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Abstract

We introduce a novel multi-level enhanced sampling strategy grounded on Gaussian

accelerated Molecular Dynamics (GaMD). First, we propose a GaMD multi-GPUs-

accelerated implementation within Tinker-HP. For the specific use with the flexible

AMOEBA polarizable force field (PFF), we introduce the new "dual–water" GaMD

mode. By adding harmonic boosts to the water stretching and bonding terms, it acceler-

ates the solvent-solute interactions while enabling speedups with fast multiple–timestep

integrators. To further reduce time-to-solution, we couple GaMD to Umbrella Sampling

(US). The GaMD—US/dual–water approach is tested on the 1D Potential of Mean

Force (PMF) of the CD2–CD58 system (168000 atoms) allowing the AMOEBA PMF

to converge within 1 kcal/mol of the experimental value. Finally, Adaptive Sampling

(AS) is added enabling AS–GaMD capabilities but also the introduction of the new

Adaptive Sampling–US–GaMD (ASUS–GaMD) scheme. The highly parallel ASUS–

GaMD setup decreases time to convergence by respectively 10 and 20 compared to

GaMD–US and US.
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Understanding interactions within biomolecules is crucial for many topics such as drug

discovery. Some structural modifications, sometime undetected by experiment, can drasti-

cally change the nature of the physics ruling interacting complex systems. For this reason,

predicting the long timsecale conformational dynamics of proteins is a long standing chal-

lenge within the conventional Molecular Dynamics (cMD) community.1–6 It requires accurate

models able to capture the true potential energy hyper-surface and long simulations to both

access the large biological processes time-scale and satisfy the ergodicity principle.7 Acceler-

ating MD has been therefore a central field of research in the last decades.8–11 Beside these

developments, several additional strategies have been pursued overs the years to further

speed up the simulations. They include the extensive use of High Performance Comput-

ing (HPC) ressources4,12 and the optimization of GPU–accelerated modeling platforms.13–15

Alternatively, an intensive algorithmic work has been undertaken, introducing techniques

such as multiple–time–step integrator schemes16,17 or collective variables-driven molecular

dynamics methods.18,19 The latter have been found useful in enhanced sampling and free

energy calculation.20–25 Although such methods are powerful as they can estimate free ener-

gies of binding or the stability of secondary and quaternary structures of proteins,26,27 the

free energy estimations can suffer from biases either generated by the initial choice of the

collective variable (CV) or by the existence of multiple CV within the mechanism process

(e.g dual mechanisms).28 For these reasons, collective variable–free methods have become

increasingly popular.29 Among them, the recent Gaussian accelerated Molecular Dynamics

(GaMD) has shown great promises due to its high sampling acceleration, its user–friendly

tunable parameters and its minor additional computational cost.30 GaMD accelerates con-

formational sampling by adding a harmonic boost to the potential energy. Coupled with the

second order cumulant expansion, GaMD allows us to compute unbiased properties by using

an accurate reweighting procedure through cumulant expansion to the second order.

Although new generation many-body polarizable force fields (PFFs) are more accurate in

describing biomolecular interactions,31–33 they are computationally more challenging than
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traditional approaches. Therefore, to overcome these limitations, we provide here a novel

multi–level enhanced sampling strategy to accelerate PFFs simulations with the AMOEBA

force field. To do so, we combine together the Tinker–HP massively parallel multi-GPUs

platform15 to a highly scalable GaMD implementation (level 0 ) and to additional enhanced

sampling techniques based on recent developments of the field. As a first speedup, we pro-

pose an extension of the GaMD formalism with a new GaMD mode enabling the use of the

AMOEBA PFF34,35 and fast multiple–time–step integrators17 (level 1 ). We then discuss the

explicit coupling of such PFF–oriented GaMD approach to Umbrella Sampling (US)36 and

Adaptive Sampling (AS)6 techniques (level 2 ). To demonstrate their applicability to PFF,

these physics-based hybrid enhanced sampling strategies are then applied to the Potential

of Mean Force (PMF) study of a large biological complex CD2–CD58 interacting via salt

bridges. Finally, we combine all together within the Adaptive Sampling–US–GaMD method

(ASUS–GaMD) scheme (level 3 ).

