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ABSTRACT: Mass spectrometry imaging (MSI) allows for 
untargeted mapping of the chemical compositions of tissues 
with attomole detection limits. MSI using Fourier transform-
based mass spectrometers, such as FT-ion cyclotron 
resonance (FT-ICR), grants the ability to examine the 
chemical space with unmatched mass resolution and mass 
accuracy. However, direct imaging of large tissue samples 
on FT-ICR is restrictively slow. In this work, we present an 
approach that combines the subspace modeling of ICR 
temporal signals with compressed sensing to accelerate 
high-resolution FT-ICR MSI. A joint subspace and sparsity 
constrained reconstruction enables the creation of high-
resolution imaging data from the sparsely sampled and 
short-time acquired transients. Simulation studies and 
experimental implementation of the proposed acquisition in 
investigation of brain tissues demonstrate a factor of 10 
enhancement in throughput of FT-ICR MSI, without the 
need for instrumental or hardware modifications. 

Mass spectrometry imaging (MSI) allows for label-free 
spatially-resolved molecular mapping of biological tissues 
with exceptional sensitivity and specificity.1–3 Particularly, 
Fourier transform-mass spectrometry (FTMS) offers superb 
mass resolution desirable for resolving and identifying the 
molecular contents in chemically complex samples.4,5 
Atmospheric pressure (AP) matrix-assisted laser 
desorption/ionization (MALDI) MSI coupled with an 
Orbitrap was reported to achieve 1.4 μm lateral resolution 
and ~2 ppm mass accuracy, demonstrating the possibility of 
high-mass accuracy imaging at the subcellular level.6 A 21T 
FT-ICR mass spectrometer was used in an MSI experiment 
and resolved lipid signals with a molecular mass difference 
of 1.79 mDa.7 Despite these significant achievements, a 
major bottleneck for MSI on FTMS (either on Orbitrap or 
FT-ICR) is the limited throughput due to the long transient 
acquisition time needed to resolve isobaric ions and 
hundreds of thousands of acquisitions required for large-
scale tissue imaging. The time involved limits the number of 
acquisitions for an FTMS experiment, especially for high 
lateral resolution imaging (e.g. for subcellular level details), 
volumetric imaging, and high-throughput molecular biopsy 
imaging in clinical settings. Although faster speed can be 
achieved by several recent hardware developments,8–11 

imaging acceleration often requires highly customized 
instrumentation that is not easily  accessible. 

Computational imaging has played transformative 
roles in improving the throughput of various imaging 
modalities. With the unique data complexity and data 
dimensionality brought by the high-resolution FT-ICR 
instrument, there is tremendous potential for leveraging 
computational imaging strategies to address the limitation in 
throughput for high-mass resolution MSI experiments. For 
example, subspace imaging has recently been adapted to 
accelerate FT-ICR MSI by enabling high-resolution 
reconstruction from short-time acquired transients.12 
However, as the transient acquisition time per pixel 
decreases, the measurement overhead (e.g., stage movement, 
laser firing and ion accumulation) becomes more dominant 
and limiting the achievable acceleration factor if scanning 
through all the pixels is still required. Furthermore, the pixel-
by-pixel subspace fitting strategy does not incorporate prior 
spatial information and can be sensitive to noise and 
inaccuracy of the subspace estimation. 

