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Abstract 

Drug discovery is a multi-stage process, often beginning with the identification of active 

molecules from a high-throughput screen or machine learning model. Once structure 

activity relationship trends become well established, identifying new analogs with better 

properties is important. Synthesizing these new compounds is a logical next step, and is 

key to research groups that have a synthetic chemistry team or external collaborators. 

Generative machine learning models have become widely adopted to generate new 

molecules and explore molecular space, with the goal of discovering novel compounds 

with desires properties. These generative models have been composed from recurrent 

neural networks (RNNs), Variational Autoencoders (VAEs), and Generative Adversarial 

Networks (GANs) and are often combined with transfer learning or scoring of 

physicochemical properties to steer generative design. While these generative models 

have proven useful in generating new molecular libraries, often they are not capable of 

addressing a wide variety of potential problems, and often converge into similar molecular 

space when combined with a scoring function for desired properties. In addition, 

generated compounds are often not synthetically feasible, reducing their capabilities 

outside of virtual composition and limiting their usefulness in real-world scenarios. Here 

we introduce a suite of automated tools called MegaSyn representing 3 components: a 

new hill-climb algorithm which makes use of SMILES-based RNN generative models, 

analog generation software, and retrosynthetic analysis coupled with fragment analysis 

to score molecules for their synthetic feasibility. We now describe the development and 

testing of this suite of tools and propose how they might be used to optimize molecules 

or prioritize promising lead compounds using test case examples.   
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INTRODUCTION 

We (and many other groups) have used machine learning models to propose molecules 

for testing and then validated them in vitro with vendor available molecules as a first step 

1-3. However, in order to optimize bioactivity, or maintain activity with improved absorption, 

distribution, metabolism, excretion and toxicity (ADME/tox) properties, vendor available 

compounds may not be sufficient. The most desirable chemical modifications are rarely 

available, and thus ways to generate and explore novel molecules are required.  

In recent years, generative models have become commonly used to generate de 

novo molecules 4, 5. These generative models have come from several different 

architectures, and have been shown to generate valid, novel molecules in the same 

chemical space as their training sets 6-8. Molecular representation is varied in generative 

models, however the SMILES representation has seen widespread success and is 

favored due to the simplicity and ease of molecular representation 9. However, many of 

these generative models have enjoyed limited success in real world drug discovery 

projects due to their narrow range of capabilities. The focus of drug discovery projects 

may be varied. For instance, in one project, a lead molecule scaffold may require iterative 

design to find the most suitable analog, and thus the generative model employed should 

only enumerate on the core structure. Conversely, in another case given a set of known 

active and inactive compounds against a target, the project may wish to discover entirely 

new scaffolds that do not exist in ‘patent space’ yet has similar desired molecular 

properties to the known active compounds. While most generative models can utilize the 

desired physicochemical properties in the training of the generative models, in practice 

the goals are often not achievable using generic, out-of-the-box generative models. To 
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control the “closeness” of the generated compounds to a molecule of interest, the 

Tanimoto similarity score 10 is often included in the training. Generative models retrained 

on the same parameters often end up in similar local minima of chemistry property space, 

reducing their usefulness past an initial run 11. 

To address these limitations, we have now created MegaSyn, a suite of algorithms 

which takes a similar approach to weak learner ensemble methods such as Random 

Forests 12. Instead of training one generative model, MegaSyn trains many “weaker” 

generative models, starting from a generic model trained on a drug-like library (ChEMBL) 

13 and iterative generative models that are continuously “focused” down onto target 

molecule(s) and physicochemical properties of interest, as well as random branch models 

from each of these focused generative model nodes until multiple generative models have 

been created that explores many local minima. Depending on the desired outcome (i.e., 

completely new drug scaffolds or enumeration on a common structural core), MegaSyn 

allows flexibility and balance in the exploration of chemical property space versus. 

focused generative capabilities by traversing the “tree” of generative models based on 

the desired outcome.  

In addition to machine-learning based generative models described above, there 

are numerous other algorithms for modifying existing candidate structures using a list of 

transforms (e.g. generating bioisosteres). Generating novel molecules is one thing but it 

is another to evaluate these proposed structures for synthesizability and suggest 

synthetic pathways for the synthesis of the compound. These are important concepts 

generally absent from most recently published generative models. The technologies 

involved in proposing, evaluating, planning and assessing the synthetic feasibility of 
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compound syntheses have been available within the cheminformatics industry for 

decades 14-18, but their implementation remains relatively state of the art (reviewed 

recently 19). For example, the earliest efforts in synthesis planning, reaction prediction 

and synthetic feasibility assessment developed rule-based approaches such as LHASA, 

CAMEO and CAESA (as reviewed in 20). These software required collaboration between 

the chemist and machine to get the best out of the relatively limited functionality 20.  

In recent years we have seen considerable development in computer-aided 

synthesis planning with the collection of tens of thousands of manually curated reaction 

transformation rules to yield millions of chemical reactions as a network in Chematica 21 

which can be used to select the most cost effective or chemically diverse synthetic 

pathways 22. While the manual collection of such rules is not scalable there has also been 

a shift to use machine learning approaches. One has used deep neural networks trained 

on 3.5 million reactions from the Reaxys database with the extended connectivity 

fingerprints (ECFP4) 23. When the data was split 70: 10: 20 (Training: development: 

testing) the top 10 accuracy was 95% in retrosynthesis and 97% for reaction prediction 