Introducing the GaMD "dual water" mode. GaMD is a potential-biasing method for un-

constrained enhanced sampling without the need to set predefined CV. It smooths the po-

tential energy surface by adding a harmonic boost potential as described in the seminal

paper11. Its general framework makes it suitable for the development of hybrid schemes and

variants, such as replica-exchange umbrella sampling GaMD (GaREUS),37 Ligand GaMD

(LiGaMD)38 and Peptide GaMD (Pep-GaMD).39

If the system potential energy is lower than a threshold energy E, a harmonic potential

energy boost is applied to smooth the potential energy surface. By denoting q ∈ R3N the

configurations, when the system potential energy U(q) is lower than a threshold energy E,

a boost, which depends on U(q) is added:

U ′(q) = U(q) + ∆UGaMD(U(q)) (1)
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with ∆UGaMD(q) the external harmonic potential boost

∆UGaMD(U(q)) =

 0 U(q) ≥ E

1

2
k(E − U(q))2 U(q) < E

(2)

and k the harmonic force constant. The two adjustable GaMD parameters k and E are

automatically determined following the original procedure described in ref30. The boost

intensity can be managed thorough a user–specified uper limit labeled as σ0 (e.g 10kBT )

predefined before the simulation. To ensure accurate reweighting with the cumulant expan-

sion the ∆UGaMD standard deviation, σ∆V , should satisfy σ∆V < σ0
30,40,41. GaMD provides

different modes: the boost is either applied on the total potential GaMD–pot, on the dihe-

dral potential GaMD–dih, or on both at the same time GaMD–dual42,43. Recently, another

mode was introduced:LiGaMD which adds the boost to a ligand non bonded interactions,38

accelerating the sampling of ligand-protein interactions. It is known that interactions involv-

ing water are essential for such systems and that protein stability processes are controlled

by water-protein interactions.6,44,45 To accelerate these interactions, one would like to use

the GaMD–dual mode on the non bonded interactions of water molecules. However, such

boost requires the evaluation of the complete non bonded energies and, in the context of

multi-timestep integrators such as BAOAB–RESPA117 where they are split between short

and long range, these are only available at outer (large) timestep. But the fluctuations of the

associated bias are such that it has to be evaluated at shorter timesteps, so that the whole

procedure is not compatible with multi-timestep integrators such as BAOAB–RESPA1. For

similar reasons, the GaMD–dual mode with a bias applied to the complete potential en-

ergy is not compatible with even simple RESPA integrators in which the potential energy is

split between bonded and non bonded terms. Therefore, GaMD–dual mode becomes rapidly

limited by the simulation time. To overcome this issue, we developed a new mode, GaMD–

dualwater (denoted GaMD–dualwat), which adds a boost to the protein dihedral potential

energy term and the water stretching and bending terms, this time fully compatible with
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RESPA and RESPA1 like integrators, allowing water molecule to be more flexible and thus

favoring their conformational changes.

∆UGaMD−dw(U(q)) = ∆Udihedral
protein (U(q)) + ∆U stretch

water (U(q)) + ∆U bend
water(U(q)) (3)

This mode is enabled by the flexibility of the AMOEBA 03 water model34 but is not com-

patible with the TIP3P rigid water model used in most of non–polarizable force fields such

as CHARMM and AMBER.46 This framework allows to further reduce the computational

cost gap between PFFs and nPFFs. This new mode, in addition to the other GaMD–dih and

GaMD–dual modes, is now available within the Tinker–HP software.12,15 In the following, we

first tested its GPU scalability and performance on the STMV system ('1 066 624 atoms),

and its sampling efficiency is demonstrated on simulations of the alanine dipeptide and the

CD2-CD58 complex.

