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ABSTRACT 

The emergence of pandemic situations originated from SARS-CoV-2 and its new variants created 

worldwide medical emergencies. Due to the non-availability of efficient drugs and vaccines, 

hundreds of thousands of people succumbed to death intoxicated by this virus. At these emergency 

hours, repurposing existing drugs can effectively treat patients critically infected by SARS-CoV-

2. Using a high-throughput screening approach, we validated a list of potential repurposed drugs, 

like Nafamostat, Camostat, Silmitasertib, Valproic acid, Zotatifin, and essential host target 

proteins HDAC2, eIF4E2, CSK22, that are essential for viral mechanism. We determined multiple 

dissociation pathways of repurposed drugs, suggesting the availability of sub pockets within the 

host target proteins. We showed the preferential residues involved in the (un)binding kinetics of 
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the ligands correlated to the underlying mechanism of the host protein activity. Interestingly, the 

residues we obtained for HDAC2 and CSK22 target proteins, which we highlighted, are also 

involved in the catalytic activity. The mechanistic insight presented in this work is envisaged to 

help use these key host proteins and potential repurposed drugs as a treatment for the SARS-CoV-

2 virus.  

 
Introduction 
 
Over the past two decades, the virus that causes coronavirus disease has turned out to be lethal 

across the world. Earlier it was considered as a mild disease infecting immunocompetent people. 

Over the years, the virus has evolved into being fatal, with a higher transmissibility rate. Severe 

Acute Respiratory Syndrome (SARS-CoV-2) [1], the virus that causes COVID-19, has become 

the worst and uncontrollable public health crisis in a century. After the first outbreak, the virus 

mutated into more infectious variants, triggering multiple pandemic waves. The pandemic second 

wave has already shown to be aggressively targeting the younger population. Unlike the first wave, 

60-70% of the infected people in the second wave required critical care and hospitalization. A 

statement released by the Centers for Disease Control and Prevention (CDC) in July 2021 claimed 

that the Delta variant has the highest spread cases and severe outcomes even among vaccinated 

people. The Delta variant has shown to be twice as powerful as previous variants, but further details 

are still not understood. Generally, on-set of infection, a person can experience milder flu-like 

symptoms [2,3], further developing into more acute severe respiratory failure [4] and other multi-

organ complications. In this emergency, many repurposing drugs have been applied for COVID-

19 treatment, although the FDA does not yet approve them. 
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Researchers are scrambling to unravel how the virus hijacks the host and eventually affects the 

host regulatory mechanism. The viral genome is complex and encodes structural and non-structural 

proteins [5,6]. The viral proteins utilize the host proteins from their entry to transmission within 

host cells for their life cycle [7,8]. Identifying virus-host protein interactors in the complex pool 

of sequential pathways is vital to study the viral pathogenesis and host tolerant environment for 

viruses. In particular, the Delta variant with multiple mutations in the spike protein binds to the 

host angiotensin-converting enzyme 2 (ACE2) [9] receptor, which is present outside the human 

throat and lung cells, 2-4 times stronger. Recent proteomics approaches have revealed that viral 

proteins can enhance or lower the activity of hundreds of human kinases involved in cellular 

activities and immune response [10]. So, the possibility of targeting pro-viral cellular signaling 

could make the host immune system resistant to viral replication. It is crucial when the host has 

antibodies developed for SARS-CoV-2 by vaccination or recovery from COVID-19 infection and 

is still susceptible to new variants [11].   

The Caesin Kinase 2 (CK2) [12,13], Histone deactylease (HDAC2) [14,15], and eIF4E2 host 

proteins are essential for the normal functioning of cells, involved in cell cycle checkpoints, 

metabolic pathways, epigenetic regulators, mRNA translation pathways. These proteins get 

perturbed in the cancerous cells. Previous experimental studies have highlighted that cancer cells 

and viral pathogens follow similar molecular mechanisms for apoptosis and evade host immune 

response. Coronaviruses take over these machinery pathways. For example, viral protein Nsp1 

recruits the host proteins and reduces the overall host protein translation in the cell by 70% [16]. 

Recent mass-spectrometric experiments reported that an entry of a virus to the host target induces 

a significant change in protein phosphorylation and disrupts the host cytoskeletal organization by 

upregulating the CK2 kinases activity [17].  Additionally, pharmacological studies in human cell 
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lines have indicated the drug Silmitasertib (currently in phase 2 trials) to have high inhibitory 

activity of CK2 kinases, suggesting the role of these kinases in the SARS-CoV-2 life cycle [17]. 

Furthermore, Senhwa Biosciences get approval from Independent Data Monitoring Committee 

(DMC) for severe COVID-19 patients. Previous studies [18–20] on SARS-CoV have shown that 

drugs Nafamostat [18,19] and Camostat [21] are potential candidates to stop viral entry by binding 

to transmembrane protease serine 2 (TMPRSS2) proteases [22–24]. However, even at higher 

concentrations, Camostat showed 65% inhibition of protease binding, and 35% virus entry takes 

place via the endosomal cathepsin pathway [25]. Although, the role of these drugs on intracellular 

proteins that help regulate viral protein processing is still not clear. Similarly, the Zotatifin drug 

has shown to be effective in the translation machinery of the host, where viruses rely on host-

dependent mRNA translation. Repurposing of these drugs can be an effective way in terms of cost 

and time for treating COVID-19. 