23. Another approach has used 15,000 reactions from the USPTO augmented by a set of 

over 5M reactions with non-recorded products to train a neural network 15. Again, the data 

was split 70:10:20 and the top ten accuracy was 94.6% in the best case 15. Others have 

developed proof of concept tools that they suggest are not ready for practical use such 

as CompRet which enumerates a chemical reaction network based on depth first proof 

number search, enumerating all synthetic routes and then recommending synthetic routes 

using simple scoring functions 24. A template free self-corrected retrosynthesis predictor 

was a built using a transformer neural network architecture which improved on prior 
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accuracy rates using the USPTO-50K set 25. Scientists at Pfizer have also demonstrated 

that a transformer-based retrosynthesis model generated with public USPTO training data 

could predict over 147,000 reactions from Pfizer electronic notebooks with top 1% 

accuracy of 69% and this number increases with their own data is used in training 26. A 

more recent use of the transformer architecture using transfer learning for retrosynthesis 

prediction with literature data demonstrated a top 1% accuracy up to 60.7% 27. Various 

methods have been used to predict synthetic accessibility such as using the probability 

of existence of substructures for the compound in question along with the number of 

symmetry atoms, graph complexity and number of chiral centers 28. More recent open-

source software for retrosynthetic planning includes AiZynthFinder 29, LillyMol 30 and 

ASKCOS 15. Comparison of such methods has been limited and would require synthesis 

of compounds using proposed routes obtained with each method 29.  

 We now describe a generative model which is flexible to address the needs of many 

drug discovery projects, as well as a prototype Pipeline Pilot protocols for automated lead 

expansion, filtration of analogs, and selection of a representative set that is user-

accessible. Because the molecules are generated in an automated fashion, some of the 

molecules may be difficult or impractical to pursue from a synthetic chemistry perspective. 

Thus, we also created an automated tool to predict the relative difficulty of synthesis for 

targeted analog molecules utilizing automated retrosynthetic analysis coupled with a 

fragment analysis to score molecule on their synthetic feasibility. We have evaluated 

these tools using a set of FDA approved drugs as well as a recently published set of 

natural products 31. We also provide several test cases to recapitulate a recently 

described known analog of ibogaine 32 and develop analogs of lapatinib with improved 
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predicted properties 33 using MegaSyn, which shows that it can generate synthetically 

feasible compounds with desired properties. 

 

METHODS 

Activity models for MegaSyn 

All activity models consisted of naïve bayes trained models using the scikit-learn 

package in python. Datasets were acquired for each target (e.g., HER1, HER2) from 

ChEMBL target activities. All activities were binarized according to an activity threshold, 

with 1 indicating active and 0 indicating inactive. Each model was trained and calibrated 

using isotonic regression with 3-fold cross-validation from which all statistics were 

generated from. As input into MegaSyn multi-objective scores, the calibrated prediction 

score was used as input.   

 

Evaluation of Variational Autoencoder, Generative Adversarial Networks, and 

Recurrent Neural Networks 

As input, molecules are represented as tokenized SMILES strings. Briefly, each 

SMILES is tokenized, and each character is represented in a vocabulary (e.g. “c” [nH]”, 

“1”, =”). Each token in the vocabulary has a corresponding numerical representation (e.g., 

all “c” are represented by 1, all “=” are represented by the number 2, etc). SMILES are 

encoded by their integer vocabulary representation, and padded to the longest sequence 

length with zeroes which were masked during training. Beyond this, several differences 

exist between models during training. 
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Variational Autoencoder (VAE): The variational autoencoder utilizes an encoder-decoder 

architecture to map chemical space into a latent vector 34. The encoder is composed of 3 

LSTM layers of 512 units each followed by a linear layer of 64 units (the latent space). 

Our decoder is comprised of 3 LSTM layers of 512 units each with dropout of 0.2 between 

all layers. We used KL-divergence as our loss term with an Adam optimizer = 0.0001, 

patience = 10, 200 epochs, and batch size of 64. 

Generative Adversarial Networks (GAN): We implemented a latentGAN 35 architecture for 

our generative GAN model. Wasserstein GAN with gradient penalty was utilized for the 

GAN model. The heteroencoder was comprised of 3 LSTM layers of 512 units each with 

a final linear layer of 64 units (the latent space), while the decoder was comprised of 3 

LSTM layers of 512 units each followed by a linear layer with softmax activation to return 

the probability of each character in the vocabulary. The autoencoder was trained for 100 

epochs with a batch size = 128 and an Adam optimizer with a learning rate = 0.0001 using 

teacher forcing. The discriminator of the GAN was formed by 3 linear layers of 256 hidden 

units each with ReLU activation between each layer (except for the last layer). The 

generator consists of 5 linear layers of 512 hidden units each with batch normalization = 

0.9 and leaky ReLU activation between each layer.  

The autoencoder was pre-trained using the ChEMBL dataset followed by training of the 

full GAN model.  

Recurrent Neural Networks (RNN) 5: Each LSTM-based model is composed of an 

embedding layer, three LSTM layers (512 hidden units), followed by a linear layer with 

softmax activation the size of a vocabulary generated from the training data.  
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MegaSyn design 

Each LSTM-based model is composed of an embedding layer, three LSTM layers 

(512 hidden units), followed by a linear layer with softmax activation the size of a 

vocabulary generated from the training data. As input for all models, molecules are 

represented as tokenized SMILES strings. MegaSyn is composed of three distinct model 

types: The initial pre-trained model, a set of primed models, and finally a set of exploratory 

models. 

Initial model 

The initial model is trained on ChEMBL 28’s ~2 million compounds 13. The loss 

function for a sequence of encoded SMILES is the Negative Log-Likelihood. The model 

uses an Adam optimizer with learning rate = 0.002. Teacher-forcing is used to expedite 

training of the generative model.  