Level 0: Efficiency and GPU scalability. The GaMD implementation is such that only a

small computational and communication (in parallel) overhead is added compared to cMD.

The GaMD–dih and GaMD–dualwat have been considered on the STMV system (1 066 624

atoms) with the AMOEBA PFF and the 10 fs outer time–step HMR BAOAB–RESPA1

multiple–time–step integrator.17 V100 GPUs from the national Jean Zay supercalculator

have been used for all the benchmark computations. Similar scalability studies have been

performed on the Jean Zay CPUs (Figure S1). On 1 and 2 GPUs (Figure 1), the GaMD

data communications are negligible, 1%. On 4 GPUs, the communications are increasing

and the performance decreases by 7%. Overall, the use of GaMD only slightly alters the per-

formance. This high scalability opens the door to simulate at a high-accuracy large complex

biomolecular systems with PFFs.
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Figure 1: GaMDdih and GaMDdualwat scaling performance on 1/2/4 V100 GPUs on STMV
(1 066 624 atoms) with AMOEBA force fields and BAOAB–RESPA1 10 fs multiple–time–
step integrator. The cMD reference, in blue, allows to evaluate the GaMD impacts on the
code communications.
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Figure 2: 2D PMF (in kcal/mol) of the alanine dipeptide obtained in AMOEBA for a)
GaMD–dih mode (3x60ns) b) GaMD–dual mode (3x60ns) and c) GaMD–dualwat mode
(3x60ns) d) Alanine dipeptide representation with the corresponded Φ and Ψ angles.

Level 1: GaMD–dualwat with PFFs. We compared GaMD–dih, GaMD–dual and GaMD–

dualwat sampling acceleration on the exploration of the relevant basins of the alanine dipep-

tide (e.g αr, αL and PII). The alanine dipeptide is solvated in a cubic 20 Å water box.

We used the many-body AMOEBABIO18 PFF.47,48 The system was minimized with a RMS

of 1 kcal/mol and sampled within the NPT thermodynamic ensemble with the Bussi ther-

mostat49 and a MonteCarlo barostat50 at 300 K and 1 atmosphere. We used the Velocity

Verlet integrator and a 1 fs time–step.51 Smooth Particle Mesh Ewald (SPME) algorithm

was employed to compute non–covalent interactions52 with a real space cutoff equal to 7
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Å and a Van der Waals cutoff set to 9 Å. For AMOEBA the convergence criteria for mul-

tipoles was set to 10−5. After short testing simulations, we found an optimal value of 3

kcal/mol for GaMD–dih and GaMD–dual σ0, in accordance with ref11, and 4 kcal/mol for

GaMD–dualwat (see Figure S2, Table S1 and S2). We ran 3 independent simulations of 60

ns for each mode. The different sampled basins are also compared to a 1 µs cMD AMOEBA

reference.

Reweighted, see Technical Appendix, free energy surfaces obtained from these simulations

are depicted on Figure 2 and show that GaMD–dual captures well the αr (50°,25°), αL (-75°,-

25°) and PII (-75°,150°) basins. These results are consistent with the 1 µs cMD trajectory

(see Figure S3 in SI) depicting these three basins. While the GaMD–dih mode capture

the αr basin after 150 ns, the GaMD–dualwat capture it in 100 ns (SI Figure S4). We

also observe a sampling acceleration between GaMD–dual and GaMD–dualwat compared

to the reference 1 microsecond cMD. To characterize the GaMD boost harmonicity, its dis-

tribution anharmonicity γ is calculated as in.30 γ serves as an indicator of the sampling

convergence and reweighting procedure accuracy. Depicted on Figure S5 in SI GaMD–dih as

well as GaMD–dual depicts high anharmonicity with respectively 0.252 and 0.016 compared

to GaMD–dualwat with 0.005. Additionally, we see a steep anharmonicity convergence to

less than 10−3 for GaMD–dualwat while being relatively stable at 2 × 10−1 for GaMD–dih

