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ABSTRACT: Conjugated dienes are versatile building blocks and prevalent substructures in synthetic chemistry. Herein, we report a method 
for the stereoselective hydroalkenylation of alkynes, utilizing readily available enol triflates. We leveraged an in situ generated and geometrically 
pure vinyl-Cu(I) species to form the Z,Z- or Z,E-1,3-dienes in excellent stereoselectivity and yield. This approach allowed for the synthesis of 
highly substituted Z-dienes, including pentasubstituted 1,3-dienes, which are difficult to prepare by existing approaches.   

Conjugated dienes are a prevalent structural element present in 
numerous biologically active small molecules1–5 and constitute a ma-
jor feedstock for industrial polymer production.6–7 Owing to their 
unique chemical reactivity, 1,3-dienes are versatile building blocks 
with the potential to form new C–C and C–heteroatom bonds at all 
four encompassing carbons.8 The utility of conjugated dienes has 
been demonstrated in a variety of critical synthetic processes, includ-
ing: cycloadditions,9–10 hydrofunctionalizations,11–13 and difunction-
alizations.14–16 The stereochemical outcome of these methods is typ-
ically influenced by the olefin geometry of the 1,3-diene sub-
strate.10,14,15 Accordingly, methods to access substituted 1,3-dienes in 
a stereoselective manner are paramount for their use in fine chemical 
synthesis.8,16 While various methods exist for the synthesis of E,E-
dienes,16–18 a general, highly stereoselective process to produce Z-
dienes is desirable.  

Due to the utility of 1,3-dienes in organic synthesis, a variety of 
strategies to access these compounds have been developed.8,16 Ole-
fination of carbonyl compounds with stoichiometric allyl nucleo-
philes has been widely employed in the synthesis of conjugated 
dienes, 19–26 however, the products are generally obtained as insepa-
rable E/Z-mixtures (Figure 1A).26–27 Although considerable ad-
vances have been made towards stereoselective olefination of car-
bonyl substrates, most methods to access 1,3-dienes result in the 
E,E-isomer.18,24,26,28 To avoid the formation of isomeric product mix-
tures, transition-metal catalyzed cross-coupling utilizing preformed 
organometallic reagents and vinyl (pseudo)halides has emerged as a 
practical route to stereoselectively synthesize dienes (Figure 1B).29–

34 In these processes, the geometry of the diene product is dictated 
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Figure 1: (A) Olefination employing stoichiometric allylation reagents. 
(B) Cross-coupling of vinyl-metal species with stereodefined coupling 
partners. (C) Proposed dual CuH- and Pd-catalyzed alkyne hydroal-
kenylation. (D) Potential undesired reactions.  
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by the stereochemistry of the coupling partners. Complementary ap-
proaches to prepare 1,3-dienes, including C–H activation of olefin 
starting materials,35–36 rearrangements of allenes or alkynes,37 and 
ene-yne metathesis of acyclic precursors,38–39 have also been devel-
oped.40-41  

Our group and others have demonstrated the potential of CuH-
catalyzed hydrofunctionalization reactions to enable unsaturated 
substrates to serve as surrogates for preformed organometallic rea-
gents.42–43 Hydrocupration of an olefinic precursor results in a cata-
lytically generated Cu(I) species (I) that can engage in bond-form-
ing reactions with a range of electrophiles, including carbonyls,44 het-
erocycles,45–46 and LPd(II)-complexes.47–50 However, the equivalent 
transformations employing alkyne pronucleophiles have been un-
derexplored.51–60 Recently, we developed a dual CuH- and Pd-cata-
lyzed hydroalkenylation of olefins (Figure 1C), employing widely 
available enol sulfonates to synthesize highly substituted α-chiral 
olefins.50 We reasoned that an analogous approach to generate the 
otherwise elusive Z,E- and Z,Z-1,3-dienes could be realized by ex-
ploiting the syn-selective hydrocupration of alkynes and the rapid 
transmetalation of a vinyl-Cu(I) species (II) with an LPd(II)-
alkenyl complex.60 We anticipated several specific challenges for the 
dual-catalytic alkyne hydroalkenylation (Figure 1D). It was evident 
that the 1,3-diene products are competent substrates for hydrofunc-
tionalization reactions. Subsequent reduction,42-43 isomerization, or 
oligomerization reactions of the conjugated diene product were also 
conceivable. Hydrolysis or reduction of the enol triflate to generate 
the corresponding olefin are also possible. We reasoned that tuning 
the rates of the two catalytic cycles (e.g., hydrocupration, oxidative 
addition, transmetalation) would be crucial to suppress off-cycle re-
activity and enable construction of the C–C bond at the resulting 
diene 2-position.50 