Primed models 

For each set of primed models, the initial model is trained for n epochs, with a new 

agent model saved every 2 epochs. The target molecule(s) of interest are broken down 

into substructures based on RECAP rules. Simplified carbon-only versions of these 

substructures and the original molecule are also generated. The initial model is trained 

on this set of structures and substructures alone, using the same parameters as the initial 

model (described above) using teacher forcing. Every i epoch, the model is saved, until 

a set of n primed models have been created. We find that 16 total epochs with a model 

saved after every 2 epochs represents the gradient of general to diverse reasonably well 

for a number of target molecules.  
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Exploration models 

For each primed model, de novo molecules are generated. The generated 

molecules are then ranked based on a composite score from any number of criteria. The 

composite score is represented as below: 

For each criteria i in the composite score (i.e., predicted target activity or drug-likeness 

(QED) score 36), the composite score is defined as  

 

where xi is the ith score for molecule and yi is the ith desired score. This usually includes 

QED, activity against target (target model), and any other desired scores. As long as a 

score can be assigned to a compound, it can be included in the final composite score, 

given a large potential to the tasks the generative model can be applied to. The top 10% 

of ranked compounds are kept and fed back into the model for training using NLL and 

teacher forcing, a training concept called hill-climb maximum likelihood estimation (MLE). 

A new set of molecules is generated after training, and the cycle continues. Importantly, 

the top 10% of compounds are kept from one epoch to the next; only if a newly generated 

compound has a score higher than one in the current top 10% list does it replace one in 

the set. Eventually the model will find a substructure minima and is then capable of 

generating analogs of this specific substructure. Often, based on the initial seed 

molecules of the very first iteration, the model will converge to one local minima. At least 

four models are trained and generated from each primed model node, to obtain models 
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that focus on different substructures of the original target molecule. The top scoring 10% 

of compounds found over the training loop for each model are kept. 

 

Automated Analog Generation 

Lead Expansion/Enumeration  

We have developed a Pipeline Pilot (Biovia, San Diego, version 19.1.0.1964) 37  

protocol for automated lead expansion, filtration of analogs, and selection of a 

representative set. For lead expansion, we encoded several different medicinal chemistry 

strategies to generate potential analogs. Included in these strategies are classical 

bioisosteric replacement and similarity “bioisosteres” (for which Pipeline Pilot components 

already exist) 38-43. The classical bioisosteres include the replacement of several common 

functional groups with sterically similar functional groups believed to have similar 

physicochemical effects in a biological environment. Similarity bioisosteres locates 

fragments within molecules and replaces them with similar fragments, based on a user 

specified similarity measure (e.g. FCFP_6 and PHFC_2). Another strategy involves the 

enumeration of heteroatomic regioisomers. Heteroatoms are identified and relocate them 

to every possible position around within the molecule 44. Finally, a large number of 

molecular transformations (37 aromatic/phenyl replacement; 2 conformational restriction/ 

expansion, 92 Topliss, 8 Magic methyl) have been encoded to identify modification sites 

on molecules and automate the enumeration of analogs using common medicinal 

chemistry approaches 45-47. These approaches include, Topliss, Magic Methyl, 
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conformational restriction/relaxation, and ring expansion/contraction. Users can select or 

deselect the different transformation categories as desired.  

Tagging and scoring 

Using these techniques, 10s to 1000s of analogs are generated for a typical lead 

molecule, depending on its complexity. These molecules are then examined for any 

undesirable functional groups such as reactive functional groups and toxicophores 48. 

Molecules with any of these features are tagged (and can be removed later as desired). 

The molecules are then scored for synthetic feasibility, using a newly developed algorithm 

(see below). The molecules are then clustered using FCFP_4 fingerprints, so that a 

diverse set can be selected if desired. The canonical tautomer is generated for each 

molecule and duplicate molecules are removed.  

Selection 

After the analogs are enumerated, tagged, and scored, the resulting analogs are 

displayed in graphical and tabular format. Categorical and numeric charts, such as pie 

charts and histograms are then generated along with a tabular output in PipelinePilot. The 

charts and tabular output are linked together such that the user can select subsets of 

molecules and export them readily. 

 

Automated Retrosynthetic Analysis and Synthetic Feasibility Prediction 

Three primary methodologies were used to evaluate synthetic feasibility.  The first method 

involves the fragmentation of known (synthesized) molecules and the relative presence 
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of those fragments in targets. The second method couples automated retrosynthesis with 

the first method. In addition to using automated retrosynthesis to rate synthetic feasibility, 

a separate application for retrosynthetic analysis was created. Finally, a weighting 

mechanism was added to penalize molecular elements that are undesirable from a 

synthetic perspective.  

Fragmentation 

To create the fragments used in the first method, two molecular sources were 

used. These included eMolecules 49 consisting of 26,400,125 molecules (at the time of 

download) and ChEMBL version 24 consisting of 1,820,035 molecules 50. Separately, 

these sources were subjected to fragmentation using Pipeline Pilot using the Generate 

Fragments component. Specifically, ring assemblies (contiguous ring systems), 

BridgeAssemblies (contiguous ring systems that share two or more bonds), and Chains 

(Contiguous atoms not in rings) and BemisMurcko assemblies were generated 51. 

Canonical SMILES were generated for each fragment. Fragments containing less than 2 

atoms were filtered. Fragments that occurred more than 10 times over the entire molecule 

set were retained, along with their frequency (occurrence count). Each unique fragment 

and its frequency were saved in comma separated files for each source.  

Fragmentation Scoring  

Molecules evaluated for synthetic feasibility are fragmented in the same way as 

the source sets. A baseline score is created by the ratio of fragments of the incoming 

molecules 52. The baseline score is calculated as follows: 

Matches = incoming molecule fragments that are also present in source set. 
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Misses = incoming molecule fragments that are not present in the source set.  