Our recent study [26] followed an exhaustive screening of FDA-approved drugs against multiple 

host targets by using high throughput computational screening platform [27] utilizing molecular 

docking, all-atom molecular dynamics simulations including solvent and state of the art free 

energy calculations. The multi-target multi-ligand enhanced sampling approach provides highly 

selective off-target drug combinations with stable affinities. Interestingly, we found drugs that 

have high binding free energies were already in the clinical trial phase for COVID-19. Especially 

the drug Silmitasertib targeting CK2, which showed good binding free energies in our previous 

work [26], is already in phase II clinical trials. Similarly, the drug Zotatifin targeting the eIF4E 

elongation factor is in clinical trial phase I. We found that some off-targets showed good binding 

free energies but have not been previously explored experimentally [28]. However, 

thermodynamics and kinetics are essential in the early stages of rational drug design, but molecular 
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determinants could describe the modulation of binding and unbinding kinetics and disclosing their 

pathways [29]. In this paper, we have considered the targets and off-targets combinations [30] 

having good binding free energies and subjected to performing a combined all-atom molecular 

dynamics and enhanced sampling simulations. We explore the dissociation pathways of the drugs 

from the host-target proteins by considering the essential interacting residues involved in 

(un)binding processes. The information obtained from this study will further help in enhancing our 

knowledge on drug target mechanisms and design better therapeutics. 

 

Computational methodologies 

We applied a rigid docking protocol to generate the docked complex using the Autodock suite 

(Autodock 4.2.6) [31]. We performed docking on the crystal structures of the proteins (Table 1), 

and if any missing loops were present have been modeled using Modeller (Modeller 9.24) [32]. 

We first obtained minimum energy structures for proteins and ligands (Figure 1) followed docking 

to perform docking. The docking sites have been selected by either using the inhibitor-bound 

position in the crystal structure or finding the binding sites using the Autoligand tool [33]. We took 

the conformation corresponding to the minimum docking score for all-atom molecular dynamics 

(MD) using GROMACS-2018 [34]. Charmm27 force field parameters with cmap corrections have 

been used to model bonded, nonbonded interactions for protein [35]. To generate ligand interaction 

parameters, we optimized the ligands' geometry employing GAUSSIAN 09 [36] using a semi-

empirical method at the PM6 level, followed by density functional theory (DFT) optimization 

using M06 functionals and 6-311g (d,p) basis sets. To account bulk solvent effect, we employed 

the PCM method.  The partial charges have been calculated using the CHELPG method [38] on 
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this DFT-optimized structure. Following this, we used the swissparam web service [37] to obtain 

charmm compatible parameters. The obtained docked complex was solvated in TIP3P water 

followed by added Na+, Cl- ions to neutralize the system. Periodic boundary conditions were 

applied in all directions to mimic the bulk property. After setting up the initial system, we 

performed energy minimization using the steepest descent method to remove the bad contacts of 

the solute due to overlap with the water molecules. It was followed by NVT equilibration for a 

duration of 500 ps at 300 K using a modified Berendsen thermostat [39]. Later, a 1 ns NPT 

equilibration was followed after NVT at atmospheric pressure using Parrinello-Rahman [40] 

barostat. The Particle-Mesh Ewald (PME) [41] method has been employed to calculate the long-

range electrostatic interaction, and the short-range interactions were calculated using a 1 nm cut-

off. The LINCS algorithm [42] has been used to choose 2 fs integration time steps. We performed 

a 100 ns production run in the NPT ensemble for all the systems using this protocol. We analyzed 

these trajectories and calculated the bound state properties of the protein-ligand systems. We 

calculated the contact frequency between the protein and ligand to extract the crucial residues 

involved in the interaction at the bound state, considering the minimum distance criterion choosing 

a cut-off of 0.4 nm. Further, we pulled out the interaction fingerprint for the selective protein 

residues (i.e., that remain in contact for more than 75 % of simulation time) obtained from the 

contact frequency [43].  

To explore the ligand dissociation [29,44–47] from the protein binding pocket, we employed 

metadynamics (metaD) [48] and its variant well-tempered metadynamics (wt-metaD) [49] using 

PLUMED 2.5.4 [50] and GROMACS 2018 [34]. In a metaD simulation, a history-dependent bias 

is deposited sequentially, prohibiting the system from revisiting already visited portions in the 

phase space. Thus eventually, the system escapes from the minimum in the energy landscape to 
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the aqueous medium. In wt-metaD, the height of the deposited bias is gradually decreased to have 

better and quicker convergences of the system. The final equilibrium coordinates from the MD 

simulation were taken as the initial structures in wt-metaD simulations. In a metaD or wt-metaD 

simulation, the bias is added to the system along a reaction coordinate. A good reaction coordinate 

will have the following two criteria: (i) it should show a timescale separation between the slowest 

motion in the system with that of the fastest motion, and (ii) it should be able to demarcate all the 

relevant metastable states. Here we take distance (between the center of masses of the ligand heavy 

atoms and the center of masses of the protein binding pocket) as the reaction coordinate (RC). 

