dynamic computational strategy for catalysis

based on NN PES MD simulations. The 6-D NN PES for a model system of heterogeneous
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catalysis, that is CO adsorbate on Ru(0001) surface, has been constructed. Based on this,

longtime MD simulations have been carried out for the temperature-dependent thermody-

namics of adsorbate adsorption and movement on surface. The smooth and reliable 2-D

PMF surfaces at seven different temperatures (from 300 to 900 K) have been obtained, and

abundant temperature-dependent thermodynamic properties have archived. To the best of

our knowledge, this is the first report of NN PES MD simulations on temperature-dependent

thermodynamics for a chemisorbed molecule on transition metal surface.

The temperature-dependent thermodynamics as well as the diffusion kinetics for adsor-

bate on-surface adsorption and movement have been explored by this dynamic computational

strategy. We are unexpected to find that the calculated free energy difference and diffusion

barrier between the two stable binding sites (top and hcp) increase other than reduce along

with the temperature raising, contrary to the common intuition. In addition, our dynamic

computational strategy provides an efficient approach to evaluate the reaction kinetics di-

rectly, and also provides a benchmark to evaluate the applicable of TST that is the most

common computational tool for obtaining reaction kinetics in theoretical catalysis. Our re-

sults also showed that there is significant deviation for TST in on-surface diffusion kinetics.

Our dynamic computational strategy also provides a chance to evaluate the reliability of

common static computational strategy. Our results indicated there is significant deviation of

static computational strategy, although the static computational strategy performs a right

variation tendency with temperature change in qualitative for this selected simple case. It can

be expected that the deviation of static computational strategy would be further increased

when faced with the more complex realistic catalytic systems. These findings demonstrated

the necessity for usage of dynamic computational strategy to obtain the quantitatively accu-

rate information in catalysis. Our study clearly indicated that the dynamic computational

strategy based on NN PES MD simulations is readily available as an efficient and reliable

approach to study the thermodynamics and kinetics of catalysis. By further combination of

the advanced density functional approximations69–72 as well as the proper enhanced sampling
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protocols,31–33 the proposed dynamic computational strategy is expected to open an avenue

for accurate and efficient operando computational modeling for heterogeneous catalysis.
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