Baseline Score = Matches/Matches+Misses 

The score is then weighted using an algorithm that takes the size of the fragment (number 

of atoms) and the frequency of occurrence in the source set.  

Retrosynthetic analysis  

This was carried out by applying a set of transformations that apply known 

reactions in reverse 30. Our solution has 2 primary sources of these transformations. The 

primary source is a set of reactions extracted from patents by a group at Eli Lilly (Lilly) 30. 

The secondary source is a set of reactions detailed in by a group at Astra Zeneca (AZ) 

53. All of the reactions were reversed so that they could be applied that way. In the case 

of the Lilly reactions 30, a set of 1,929,251 reactions in a format similar to SMIRKS were 

culled to a set of 8,040 reactions simply by looking at the number of characters in the text 

for each reaction. The idea here was that smaller reactions were more likely to represent 

the core or substructures of reactants and products, and therefore would be applicable to 

a larger number of molecules. The reactions were then reversed by swapping the 

products with the reactants and converted from SMIRKS format to RXN format in Pipeline 

Pilot. Approximately 10,000 druglike molecules were tested by running each of the 8040 

reactions on them. Of the 8040 reactions, 2632 unique reactions were used at least once.  

This set of reactions was used as the final Lilly reaction set. A much smaller set of ~45 

common reactions were derived from the AZ group 53. These reactions were hand-written 

SMIRKS that represented common transformations used in organic synthesis. These 

SMIRKS were reversed by hand. Some were removed due to their promiscuous nature 

when applied in reverse (e.g. carbon-carbon bond formation reactions).  
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Once the core set of retrosynthetic reactions were selected and curated, the 

retrosynthetic analysis tool was developed and subjected to numerous rounds of testing 

(using experienced medicinal chemists) and enhancement, where various rules were 

imposed to encourage better outcomes. It was arbitrarily determined that up to 5 rounds 

of retrosynthetic reactions should be applied to each molecule. In the first round, each 

unique set of reaction products is retained. The “size” of each product molecule was 

determined by the number of non-hydrogen atoms. Most retrosynthetic reactions produce 

more than one product. For each set of products that are created by an individual reaction, 

the largest product (selected product) is retained.  In rounds 2-5, an additional restraint is 

imposed. Only the 5 smallest of the selected products are allowed into to the next round. 

In rounds 4 and 5, another additional restraint is imposed. Selected products must be 

smaller than the smallest selected product in all other rounds to be moved to the next 

round or to be reported. Results are reported for each round that is executed with all 

precursor molecules from each round. 

Fragmentation and Retro Combined Scoring  

The retrosynthetic analysis tool was combined with the fragmentation score to 

enhance the synthetic feasibility score. For the enhanced scoring, the selected product 

from the last 3 executed rounds that were executed (if at least 3 rounds were executed) 

are scored using the fragmentation scoring system. The highest score is then selected as 

the consensus score.  

Weighting Mechanisms 
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After reviewing results with our experienced synthetic chemists, it was clear that a 

certain key weighting mechanism was required to be added for certain features that are 

difficult to synthesize. The presence of one or more absolute chiral center is one example 

of a penalizing feature. The presence of one or more spiro atom is another example. For 

each of these elements that is present in the molecule, the score is reduced by a certain 

relative ratio.  

Software testing 

A set of ‘best-selling 25 small molecule drugs’ were selected as an example of 

well-known molecules in order to test the automated retrosynthetic analysis software 

(Supplemental Table S1 and Figure S4). A set of 346 natural products (Canvass) was 

used to compare with a library of 201 FDA approved drugs. 31 

Visualization of FDA approved drugs and natural products  

The molecular property space of FDA approved drugs and the Canvass dataset 31 

were compared using a t-SNE plot. 

Data analysis  

To determine if FDA approved drugs were considered more synthetically feasible 

than the Canvass natural products library, Bootstrap hypothesis testing was performed 

on the two datasets 54. Briefly, both datasets (FDA library and Canvass) are combined 

into one dataset. Two datasets of size n and m (the size of the FDA library and Canvass 

library, respectively) are randomly sampled from the combined dataset. The mean and 
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standard deviation are calculated. A p-value is calculated by determining the likelihood of 

the true mean occurring from the bootstrapped sample means. 

t-SNE plot generation 

All t-distributed stochastic neighbor embedding (t-SNE) plots were generated 

using the sklearn package in python with default parameters (number of components = 

2, perplexity = 30.0, early exaggeration = 12, learning rate = 200, number of iterations = 

1000, number of iterations without progress = 300, minimum gradient norm = 1e-07, 

metric = Euclidean). 

 

RESULTS 

Evaluation of different generative approaches 

First we evaluated several different generative model architectures (to compare 

with published benchmark resources MOSES 55 and GuacaMol 56) which had been 

introduced in the literature in recent years: Recurrent Neural Networks (RNNs) 5, 

Generative Adversarial Networks (GANs) 35, and Variational Autoencoders (VAEs) 7. In 

order to assess the capabilities of each architecture, we decided to use a number of 

metrics proposed in the literature, including Validity: whether the compounds generated 

are theoretically realistic molecules; Uniqueness: the fractions of molecules which are 

unique; Novelty: the fraction of molecules generated not in the training set; and finally, 

the Fréchet ChemNet Distance: (FCD) 57 a measure of how close distributions of 

generated data are to the molecules in the training set. As comparing architectures is 

difficult given the ability of different hyperparameter tuning to alter results, we chose 
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Hyperparameters based off their initial implementation. We then trained each architecture 

(RNN, VAE, and GAN) on 1.2 million ChEMBL compounds and filtered to between 10-50 

heavy atoms. We employed early stopping to reduce the length of time to train each 

model. Finally, we generated 100,000 compounds per architecture. We found that all 

three architectures performed similarly, and were all capable of generating valid, unique, 

and novel compounds with a good FCD score (Figure 1) 55, 56. These scores were 

comparable to those reported in the literature with other benchmarking studies (Figure 1) 

and suggested that the choice of generative model architecture was not a significant 

factor for improving generative model capabilities. 