(SI Figure S4). In comparison the anharmonicity is about 0.001 with GaMD–dih and AM-

BER99SB. PFFs thus increase the statistical noise and stress the importance of using low

anharmonicity GaMD modes. In that sense, GaMD–dualwat appears more suitable than

GaMD–dual for PFFs simulations with an anharmonicity equal to 0.0005. As stated before,

another advantage of GaMD–dualwat is that it can be coupled to multiple–time–step such

as BAOAB–RESPA117 in contrast to the GaMD–dual mode that remains limited to single

timestep integrators. Comparative results of GaMD–dualwat with both integrators can be

found in Figure S6 of the SI. Its coupling with multiple–time–step clearly compensates the

slightly lower sampling performance compared with GaMD–dual. The sampling enhance-
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ment brought by the GaMD–dualwat can be partly related to how it affects the diffusion of

water: we report in Table S3 of the SI the self diffusion coefficients of bulk water computed

within a same setup (same size of box and same integrator) and observe that it is increased

with the GaMD–dualwat mode compared to the simple GaMD–dih one, favoring global con-

formationnal changes due to water reorganization. While the added sampling efficiency is

already significant for the alanine dipeptide, we expect it to be larger on more complex and

larger biological systems such as CD2CD58 where water reorganization plays a bigger role.

Combined with a highly-parallel GPUs infrastructures and multiple–time–step integrators,

the GaMD–dualwat should allow to help reaching very high-resolution conformational space

of large molecular systems. In addition to the sampling acceleration it provides, the low as-

sociated anharmonicity drastically reduces the statistical noise associated with reweighting.

Level 2: Speeding-up simulations with the parallel AS–GaMD scheme. We further coupled

our newly introduced GaMD mode to additional enhanced sampling strategies. Recently,

we developed a new adaptive sampling technique (AS) which was shown to allow massive

sampling of the SARS–CoV–2 Main Protease conformational space.53 We coupled these two

methodologies together, yielding the AS–GaMD method. The principle is similar to the AS,

the only modification being that each cMD at each iteration is now a GaMD simulation. The

double bias coming from both AS and GaMD implies that a suitable and careful reweigthing

scheme has to be introduced to reconstruct unbiased free energy surface. All mathematical

tools for the reweigthing scheme are provided in the Technical Appendix. We applied this

methodology to the same system, the alanine dipeptide using the same simulation protocol.

At each iteration, we projected the structures on the two main dihedral angles space. The

probability law for selection of new structures was taken as the inverse of the square of the

probability density on this reduce space. This choice aims at improving the sampling of

undiscovered region of the given space.

Phase space sampling obtained from AS–GaMD simulation after both GaMD and AS reweigth-

ing are depicted on Figure 3. 5 iterations of AS–GaMD with 5 GaMD simulations of 5 ns have
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Figure 3: AS–GaMD sampling obtained on the alanine dipeptide after reweithing the 5 ( of
AS iterations) × 5 ( of independant GaMD simulations per iteration) × 5 (simulation time
of one GaMD simulation) ns of simulation.
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been performed for a total simulation time of 110 ns. All the known region of space captured

by the GaMD simulations are captured by AS–GaMD but with more spread basins, meaning

that the GaMD–dualwat sampling has been enhanced by its coupling with AS. Furthermore,

we also observed that the αr regions are rapidly captured during the first iteration, i.e with

only 25 ns (SI Figure S7). It thus represents an important gain in simulation time compared

to the GaMD–dualwat alone, and is thus promising to sample conformational space of larger

and more complex biomolecular systems.

Level 3: Pushing the limit of PMF convergence with GaMD–US and ASUS–GaMD.

US has been widely used and is mathematically robust but it is still suffer from several

issues.54–56 In addition to the choice of the CVs, it is also difficult to estimate the PMF con-

vergence as it is system dependent. Good indicators to check if convergence is reached are:

the overlap between neighboring windows and the evolution of the PMF curve as a function

of the simulation time per window. To accelerate the sampling within each window, Oshima

et al. recently combined GaMD with replica-exchange and US.37 Here, we first only applied

a GaMD boost in each US window in order to enhance the sampling in the orthogonal space.