We focused on developing a set of dual-catalytic conditions for 
the stereoselective alkyne hydroalkenylation, using 1-phenyl-1-
hexyne (1a) as a model substrate and 1-cyclohexenyl trifluoro-
methanesulfonate (2a) as the alkenyl coupling partner (Table 1).61 
Utilizing our previously described reaction conditions for olefin hy-

droalkenylation,50 we observed the Z-diene (3a) in moderate yield 

(entry 1, 33% yield, as determined by 1H NMR). Contrary to our 
olefin hydroalkenylation process, which was ineffective at room tem-
perature,50 we found that conducting the alkyne hydroalkenylation 
at room temperature resulted in moderate yield of 3a (entry 3). As 
hydrocupration of a vinyl arene and 1a readily occurs at room tem-
perature, this dichotomy may arise from the more facile transmeta-
lation of a vinyl-Cu(I) species (II) to a LPd(II) complex, relative to 
I.60 However, 45 °C was identified as the optimal temperature for the 
formation of the diene product (entries 1–4). Although similar re-
sults were seen with a vinyl bromide (2b), as compared with 2a, the 
use of the corresponding vinyl iodide (2c) or enol tosylate (2d) were 
less effective (entries 5–7), and resulted primarily in reduction of the 
alkenyl coupling partner. Increasing the reaction concentration re-
sulted in an improved yield of 3a (entries 8–9). Examination of al-
ternative solvents, ancillary ligands for Cu or Pd, and Cu salts did not 
improve the yield of 3a (See Table SI1–2 in Supporting Information 
for details). When the reaction was run in the absence of a Pd- or Cu-

Table 1. Optimization of the Stereoselective Hydroalkenylation of 
Alkynesa 

 
a Reaction conditions: 0.2 mmol alkyne (1a), alkenyl coupling partner 
(2) (0.3 mmol, 1.5 equiv), yields were determined by 1H NMR spec-
troscopy of the crude reaction mixtures, using 1,3,5-trimethoxybenzene 
as an internal standard.  
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aAll yields represent the average of at least two isolated yields of reac-
tions conducted with 0.5 mmol of alkyne (1); the corresponding enol 
triflate was used unless otherwise noted. The yields in parentheses were 
determined by 1H NMR spectroscopy of the crude reaction mixtures us-
ing 1,1,2,2-tetrachloroethane as an internal standard. The position of 
the minor regioisomer is denoted by a 1. bThe corresponding propar-
gylic diethyl acetal was utilized cIsolated as a 2.3:1 Z:E mixture dIsolated 
separately from 3k.  
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catalyst, trace or no product was observed, respectively (see Table 
SI3). 

With our optimized protocol for the synthesis of 1,3-dienes, we 
sought to explore the range of alkynes that could be utilized in this 
transformation (Scheme 1). When 2a was employed with 1-phenyl-
1-hexyne or diphenyl acetylene the corresponding dienes (3a, 3i) 
were accessed in good yield with excellent Z-selectivity (>20:1 Z:E). 
A variety of heteroaryl containing Z-dienes could be prepared in ex-
cellent selectivity, including a thiophene (3b), quinoline (3d), pyr-
role (3h), and indole (3f). A thiazole containing diene (3g) was the 
only product where the E-isomer was detected (2.3:1 Z:E). An ester 
(3c) was tolerated under the reaction conditions, however, a diethyl 
acetal hydrolyzed to the corresponding aldehyde (3e) upon isola-
tion. When unsymmetrical diaryl alkynes were subjected to the reac-
tion conditions, regioisomeric mixtures of diene products were ob-
served (3j, 3k). An electron-deficient 1-aryl alkyne resulted in the 
expected 1,3-diene (3k) in conjunction with isomer 3l. This isomer-
ized product may arise from a subsequent hydrocupration, to form 
an allyl-Cu(I) species, followed by β-hydride elimination. A series of 