 

Figure 1: comparison of different model architectures for generative models using our 

models (CPI) in comparison to values reported from two other published benchmark 

resources (MOSES 55 and GuacaMol 56).  
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MegaSyn design 

At its core, MegaSyn uses long-short term memory (LSTM)-based generative 

models to learn the proper structure of SMILES strings 5. As input, molecules are 

represented as tokenized SMILES strings. MegaSyn is composed of three distinct model 

types: The initial pre-trained model, a set of primed models, and finally a set of exploratory 

models (Figure 2). 

 

Initial model 

The initial model is trained on ChEMBL28’s ~2 million compounds. The purpose of 

training this model is to teach it how to create drug-like molecules. Once trained, The 

initial model “knows” how to put together drug-like molecules, and can be queried to 

generate compounds that fall within ChEMBL’s chemical-space. This represents the prior 

knowledge of chemistry: valid chemical structures and how they are put together, atom-

by-atom, is learned in this initial model. This large chemical information will be transfer-

learned in the subsequent model. This initial model takes the largest amount of time to 

train; however, once trained, it can be re-used for many projects as the prior model, and 

the overall training time of MegaSyn is small in comparison to a full retraining of a typical 

generative model starting from training on the entire ChEMBL database. 

 

Primed models 
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After the initial model is trained, a set of “primed” models are trained (Figure 2). 

The initial model is first presented molecule(s) of interest. The molecule(s) of interest are 

broken down into substructures based on RECAP rules 58. Simplified carbon-only 

versions of these substructures and the original molecule are also generated. Model 1 is 

trained on this list of structures and substructures for several epochs using teacher 

forcing. Every i epochs, the model is saved, until a set of n primed models have been 

created. Each of these primed models represent generic exploration of chemical space 

(early primed models) to enumeration of the target molecule(s) (late primed models). How 

many epochs the model is trained on is critical; if too little, the primed models explore a 

very wide chemical space around the target molecule. If too many epochs are trained, the 

model learns to focus only on the specific structure and substructures of the target(s) of 

interest themselves. We find that 16 total epochs with a model saved after every 2 epochs 

represents the gradient of general to diverse reasonably well for a number of target 

molecules. Due to the few targets trained at a time, primed models can be quickly 

generated. 

 

Exploration models 

Primed models represent nodes along a singular branch. To explore more diverse 

chemical space around each of these nodes, a final set of exploration models are 

branched off of each primed model node. For each primed model, de novo molecules are 

generated (~2,000-10,000 appear sufficient to cover a broad chemical space). The 

generated molecules are then ranked based on a composite score from a number of 

criteria. This usually includes QED 36, activity against the target (target model), and any 
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other desired scores. Notably, as long as a score can be assigned to a compound, it can 

be included in the final composite score, this provides flexibility to the tasks the generative 

model can be applied to. We can weight each objective according to their importance, on 

a scale from 0 to 1, with 1 being extremely important and 0 representing no importance. 

After the generated set of compounds are scored, the top 10% of ranked compounds are 

kept the model is trained on these top compounds, a training concept called hill-climb 

MLE 59. A new set of molecules is generated after training, and the cycle continues. 

Importantly, the top 10% of compounds are kept from one epoch to the next; only if a 

newly generated compound has a score higher than one in the current top 10% list does 

it replace one in the set. Eventually the model will find a substructure minima and is then 

capable of generating analogs of this specific substructure. Often, based on the initial 

seed molecules of the very first iteration, the model will converge to one local minima. At 

least four models are trained and generated from each primed model node to obtain 

models that focus on different substructures of the original target molecule. The top 

scoring 10% of compounds found over the entire training loop for each model are kept. 

The collection of models are indexed to give flexibility on what regions of chemical space 

the user could explore. Instead of sampling from a single generative model, MegaSyn 

randomly samples from a collection of t total models (initial model + (i/n) * 4) in parallel. It 

should be noted that training multiple models from the initial model takes a limited amount 

of time, only requiring 6 hours on a single 1080 GPU to generate 32 models, the number 

of models generated per MegaSyn case study in this paper. The desired “focus” of the 

model can be driven by a generative specificity parameter, which weights the chance of 
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a model to be sampled from, either closer molecules to the training target(s) or driving 

away from the targets to generate novel compounds.  

 

Figure 2: MegaSyn architecture. First, an initial model is trained on a drug database (i.e., 

ChEMBL). Next, a set of Primed Models are generated by training on a target 

compound(s). Finally, exploratory models are generated from each Primed Model node, 

completing a set of generative models that range from general, drug-like molecules to 

analogs of the target compound(s). 
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Evaluation of de novo molecules generated from MegaSyn 

Case study 1 – Lapatinib analogs 

We decided to evaluate the capability of MegaSyn to generate valid, novel 

molecules with desired properties by employing several case studies. As an example of 

our generative approach we chose to optimize Lapatinib, an orally active drug for breast 

cancer and other tumors (Figure 3A). Lapatinib inhibits EGFR (HER1) and HER2 kinases, 

and thus is commonly used in combination therapy for HER2-positive breast cancer 60. 