To demonstrate the PMF convergence acceleration, we studied the dissociation of the salt

bridges interface within the CD2CD58 complex. This system, made of several salt bridges

and hydrogen bondings interactions, was already studied by some of us.28 Although it has

been shown that PFFs allow a better description of the salt bridges interactions, their com-

putational cost has long hindered the study of such large system. Since the portability of

Tinker-HP on multi-GPU and the global acceleration of the PFFs, reaching such system is

now easily achievable. To start this study we took the same CD2CD58 complex as in our

previous study (e.g 1226 atoms) but we solvated it in a waterbox of 100 × 100 × 100 Å.

Counterion were added to neutralize the system. We used the AMOEBABIO18 PFF.47,48

The system was minimized with a RMS of 1 kcal/mol in the NVT thermodynamic ensemble

with the Bussi thermostat.49 Temperature was set to 300 K while pressure was set to 1 at-

mosphere. We used the multiple–time–step BAOAB–RESPA1 with a 10 fs timestep with the
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Figure 4: PDB 1QA9 CD2CD58 representation with CD2 and CD58 subcomplexes repre-
sented respectively in blue and red using the newribbons representation. Residues at the
interface considered in the COM distance between the two subcomplexes are represented in
blue and red for respective basic and acid residues using the CPK representation. VMD
software was employed to generate the structure.
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Hydrogen Mass Repartionning scheme (HMR)17 and Smooth Particle Mesh Ewald (SPME)

algorithm to compute electrostatic and polarization interactions52 with a real space cutoff of

7 Å and a Van der Waals cutoff of 9 Å. The convergence criteria for polarization was set to

10−5. 39 US windows were generated, ranging from 1 to 20 Å with a width of 0.5 Å between

them. CV was chosen as the distance between the center of mass formed by the interfacial

residues isolated by Bayas et al. on CD2 and CD58 (Table 1 in ref57). A spring constant

of 10 kcal/mol.Å2 was employed to restrain the system along the chosen CV. Each window

was run for 5 ns for equilibration and then for 50 ns. Histogram overlap as well as the PMF

curve as a function of the simulation time allocated per window were employed to check the

convergence of the simulations (SI Figure S9). The final US PMF show a slow decrease of

the free energy barrier with the simulation time, suggesting a slow convergence to about

12.5 kcal/mol. Binding affinity was found to be experimentally around 7.1 ± 0.03 kcal/mol,

suggesting that our simulations are not converged.57 In order to improve sampling within

each window a new US was performed similar to the previous US protocol but now with

an additional GaMD–dualwat potential applied in each window. The GaMD parametriza-

tion protocol and reweighting procedure are described in the Technical Appendix and in SI

(Figure S8 and Table S4). The optimized GaMD–dualwat parameters σ0 are equal to 1 and

3 kcal/mol for respectively dihedral and dual water modes. Figure 4 shows the difference

between standard US and GaMD–US. The GaMD–US PMF and boost harmonicity converge

at 40 ns per window (SI Figure S10 A/, B/ and C/). The predicted free energy barrier is now

within the 1 kcal/mol of the experiment. It shows that GaMD–dualwat, even without pres-

ence of Replica Exchange, could considerably improve PMF convergence of large systems.