1-silyl substituted acetylenes, including –TMS and –TIPS, did not 
result in the diene adduct (3), although a –TES substituted butadi-
ene (3m) was formed as a minor product, favoring hydride addition 
β to silicon.62 This regiochemical reversal is likely due to stereoelec-
tronic effects exerted by the nearby silicon atom, increasing cationic 
character at the β-position.63 When a 1,2-dialkyl alkyne, 4-octyne, 
was employed as a substrate in the alkyne hydroalkenylation process, 
only reduction of 2a was observed (see Scheme SI1). This result can 
possibly be attributed to the more challenging hydrocupration of 
1,2-dialkyl alkynes, relative to 1-aryl-2-alkyl alkynes.51  

The scope with respect to the enol triflate coupling partner was 
evaluated with a selection of differentially substituted alkynes, as de-
picted in Scheme 2. A range of alkenyl groups, including benzofused 
(3q), heterocyclic (3p, 3r), and acyclic (3u, 3v), could be appended 
to the 2-position of the resulting diene. Pentasubstituted 1,3-dienes, 
such as 3n and 3u, could be prepared with high yield and selectivity 
(>20:1 Z:E). A variety of functional groups were tolerated in this 
process, including nitriles (3o, 3q), carbamates (3o, 3x), a tertiary 
amine (3r), and a ketal (3w). While an alkyne with an unprotected 
alcohol was a suitable substrate (3s), the corresponding benzyl ether 
resulted in the 1,3-diene product in improved yield (3t), 42% and 
74% yield, respectively. Despite their increased steric hinderance, 
acyclic enol triflates enabled access to 3u and 3v in excellent yield 
and selectivity. Heterocycles such as quinoline (3o), pyridine (3u, 
3x), pyrimidine (3v), and indole (3p) were effectively converted to 
the corresponding Z-dienes. Pharmaceutical derivatives, including a 
substituted loratadine (3x) and a steroid-derived triene (3y,) are 
readily prepared via this method. A sterically congested α-spirocyclic 
vinyl bromide resulted in a 4:1 regioisomeric mixture of 1,3-diene 
products (3w), which is in accordance with our previous observa-
tions.50 Despite olefins and dienes being suitable substrates for hy-
drofunctionalization reactions, no subsequent dimerization or oli-
gomerization of the products were observed.   

To further demonstrate the utility of this alkyne hydroalkenyla-
tion method, we conducted the process on gram scale (eq. 1). Using 
a commercially available alkyne (1b) and enol triflate (2a), diene 3i 
could be isolated in 86% yield and high selectivity (>20:1 Z:E). 

 
In summary, we have developed a highly stereoselective process 

to prepare substituted Z-1,3-dienes, employing widely available al-
kynes and enol triflates. Instead of relying on conferring the olefin 
geometry of the starting material to the product, we leverage an in 
situ generated and geometrically pure vinyl-Cu(I) species to access 
exclusively Z-conjugated dienes. The reaction conditions tolerated 
numerous important functional groups and enabled the synthesis of 
highly substituted 1,3-dienes, including pentasubstituted dienes, 
which are difficult to prepare by complementary strategies. 
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aAll yields represent the average of at least two isolated yields with 0.5 
mmol of alkyne (1); the corresponding enol triflate was used unless oth-
erwise noted. The position of the minor regioisomer is denoted by a 1. 
bThe corresponding vinyl bromide was used.  
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Experimental details and characterization of the products and starting 
materials. (PDF) 
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