Lapatinib, however, is relatively poor at crossing the blood brain barrier (BBB), with highly 

variable metastasis uptake and is not detected in normal brain tissue 61. We used 

MegaSyn to design analogs that simultaneously optimizes for HER1 and HER2 activity 

with an improved ability to cross the BBB. All activity models were built using naïve bayes 

(Table S2; see methods). For inputs to the scoring function, we considered QED score > 

0.6, Similarity to lapatinib or lapatanib fragments (Tanimoto similarity >0.6), and prediction 

scores from machine learning models we constructed for crossing the BBB, HER1 

inhibition, HER2 inhibition, and finally a HERG model to ensure the molecules avoid this 

ion channel (Figure 3B). Figure 3B shows our selected weighting scheme for the Lapatinib 

MegaSyn model. We ran MegaSyn for 16 total epochs, saving a Primed model node 

every 2 epochs, and generating 4 exploratory models per primed model node for a total 

of 32 RNN-based models. 10,000 molecules were generated from each of the 32 RNN-

based models.  
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Figure 3: Case study 1. A) Structure of Lapatinib, the target molecule of interest. B) Model 

reference file and predictive models used for MegaSyn. 

 

 

MegaSyn explores diverse chemical space 

t-SNE plots of the top 200,000 scored molecules shows that MegaSyn explores a 

rich chemical space around Lapatinib (Figure 4A), ranging from Tanimoto similarity 

scores of 0.1 to 0.97. To contrast to other generative models, we also used a single 

LSTM-based generative model pre-trained on ChEMBL and used the exact same loss 

function and multi-parameter optimization score to drive the generative model. We then 

sampled 5000 compounds from the LSTM-based generative model to compare against 

MegaSyn, from which we also sampled 5000 compounds. MegaSyn had significantly 

higher multi-parameter optimization scores, suggesting it is capable of finding better 

composite score maxima (Figure 5). When we limit our number of molecules down to the 
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top 2000 scored generated molecules, molecular diversity is still common, suggesting 

that MegaSyn is not just enumerating on a common core structure alone, but exploring 

diverse options to meet the criteria used in the scoring function (Figure 4B). In contrast to 

the Tanimoto similarity score, the region in the t-SNE plot with the highest multi-

optimization score is distinct from the location of Lapatinib, suggesting MegaSyn is 

capable of finding novel chemical space with better molecular properties than Lapatinib 

(Figure 6A). While the majority of the top 2000 compounds are predicted to cross the BBB 

(Figure 6B), there is a clear structure-activity relationship between activity relationship 

with HER1 activity and especially HER2 activity, which shows higher selectivity amongst 

the top compounds (Figure 6C, 6D). We evaluated the atomic contribution to model 

prediction for Lapatinib and two of the top-scoring generated compounds (Figure S1).  

While the BBB model suggests that the smaller generated compounds have no distinct 

atom-specific prediction differences (Figure S1), the HER1 model suggests that the core 

atomic contribution to predicted activity is retained, with a new strong atomic contributor 

(the carbon atom highlighted in the first top-generated molecule under HER1) in addition 

(Figure S1). For HER2, however, the strongest atomic contributor is not retained from 

Lapatinib in the top-scoring generated compounds, and instead novel atomic contributors 

are highlighted, suggesting the optimization of the generated molecules can “find” distinct 

properties that allow the generated molecules to still be active against the target (Figure 

S1). We next evaluated the synthetic feasibility of the top 2000 of compounds by using 

our newly built retrosynthetic analysis tool.  
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Figure 4: t-SNE plots of structural diversity of MegaSyn generated compounds. A) t-SNE 

plot based on ECFP6 for 200,000 top-scoring generated molecules colored by Tanimoto 

similarity to Lapatinib. B) t-SNE plot based on ECFP6 for 2,000 top-scoring generated 

molecules colored by Tanimoto similarity to Lapatinib. Blue dot represents Lapatinib. 
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Figure 5: Comparison of MegaSyn vs. a single LSTM model multi-optimization score 

using the same training setup with the same ChEMBL pre-trained model for set up. 

Boxplot showing the multi-parameter optimization score for the same generated 

compounds. 

 

 

Figure 6: t-SNE plots based on ECFP6 of the top 2,000 scoring compounds generated 

by MegaSyn colored by A) mult-objective optimization score, B) predicted ability to cross 

the BBB, C) predicted HER1 inhibition, or D) predicted HER2 inhibition. 
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Case Studies for Retrosynthetic Analysis 

Before scoring the retrosynthetic feasibility of MegaSyn generated compounds, we 

first evaluated test cases to show the utility of the retrosynthetic analysis tool. Initially, the 

retrosynthetic analysis tool was tested on several examples to illustrate potential utility. 

As an example of application of this software, Sorenson et al., recently described a 3-

step synthesis for the antiviral drug tilorone 62. Our software suggests several approaches 

to deliver tilorone (Figure S2). Another molecule tested in this way was the kinase inhibitor 

axitinib 63. The retrosynthetic analysis results were comparable with known synthesis 

route (Figure S3). We have also generated a much larger evaluation for the top 25 selling 

small molecule drugs (Table S1). This resulted in a similar number of alternative synthetic 

routes for these drugs (Figure S4). 15 out of 25 were ‘retro-synthesized’ completely to 
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commercially available reactants (eMolecules was checked for commercial availability). 

2 of the drugs only required 1 step, 4 required 2 steps, 8 required 3 steps and 1 required 

5 steps to break down into commercially available reactants. In many cases, the 

retrosynthesis went further than required to reach commercially available reactants 

(Table S1).  