It also demonstrates that salt bridges and, more generally, protein–protein interactions are

well described with PFFs while it was demonstrated that non–PFFs fail to describe these

interactions.58

To further push the sampling, we coupled together GaMD, AS and US (ASUS–GaMD). We

provide two reweighting schemes that either use modified Multistate Bennett Acceptance
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Ratio (MBAR) equations or the Rao-Blackwell estimator. The mathematical expressions

are general and can be used with any weighted dynamics. Starting from an initial US sim-

ulation (' few ns), each window is decomposed in several AS independent trajectories with

an additional GaMD–dualwat potential boost (GaMD). Here, we ran 2 iterations of 5×5

ns GaMD–US per window. The PMF evolution can be found in SI (Figure S11) while the

resulting PMF is depicted on Figure 4. We observe that ASUS–GaMD reach GaMD–US

in one iteration, showing the sampling acceleration impact provided by the AS part within

ASUS–GaMD. Although a careful reweighting is needed for the different AS, GaMD and US

layers, the overall ASUS–GaMD approach inherits the strong adaptive sampling advantages

of being pleasantly parallelizable and considerably accelerates the PMF convergence.

Combined with the use of modern GPUs, these sampling techniques allow to crush time

to solution in PFFs evalution of PMFs. Although it is difficult to truly quantify the final

speedup (i.e. a PMF convergence remains partially system-dependant), one can see in Figure

S12(SI) that if we extrapolate the US convergence, ASUS–GaMD converges 1.4 times faster.

Thanks to the native parallelism inherited from AS, the PMF evaluation can be done in one

fifth of the simulation time yielding a speedup of 7. If we consider that convergence was

already reached with a 25ns per window setup, this factor grows to 14. ASUS–GaMD can

thus reduce to days computation that would have taken months. This work also allows to

invoke any variant of the combined approaches, offering therefore access to GPU-accelerated

GaMD-adaptive sampling (AS–GaMD) simulations that will be helpful to further extend

conformational space studies of proteins6 To conclude, these methodologies will contribute

further to allow high-resolution sampling of large biological systems up to millions of atoms

using polarizable force fields.
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Technical Appendix

We denote by ξ(q) the reaction coordinate along which we performed the US simulation and

q the configuration. Here, a configuration means the positions q ∈ R3N of all the atoms of

the system. The imposed US bias potential is

UUS
j (q) = K(ξ(q)− ξj)2 (4)

with K the force constant.

We combined the AS, US and GaMD such that each US window j ∈ [[1, ...,M ]], ξ1, ..., ξM , is

parallelized and accelerated by adaptive sampling replicas and GaMD boost potential:

U ′′j (q) = U(q) + UGaMD(q) + UUS
j (q) (5)

We denote by (qj,n)n∈1,N the N configurations generated by the AS replicas of US win-

dow j and (ωj,n)n∈1,N their respective AS weights. These weights are normalized such that∑N
n=1 ωj,n = N and ωj,n =

vj,n∑N
m=1 vj,m

with vj,n the unnormalized AS weights. The canonical

average of an observable ϕ is estimated by

〈ϕ〉j =

∫
ϕ(q)e−βUj(q) dq∫
e−βUj(q) dq

'
∑N

n=1 ϕ(qj,n)ωj,n∑N
n=1 ωj,n

=
1

N

N∑
n=1

ϕ(qj,n)ωj,n (6)

In practice, to get a smooth reweighted PMF, the reaction coordinate ξ is discretized in K

bins around values x1, ..., xK . We want to estimate for each k ∈ [[1, ..., K]] its free energy, up

to an additive constant,

F (xk) = − 1

β
lnP(ξ(q) ∈ Bin(xk)) (7)

As q is distributed according to the density probability law e−βU
′′∫

e−βU′′
,

F (xk) = − 1

β
ln

∫
1ξ(q)∈Bin(xk)e

−βU ′′(q) dq∫
e−βU ′′(q) dq

= − 1

β
ln〈ϕk〉′′ (8)
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with ϕk = 1ξ(q)∈Bin(xk).

1st step: GaMD with cumulant expansion

We, first, remove the GaMD bias. Here, we want to find a relation between 〈ϕ〉 and 〈ϕ〉′

where the prime average represents the canonical average over the potential U ′ = U+UGaMD.