Here, we demonstrate an enhanced approach that 
integrates compressed sensing (CS) with subspace imaging 
to further increase the FTMS acquisition speed. CS has 
proven successful in a variety of imaging applications 
allowing image reconstruction from sparsely sampled data, 
13–17 whereas its applicability for FTMS MSI has not yet 
been explored. The CS allows for spatial sparse sampling 
complementary to the short temporal transient sampling 
offered by subspace imaging. The synergy of the two 
methods allows us to significantly reduce the total FTMS 
MSI acquisition time. The proposed imaging approach is 
illustrated in Figure 1A. We accelerate the acquisition by (a) 
randomly scanning only a fraction of spatial locations and (b) 
acquiring short transients at the sampled locations. A direct 
visualization of the reduced data generated by the 
accelerated acquisition showed ion images lacking 
informative spatial structures and molecular distributions 
due to missing data at non-sampled pixel locations and poor 
spectral resolution, whereas the data reconstructed by our 
proposed approach displayed significantly improved image 
features and mass accuracy (Figure 1B). To recover the full 
high-mass resolution data from this reduced dataset, we 
developed an integrated subspace and sparsity model-based 
strategy that jointly reconstructs high-resolution mass 
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spectra for all the pixels. Specifically, we modeled the 
underlying high-dimensional MSI data using a subspace 
representation 𝝆 = 𝑪𝜱 , in which 𝜱  is a low-rank matrix 
containing basis transients whose linear combination 
accurately approximates the desired long transient (with 
rank 𝐿 ≪ dimensions of 𝝆) and 𝑪 is also a rank 𝐿  matrix 
containing pixel-dependent spatial coefficients (see the 
Supporting Information on computational details). The 
reduced data 𝑫  can be modeled by an underdetermined 

linear system 𝑫 = 𝜴𝑪𝜱 (Figure 1A) with the measurement 
matrix 𝜴 describing the spatio-temporal sampling process to 
generate the reduced data (see Supporting Information for 
formulation details). The subspace model transforms the 
problem of directly recovering the high-dimensional 𝝆 into 
recovering the coefficients matrix 𝑪 , which has a much 
lower degrees-of-freedom.18,19 However, a direct least-
squares reconstruction is ill-posed due to the spatial sparse 
sampling.

 
Figure 1. Overview of the proposed imaging approach for enhanced throughput FT-ICR MSI. (A) An illustration of the rapid scanning 
strategy integrating both the compressed sensing based spatial sparse sampling and the subspace model based short-time acquisition. The 
data matrix, 𝐷, contains collected transients with much fewer temporal points per transient than standard acquisition, at randomly sampled 
pixel locations (corresponding to different color shadings) defined by the measurement matrix (blue grids are 1 and white grids are 0). With 
the predetermined basis transient in 𝛷, the reconstruction of entire high-resolution imaging dataset is defined as estimating the much lower-
dimensional spatial coefficients given the sparsely measured data in 𝐷. (B) An ion image (left) directly formed from a sparsely sampled 
dataset (40% pixels) provides limited interpretation about the tissue morphological features and the spatial distributions of molecules 
(unsampled pixels filled with zeros). The reconstructed ion image (right) effectively recovers tissue features with a much higher mass 
accuracy for the corresponding ion signal. (C) An original transient (top left) and a reconstructed transient (bottom left) by projecting the 
first 50,000 data points of the original transient onto the subspace spanned by a set of basis transients exhibit highly similar spectral profiles 
and consistent intensity levels (right).

We further exploited the spatial sparsity constraint 
complementary to the subspace model, formulating the 
subspace coefficient estimation as the following ℓ1-
regularized reconstruction problem:  min𝑪 ‖𝑫 − 𝜴𝑪𝜱′‖ிଶ + 𝜆‖𝑾𝑴்𝑪‖ଵ.  eq.(1) 
The first term enforces data consistency, and the second term 
encourages a sparse solution in the transform domain. We 
used wavelet transform operator 𝑾  as the sparsifying 
transform to demonstrate the concept while other types of 

transforms better suited for MSI data could also be used. 𝑴் 
is the image formation operator to map individual pixels to 
their two-dimensional spatial coordinates (accounting for 
how the MSI scan is performed), and 𝜱′ is a temporally 
truncated basis transient matrix from 𝜱, which is estimated 
through singular value decomposition (SVD) on a small set 
of long transients (details in the Supporting Information). 
We showed that projecting a small number of temporal data 
points onto the basis transients can faithfully reconstruct the 
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original high-resolution mass spectra (Figure 1C), thus 
enabling significantly shorter data acquisition per transient 
to achieve the target mass resolution. We solved the 
optimization problem in eq.(1) using the alternating 
direction method of multipliers (ADMM).20 The algorithmic 
implementations can be found in the Supporting methods. It 
should be noted that the described approach without spatial 
sparse sampling will be a spatially regularized joint-
subspace fitting of all pixels simultaneously, which offers 
improved robustness to noise and subspace estimation error 
compared to the traditional pixel-by-pixel fitting. 