 

Synthetic feasibility prediction  

An example of using tilorone for synthetic feasibility prediction is shown in Figure 

S5, which illustrates the analysis of results as a whole and also the scoring. In addition, 

we have compared the synthetic feasibility consensus scores of an FDA approved drug 

library versus 346 natural products in the Canvass dataset 31 (Figure 7). This analysis 

shows a good separation of drugs from natural products using this score. We decided to 

use reference points of a synthetic feasibility score of <60 to indicate synthetic feasibility, 

and a score of > 90 to indicate a compound that is easily synthesizable. The FDA dataset 

and Canvass were statistically significantly different (p=0.00318), suggesting that the 

synthetic feasibility tool is easily capable of discerning difficult to synthesize molecules 

(natural products) from generally simpler molecules like drugs. Visualization of the 

chemistry space of these approved drugs and the natural products further demonstrate 

that they cover different chemical areas with drugs generally focused in the center of the 

plot while natural products are on the periphery (Figure S6).  

 

Synthetic Feasibility of MegaSyn generated compounds 
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After validating our synthetic feasibility tool earlier, we used the consensus model 

to score the top 200 MegaSyn generated lapatinib analogs ranked by MPO score and 

(Figure 7). The majority of compounds (97.5%) were scored as synthetically feasible, 

nearly a quarter (23%) being considered easily synthesizable (Figure 7). This suggests 

that MegaSyn can generate valid, drug-like, easily synthesizable compounds with desired 

predicted physicochemical and bioactivity properties. 

 

Figure 7. Boxplot comparing the consensus synthetic feasibility score for an FDA 

approved library versus 346 natural products in the Canvass dataset and 200 of the top-

scoring MegaSyn generated lapatinib analog compounds. 195/200 megaSyn compounds 

had a score > 60 and 46/200 compounds had a score >90, indicating the compounds 

were synthetic feasibility and easily synthesizable, respectively. 

 



 32 

Case Study 2. Ibogaine analogs  

As a second more challenging case study we chose to potentially improve upon a 

natural product, ibogaine. Ibogaine is a natural product derived from tabernanth iboga 

(Figure 8A). Recent research has shown that psychedelics such as ibogaine may have 

therapeutic potential as anti-addictive agents. However, ibogaine has several undesirable 

properties, including inhibition of the hERG channel and the induction of a psychedelic 

experience. In a recent publication, Cameron et al, proposed, synthesized, and tested 

new ibogaine analogs with the following targeted properties in mind: that it does not inhibit 

the hERG channel, it maintains specificity to the 5-HT2A, which is thought to be necessary 

for the therapeutic action; and it does not induce a psychedelic experience 32. Ultimately 

the authors discovered tabernanthalog, an ibogaine derivative with these desired 

properties 32. 

We have used this paper as a test case and challenged MegaSyn to find 

tabernanthalog, using the following criteria: activity against 5-HT2A, inactivity against 

hERG, 5-HT1A, 5-HT1F, 5-HT2C, similarity to ibogaine and it’s substructures (Tanimoto > 

0.6), and lower cLogP than ibogaine. We ran MegaSyn for 16 total epochs, saving a 

Primed model node every 2 epochs, and generating 4 exploratory models per primed 

model node for a total of 32 LSTM-based models. 

We built machine learning models against 5-HT2A, hERG, 5-HT1A, 5-HT1F, and 5-

HT2C to include in the multi-objective scoring function to drive MegaSyn. All activity 

models were built using naïve bayes (Table S2; see Methods). We then generated 

100,000 compounds and took the top 50 highest multi-objective scoring compounds. 

tabernanthalog was included in the top 50 highest scoring compounds. In addition, 
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MegaSyn captured a wide variety of other related structures, including dissimilar scaffolds 

to ibogaine (Figure 8B, C). The majority of the top-50 compounds had a lower AlogP than 

ibogaine, suggesting that MegaSyn was capable of finding molecules with improved 

predicted drug-like properties (Figure 8D). In addition, the top 10 generated compounds 

had an MPO score comparable or better than tabernanthalog and all had a higher MPO 

score than ibogaine, suggesting that several of the novel MegaSyn generated compounds 

have a higher chance of crossing the BBB (Table S3). 

 

Figure 8: MegaSyn generation of new molecules based on ibogaine. A) The structures 

of ibogaine and tabernanthalog. B) t-SNE plots of the top 2,000 generated molecules 

based on ECFP6 fingerprints colored by Tanimoto similarity. C) structures of three 

randomly sampled molecules from the top 200 compounds. D) Histogram of the AlogP of 

the top 50 generated compounds. The AlogP of ibogaine is indicated by the red dashed 

line. 
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Automated analog generation 

In addition to de novo design of molecules with MegaSyn, we have also developed 

an easy-to-use web interface using Pipeline Pilot for running an automated analog 

generation protocol which can be used for lead expansion. We encoded several different 

medicinal chemistry strategies to generate potential analogs. A file of molecules to 
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generate analogs for is uploaded and and the output consists of a pie-chart summarizing 

the make-up of the molecule analogs and bar charts of their properties (Figure S7). The 

charts and tabular output are linked together such that the user can select subsets of 

molecules and readily export them. This tool can also be used with the retrosynthetic 

analysis described earlier to score the likely synthetic feasibility. 

 

DISCUSSION 

The goal in this study was to generate a complementary suite of accessible tools 

for generative molecular design, computer assisted synthesis, retrosynthesis and 

synthetic viability in order to propose new analogs or additional as the next steps after 

identification of a potential hit. We aimed to make use of existing data and algorithms 

where possible in order to deliver this additional functionality to provide meaningful 

synthesis suggestions for each molecule. We have now delivered methods for automated 

lead expansion, filtration of analogs, and selection of a representative set of molecules 

that is user-accessible. This collection of capabilities can also be combined with other 

software or machine learning tools to score proposed analogs with models of interest.   