Starting from the canonical average, we notice :

〈ϕ〉 =

∫
ϕ(q)e−βU(q) dq∫
e−βU(q) dq

=

∫
ϕ(q)eβU

GaMD(q)e−βU
′(q) dq∫

eβUGaMD(q)e−βU ′(q) dq
=
〈ϕeβUGaMD〉′

〈eβUGaMD〉′
(9)

By applying this with ϕ = ϕk,

F (xk) = − 1

β
ln
〈ϕkeβU

GaMD〉′

〈eβUGaMD〉′
= − 1

β
ln〈ϕkeβU

GaMD〉′ + C = F ′(xk)−
1

β
ln
〈ϕkeβU

GaMD〉′

〈ϕk〉′
+ C

(10)

where C is a constant and F ′(xk) is the free energy F ′(xk) = − 1
β

ln〈ϕk〉′. To reduce the

estimator variance, we used the cumulant expansion to the second order,

ln
〈ϕkeβU

GaMD〉′

〈ϕk〉′
' β
〈ϕkUGaMD〉′

〈ϕk〉′
+
β2

2

(
〈ϕk(UGaMD)2〉′

〈ϕk〉′
−
(
〈ϕkUGaMD〉′

〈ϕk〉′

)2
)

(11)

By combining with equation 10, the free energy is rewritten as

F (xk) ' −
1

β
ln〈ϕk〉′−β

〈ϕkUGaMD〉′

〈ϕk〉′
− β

2

2

(
〈ϕk(UGaMD)2〉′

〈ϕk〉′
−
(
〈ϕkUGaMD〉′

〈ϕk〉′

)2
)

+C (12)

2nd step: AS modified MBAR

Finally, we want to express 〈ϕ〉′ w.r.t the AS weights in each US window j ∈ [[1, ...,M ]]. This

can be done in two ways either using the MBAR or the Rao-Blackwell estimator.
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Modified MBAR

Let’s define

c′j =

∫
e−βU

′′
j (q) dq, F ′j = − 1

β
ln c′j (13)

The prime comes from the use of the MBAR on the reference energy U ′ of the previous

section. The starting point is to use the MBAR identity (ref59 equation 5) and notice

c′i〈eβU
′′
j αi,j〉′′i =

∫
e−βU

′′
j (q)e−βU

′′
i (q)αi,j(q) dq = c′j〈eβU

′′
i αi,j〉′′j (14)

which holds for arbitrary functions q −→ αij(q) with i, j ∈ [[1, ...,M ]]. Notice that each

window generated the same number of configurations N . The MBAR estimator has been

proven to be optimal by using

αi,j(q) =
1/c′j∑M

k=1 e
−βU ′′k (q)/c′k

(15)

and by summing over j

c′i

M∑
j=1

〈
e−βU

′′
j /c′j∑M

k=1 e
−βU ′′k /c′k

〉′′
i

=
M∑
j=1

c′j

〈
e−βU

′′
i /c′j∑M

k=1 e
−βU ′′k /c′k

〉′′
j

(16)

We obtain a set of M equations for all i ∈ [[1, ...,M ]]

c′i =
M∑
j=1

〈
e−βUi(q)∑M

k=1 e
−βUk(q)/c′k

〉′′
j

(17)

Using equation 6 we obtain the estimators

ĉ′i =
1

N

M∑
j=1

N∑
n=1

ωj,ne
−βUi(qj,n)∑M

k=1 e
−βUk(qj,n)/ĉ′k

(18)
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and finally with eq 13

F ′i = − 1

β
ln

(
1

N

M∑
j=1

N∑
n=1

ωj,ne
−βUi(qj,n)∑M

k=1 e
β(F ′k−Uk(qj,n))

)
(19)

which must be solve self-consistently.

Modified Rao-Blackwell estimator

Recently, Ding et al.60 derived the MBAR equations using Rao-Blackwell (RB) estimator.