 
Figure 2. Evaluation of the approach using a simulated FT-ICR 
MSI dataset. (A) Average spectra of the reduced data (left, 60% 
pixels sampled) and the reconstructed data (right) from the same 
reduced data. Spectral features with close m/z values can be 
resolved after reconstruction (inset). (B) Representative ion images 
from the ground truth, from the reduced noisy data, and from the 
reconstructed data for two simulated ions. (C) Individual spectra of 
the ground truth, the reduced, and the reconstructed data from a 
selected pixel location. Pearson correlation coefficients are used to 
evaluate the fidelity to the ground truth spectra. 

We first evaluated the method on a simulated FT-ICR 
MSI dataset, allowing direct comparison of reconstruction 
against a ground truth for quantitative and unbiased 
evaluation of the proposed approach. Briefly, we simulated 
each transient by following the general signal model 
introduced by Marshal as the sum of exponentially damped 
sinusoidal waves at various frequencies that represent ions 
of different mass to charge ratios.21 In total, 30 sum formulas 
(with adducts and isotopic distributions) were simulated and 
the relative concentrations that define signal intensities were 
drawn from probability distributions. We further added 
spatial complexity by assigning the permuted spectral 
profiles to different annotated regions of the Allen Brain 

Atlas (ABA) reference22 to generate realistic looking ion 
images. The simulation pipeline (Figure S1) and the list of 
chemical formulas (Table S1) can be found in the Supporting 
Information. To assess the effect of noise on the basis 
transients and the reconstruction quality, we simulated two 
datasets: one without noise as the ground truth, and another 
with Gaussian white noise added (Figure S2). Two sets of 
basis transients were extracted from both datasets, denoted 
as the clean basis and noisy basis (Figure S3). Different 
numbers of transients were sampled from 30, 60, 80 and 100% 
total number of pixels, all with truncated transient duration 
(first 5% temporal points) as available measurements to 
mimic the sparse sampling and short-time acquisition 
(Figure 2A, left). The reconstruction was conducted on the 
reduced noisy data (Figure 2A, right). Representative ion 
images from the ground truth data, the reduced data, and the 
reconstructed data using the noisy basis transients with a 60% 
sampling rate were compared (Figure 2B). The 
reconstruction resulted in high spatial and spectral fidelity to 
the ground truth, in contrast to the poor image and spectral 
quality produced directly from the reduced data (Figure 2B, 
C). To quantitatively evaluate the reconstruction, we 
computed Pearson correlation coefficients between all pairs 
of noiseless reference ion images and the corresponding 
reconstructed images at various sampling rates (Figure S4). 
Even with a 30% sampling rate, data can be accurately 
recovered, indicated by the strong spatial correlation with 
the ground truth. In an actual MSI experiment from a tissue, 
a reasonable sampling rate can be applied to enable sparse 
sampling coupled with the short-time acquisition, which will 
provide multiplicative acceleration in the imaging speed by 
exploiting transform sparsity through compressed sensing. 
Comparing the reconstructed ion images, we noticed a slight 
overfitting when the noisy basis was used for reconstruction 
(Figure S4). This highlights the importance of accurate basis 
estimation for practical experimental data, which can be 
improved by multiple scans then averaging per pixel for 
higher signal-to-noise ratios (SNRs). 