Over the past few years, new discoveries in the field of de novo drug design has 

renewed interest in generating new molecules using machine learning 5. RNNs have been 

used for generating libraries for HTS, hit to lead optimization and fragment-based hit 

discovery 64-68. A feature of these generative models is the ability to optimize multiple 

parameters such as physicochemical properties or biological activity. While these new 

approaches are promising, a critical gap in knowledge is that limited experimental 
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validation data was generated by synthesizing compounds and testing for activity for any 

of the aforementioned studies with only a few groups validating their approach by making 

and testing compounds 69. Default or ‘vanilla’ generative models, while capable of 

generating novel compounds often do not end up in the desired chemical space. In our 

conversations with numerous drug discovery experts at various companies, the major 

complaints regarding generative models are that they either end up enumerating on the 

same initial target molecules, essentially rediscovering what their medicinal chemists 

have already proposed (the model is too focused), or end up far outside of “realistic” drug 

designs, proposing molecules which are well outside the realm of synthesizability. We 

believe that a single model is not sufficient to cover all the possible tasks requested of a 

generative model, so we tried to circumvent these issues by creating a large enumeration 

of models, from very general (little information is taken into account about the desired 

molecular space) to the specific (models which generate only analogs of the desired 

target molecules).  

 

MegaSyn initial model choice 

The current MegaSyn models are all initially based off a single pre-trained model 

on the ChEMBL database. This serves two purposes: First, the model has already learned 

how to compose correct molecule structures from SMILES strings. Second, despite the 

large number of learned molecules, ChEMBL has the additional bonus of being comprised 

almost entirely of drug-like molecules. This works to the advantage of MegaSyn due to 

the unique training strategy of using the hill-climb MLE algorithm. The use of a hill-climb 

MLE means that only molecules that the initial generative model is capable of generating 
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can be used for training, creating a feedback loop of only drug-like molecules being 

generated and trained on, and prevents undesirable properties from being generated. 

This is further re-enforced through use of a QED score to prevent molecules from straying 

too far into non-druglike space. The initial choice of database to train the initial model, 

then, is critical to the success as a generative model. Exploration of other databases to 

train the initial-model can be used to change the desired outcome.  

Composite score function 

The core driver of MegaSyn is the composition of the composite score function, 

which often includes a score for drug-likeness (such as QED) and similarity to target 

molecule(s) (i.e., Tanimoto similarity) in addition to the primary activity scoring models for 

potential drug-targets. The accuracy and choice of scores, then, is also critical for the 

success of MegaSyn. The number of possible scores to include are unbounded, and only 

require that a molecule can be scored and ranked numerically. For example, including 

machine learning models on toxicity (HERG, drug induced liver toxicity, CYPs) can be 

combined with on-target (i.e., a 5-HT receptor) and off-target (other 5-HT receptors) to 

create a composite score of dozens of scoring functions. We included a weighting value, 

from 0-1, which allows flexibility in score inclusion; instead of only the important score 

functions, several “nice-to-have” scores may also be introduced with a lower weight value 

than the more critical score functions.  

 

Case study results pros and cons 
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In the absence of prospective validations of the approaches the use of case studies 

are a promising way to explore the possible application and limitations of generative de 

novo design software as we have demonstrated. We illustrated that MegaSyn, even when 

faced with a natural product (ibogaine) is capable of discovering the same molecular 

analog as proposed by medicinal chemists (using ‘traditional’ medicinal chemistry 

approaches to design), suggesting it is capable of supplementing medicinal chemistry 

exploration. In addition, a number of the top-scoring compounds in this case study had 

molecular scaffolds distinct from ibogaine, highlighting that ibogaine is not considered a 

‘drug-like’ molecule. The proposed top-scored compounds for lapatinib, were similar to 

lapatinib, but with improved predicted molecular properties. 

The downside of case studies, however, is that the interpretation of success is only 

as good as the accuracy of the composite scoring function. While we can judge generated 

molecules as being reasonable from a chemistry point of view, it remains to be seen 

whether the other top-scoring compounds are in fact active, non-toxic, and selective 

without making them and testing them. This is a critical point that has yet to be fully 

investigated by any generative model proposed to date (to our knowledge), and we do 

not know whether the bias of using machine learning models to drive generative models 

also affects the probability of the top-scoring generated compounds to be truly active, 

non-toxic, or selective. We would argue, however, that these same machine learning 

models would be used to drive drug-discovery projects irregardless of the origin of the 

proposed molecules, therefore suggesting that generative models may provide a 

promising route to finding new molecules to test, especially when combined with 

retrosynthetic analysis. 
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Retrosynthetic analysis and analog designer for pipeline pilot 

While some of the tools described are less sophisticated than the approaches 

described earlier for computer assisted synthesis 20-22, retrosynthesis 15, 23-27 and synthetic 

viability tools (e.g. AutoGrow 3 70, chemical stability 71 and others 28 in order to eliminate 

invalid options) they can be readily implemented in PipelinePilot which is a widely used 

and commercially available product. Similarly, this approach and software could be 

readily reimplemented in open-source tools such as KNIME 37, 72.  

In conclusion, we have demonstrated that MegaSyn can propose synthesizable 

analogs for molecules based on the integration of various software components (open 

source and commercial). We have also demonstrated that we can recapitulate synthetic 

approaches for approved drugs in our case studies and that our synthetic feasibility score 

can reliably differentiate between approved drugs that are likely to be more synthetically 

feasible than more complex natural products. While these represent essentially 

retrospective evaluations of the software in line with what has been demonstrated with 

several more sophisticated tools described earlier, the next step is using this MegaSyn 

suite of tools to propose analogs, define how to make them, rank their synthetic feasibility 

before ultimately selecting molecules to synthesize and test in vitro. This tool is currently 

being applied to do just this on various internal research projects. 
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