The RB theorem characterizes the transformation of a crude estimator into a better estimator

that has smaller mean-squared-error w.r.t to the dataset. Assuming M equilibrium states

sampled independently, with potential Ui. The biased free energy Fi is equal to

Fi = F ∗i + bi = − 1

β
ln
Ni

N
(20)

Where N =
∑M

i=1Ni and bi are unknown biased energies added to state i to adjust the

relative weight to match the free energy. bi were introduced to make equation 20 valid which

is the requirement for using the RB estimator. The RB estimator for this ensemble is

Fi = − 1

β
lnE{qi,n}Nn=1

[P ({qi,n}Nn=1)] = − 1

β
ln

1

N

M∑
j=1

N∑
n=1

ωj,ne
−β(Ui(qj,n)+bi)∑M

k=1 e
−β(Uk(qj,n)+bi)

(21)

Combining with equation 20:

1 =
1

N

M∑
j=1

N∑
n=1

ωj,ne
−β(Ui(qj,n)+bi)∑M

k=1 e
−β(Uk(qj,n)+bi)

(22)

Thus, the unbiased free energy F ∗i can be calculated using equation 20 after solving 22 for

bi. Equation 22 has major interests: (1)it is more stable, (2)reduces the number of floating

point operations and (3) the problem is reduced to minimizing a convex function. Indeed, if
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we define gi

gi(b1, ..., bM) =
1

N

M∑
j=1

N∑
n=1

ωj,ne
−β(Ui(qj,n)+bi)∑M

k=1 e
−β(Uk(qj,n)+bi)

− 1 (23)

then solving 22 is equivalent to finding the critical points, i.e, (b1, ..., bM) such as∇f(b1, ..., bM) =

0. Which becomes straightforward as its gradient f is

f(b1, ..., bM) = − 1

N

M∑
j=1

N∑
n=1

ωj,n ln

(
M∑
k=1

e−β(Uk(qj,n)+bi)

)
−

M∑
j=1

bj (24)

Moreover, f is convex so we can use the L-BFGS method which avoid the calculation of its

Hessian matrix. The reweighting procedure takes few minutes on GPU. In this work all the

reweighting was done with this latter procedure.

3rd step: ASUS-GaMD reweighting

With either using the MBAR or the RB estimator procedure, we can extract the, still biased,

free energies. The final step is to derive an expression of 〈ϕ〉′ w.r.t either ĉ′k or F ′k. By setting

c0 =
∫
e−βU

′(q) dq and using 6,

c0〈ϕ〉′ =
∫
ϕ(q)e−βU

′(q) dq =
M∑
i=1

∫
ϕ(q)e−βU

′(q)e−βU
′′
i (q)/c′i dq∑M

j=1 e
−βU ′′j (q)/c′j

=
M∑
i=1

〈
ϕ∑M

j=1 e
−βUj(q)/c′j

〉′′
i

' 1

N

M∑
i=1

N∑
n=1

ϕ(qi,n)ωi,n∑M
k=1 e

−βUk(qj,n)/ĉ′k

(25)

in other words,

c0〈ϕ〉′ '
1

NM

M∑
i=1

N∑
n=1

ϕ(qi,n)ri,n (26)
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with ri,n the weight of configuration q(i, n)

ri,n =
Mωi,n∑M

k=1 e
−βUk(qi,n)/ĉ′k

(27)

c0 is unknown but does not depends of k ∈ [[1, ..., K]] so equation 12 can be rewritten as

F (xk) ' −
1

β
ln〈c0ϕk〉′−β

c0〈ϕkUGaMD〉′

c0〈ϕk〉′
−β

2

2

(
c0〈ϕk(UGaMD)2〉′

c0〈ϕk〉′
−
(
c0〈ϕkUGaMD〉′

c0〈ϕk〉′

)2
)

+C ′

(28)

with

c0〈ϕk〉′ '
1

NM

M∑
i=1

N∑
n=1

ri,n1ξ(qi,n)∈Bin(xk)

c0〈ϕkUGaMD〉′ ' 1

NM

M∑
i=1

N∑
n=1

UGaMD(qi,n)ri,n1ξ(qi,n)∈Bin(xk)

(29)
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