Next, we demonstrated the capability of our approach 
through retrospective sparse sampling of fully sampled high-
resolution MALDI MSI datasets of rat brain sections 
collected by a 7T FT-ICR mass spectrometer. The basis 
transients were estimated on a random subset of high-
resolution transients sampled from a subset of pixel 
locations as previously described.12 We followed the same 
reconstruction evaluation procedure used on the simulated 
dataset. Because the ground truth of the experimental data 
was unknown, we adapted peak picking on the average mass 
spectrum to form ion images from the full data as the 
reference for comparison. Reference and reconstructed ion 
images of m/z 820.5359 ([C44H79NO10+K]+, ppm=2.81) and 
m/z 832.6497 ([C45H89NO11+H]+, ppm=1.32) with different 
sampling rates were shown in Figure 3A. Reconstructing 
using a 30% sampling rate displays morphological 
consistency to the reference ion image (Fig. 3A, second row), 
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Figure 3. Reconstructing a high-resolution FT-ICR MSI dataset of a rat brain coronal section from reduced data obtained through 
retrospective sparse sampling. (A) Selected ion images are shown at m/z 820.5359 and m/z 832.6497 from the reference (original data, row 
1) and the reconstructed datasets with 30, 60 and 100% pixels sampled (rows 2 to 4 respectively). (B) Mass spectra from the reference and 
reconstructed data exhibit strong consistency for both sampled and non-sampled pixel locations recovered by the proposed approach. High-
level similarity between reference and reconstructed mass spectra is supported by quantitative analysis of peak intensity profiles using the 
Pearson correlation. The insets show the isotopic distributions for two ion signals. (C) The histograms of the spatial correlation measures of 
ion images from reference and reconstructed data suggest that the proposed method can produce accurate molecular distributions from 
sparsely sampled data.

though missing some subtle structural details. Using a 60% 
sampling rate (Fig. 3A, third row) significantly improves the 
recovery of finer details. It is worth noting that fully 
sampling all pixel locations (100% sampling rate) followed 
by the proposed reconstruction produces better quality 
images than the reference due to the denoising effect of the 
ℓ1 regularization (Fig. 3A, fourth row). We are not 
reconstructing one ion image at a time, but rather exploiting 
the spatio-spectral redundancy to reconstruct the whole 
intensity profiles of the mass spectra (Figure 3B). Spectral 
consistencies were evaluated through the Pearson 
correlation between the original and reconstructed spectral 
intensities, which showed strong correlation for both 
sampled and non-sampled pixel locations (Figure 3B, Figure 
S5). The overall reconstruction quality determined by the 
spatial correlation suggests that sampling just close to half 
of the total number of pixels may be sufficient to achieve 
high-quality reconstruction (Figure 3C, Figure S5).  

To further demonstrate the feasibility of the proposed 
approach, we experimentally implemented the integrated 
subspace and CS based sparse sampling strategy on a 7T FT-
ICR mass spectrometer. To better assess the reconstruction 
quality under practical experimental scenarios, we acquired 
multiple datasets from the rat brain adjacent slices using 

different sampling settings with a 25 µm raster width (Table 
1). A high-resolution dataset (dataset 1) was fully sampled 
with standard transient acquisition  
Table 1. Acquisition settings for 6 different experimental datasets 
used for evaluation. 

Dataset Total 
number 

of 
pixels 

Number of 
pixels sampled 

Transient 
duration 

(s) 

Data 
acquisition/to
tal imaging 
time (min) 

1 99585 99585 (100%) 0.731 1213/2039 

2 88699 88669 (100%) 0.045 66/724 

3 100856 60513 (60%) 0.045 45/497 

4 84918 42459 (50%) 0.045 32/350 

5 84763 33905 (40%) 0.045 25/282 

6 86759 26027 (30%) 0.045 19/219 

(0.731 s acquisition time per transient, 160,000 mass 
resolution at m/z 400), which took 34 h to complete and was 
processed using the standard method. Five other datasets 
(datasets 2-6) were all acquired with a short transient time 
(0.045 s) and reconstructed using the proposed method. All 
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pixels were sampled for dataset 2. Although sampling only 
short transients significantly reduced the data acquisition 
time, measurement overhead became dominant and limited 
the reduction of the total imaging time. Datasets 3 to 6 were 
randomly sampled for a portion of the pixels at different 
ratios (under-sampled data), further reducing the total 
imaging time on top of the acceleration already offered by 
the short-time acquisition. Specifically, with a 40% 
sampling rate, we were able to acquire and reconstruct a 
dataset containing 84,763 pixels in <5 h (dataset 5). A 30% 
sampling rate with short-time acquisition led to an 
approximately 10× faster scan than the traditional uniform 
sampling. Method details on the sample preparation, 

experimental implementation, data acquisition, and 
reconstruction are provided in the Supporting Information. 

We then qualitatively assessed the reconstruction 
quality of each individual dataset. Ion images of lipids 
distributions are shown in Figure 4A. Similar to results 
shown in Figure 3, images reconstructed by the proposed 
approach with fully sampled pixel locations but short 
transients (Figure 4A ii, dataset 2) display even higher SNRs 
and better contrast in comparison to the images from 
standard reconstruction of fully sampled datasets acquired 
using long transients (Figure 4A i). Undersampled data still 
yielded high-quality reconstruction (Figure 4A iii, iv, Figure 
S6). Although gradual loss of fine spatial features was  

 

 
Figure 4. Results from different datasets listed in Table 1, generated by experimental implementation of the proposed sparse sampling 
strategy and reconstruction through our algorithm. (A) Three representative ion images at m/z 756.5513, 810.5789, and 826.5744 are shown 
for the (i) fully sampled high-resolution dataset (HR), (ii) short-time acquisition without spatial sparse sampling, (iii) short-time acquisition 
with 60% pixels sampled, and (iv) short-time acquisition with 40% pixels sampled. (B) Zoomed in ion images at m/z 756.5513 and 826.5744 
of brain regions ,which include part of the corpus collosum, display substantial recovery of the spatial information and structural details even 
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with a relatively low sampling rate. (C) The average mass spectra for the range of m/z 700-900 from the fully sampled dataset and the 
reconstructed dataset with 40% pixels sampled. Insets show monoisotopic distribution for a selected ion in a small m/z window.

observed as sampling rate decreases, we still found 
satisfactory recovery of details, e.g., as demonstrated by the 
zoomed in images of two ions [C42H78NO8P+H]+ and 
[C49H80NO7P+H]+ at the corpus callosum region (Figure 4B) 
observed in adjacent slices. Additionally, we performed 
principal component analysis (PCA) on all 6 datasets to 
unveil the spatial variations of the reconstructed chemical 
profiles (Figure S7). A considerably low sampling rate (30%) 
could adequately recover spatio-chemical information to 
allow interpretation of the chemical variations across the 
tissue.  

In summary, we document an integrative 
computational and experimental approach that integrates CS 
and subspace imaging based sparse sampling. Although the 
traditional subspace approach reduces the acquisition time 
per pixel, the novel combination with CS allows for 
multiplicative acceleration factors by also reducing the 
measurement overhead. Results from both simulations and 
real experimental data demonstrate significantly improved 
throughput enabled by the proposed approach. Our 
computational imaging strategy provides more flexibility in 
balancing the imaging speed, resolution, and data quality. 
The increased speed either enables more samples to be 
imaged per instrument or the same number of samples at a 
higher spatial resolution. Theoretically, for tissues with less 
structural and chemical complexity than the brain, a lower 
sampling rate and shorter transient duration than what we 
practiced in the experiments can be achieved due to a higher 
redundancy introduced by the sample homogeneity, thus 
providing an even higher imaging throughput. Our method 
is applicable to another FT MS analyzer, the Orbitrap, given 
its similar nature of signals, and can also be integrated with 
other instrumentation and scanning strategies that minimize 
measurement overhead for greater acceleration of high-
resolution, high-throughput FTMS MSI.  
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