Once the simulation converges, the unbiased Boltzmann distribution of the RC is extracted by 

adding the deposited hills. The following biasing parameters have been used in wt-metaD 

simulations: bias deposition frequency of 500 steps (1 ps), gaussian hill height 1.5 – 2.0 kJ/mol, 

hill width 0.02 - 0.1 nm, bias factor 10 – 15, temperature 300 K. For each system we performed 

10 independent wt-metaD simulations starting from a new initial configuration. To calculate the 

average free energy, we first calculated independent probability, then averaging over probabilities 

followed by averaged free energy [26,51]. 

First, to calculate the dissociation rate, we calculate the residence time over 10 trajectories for a 

system. We calculate the accelerated time or residence time by multiplying the biased time with 

the acceleration factor and obtain the average residence time after averaging over independent 

values. Further to explore the crucial protein residues while dissociating the ligand from the 

binding pocket, we calculated the minimum distance between the ligand heavy atoms and protein 

residues of the system and repeated this exercise for all 10 independent runs, as shown in Figure 

S2. Following this, we extracted only those specific residues of the protein for which, at least for 

a run, it has a minimum ligand and protein residue distance < 0.2 nm (shown in Figure S3). Then 
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we calculated the normalized probabilities for these specific residues for the distance between the 

residues and the ligand heavy atoms and repeated this exercise for all six systems as shown in 

Figure S4-S9.  

 

Results and discussion     

Silmitasertib, Zotatifin showed high binding free energies with CK2 and eIF4E proteins in clinical 

trials for COVID-19 (NCT04668209, NCT04632381). In addition, we identified drugs that 

potentially interact with one or more off-targets with higher affinities. On-set of infection, the 

proteins associated with transcription, translation mechanisms are expressed. So, it is 

advantageous to use drugs that can target multiple host proteins at different stages of the 

mechanism. Such off-target combinations, eIF4E2 with Nafamostat, Camostat, and HDAC2 with 

Valproic acid, Nafamostat having good binding affinities, are listed in Table 2.  

Conformational stability of the host target - drug complexes 

We performed atomistic molecular dynamics simulations on six drug-protein combinations (Table 

1) to provide time-dependent changes. We calculated the backbone Root Mean Square Deviation 

(RMSD) and Root Mean Square Fluctuation (RMSF) to evaluate the conformational stability. 

Figure 2 and Figure 3 show the RMSD and RMSF of different targets bound to Nafamostat, 

Camostat, Zotatifin, Silmitasertib, and Valproic acid. In all cases, the RMSD was less than 0.45 

nm suggesting the conformation over 100 ns has been less deviated and stable. The eIF4E2-

Zotatifin and CSK2-Silmatersitib complexes showed more stable conformations ranging between 

0.2 - 0.25 nm. 
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Additionally, the HDAC2 protein complex with Nafamostat and Valproic acid displayed a stable 

conformation with a value less than 0.15 nm for the first 50 ns. The values deviated after 50 ns, 

but still, conformations remained within the stable range of 0.2 - 0.25 nm. The eIF4E2-Camostat 

complexes showed the highest deviations for the rest of the complexes. It shows the highest 

variation at 50 ns and 75 ns. To understand protein regions that contribute to the conformational 

changes or stability, we calculated the RMSF at the residue level. The mobility of residues was 

observed for all six drug-protein combinations, as shown in Figure 3. The high fluctuations 

observed on the terminal ends of proteins can be neglected due to their high mobility. Overall, 

fewer residue-level fluctuations were observed for all six candidates, suggesting stable nature. 

However, high fluctuations were observed in HDAC2 PHE210 residue in both Nafamostat and 

Valproic acid. The PHE210 residues are conserved and present at the gateway of the binding 

pocket of HDAC2 proteins and selectively interact with ligands.  

 

Preferential binding sites for drug-host target proteins 

To further understand the molecular details of the protein-drug interactions in a bound state, we 

calculated the minimum distance between them, as shown in Figure 4. It was interesting to see 

crucial residues involved in the interactions that remain in contact for more than 75% of the 

simulation time (shown in Table S1). In the eIF4E translation factor, the residues THR29, SER30, 

SER31, TRP80 were shown to interact with Nafamostat, Camostat, and Zotatifin. However, 

ILE177, MET179, and PRO180 are present in Camostat and Zotatifin and not in Nafamostat. 

Similarly, for the HDAC2 epigenetic factor, the residues that interact with Nafamostat and 

Valproic acid were quite similar. The residues interacting are TYR29, MET35, PRO37, ARG39, 



10 

ILE40, PHE114, ALA141, GLY142, LEU144, CYS156, GLY305. Interestingly, HIS183 was 

shown to be interacting with Nafamostat and not Valproic acid. For CK2-Silmatersitib, the 

residues LEU46, GLY47, ARG48, GLY49, VAL54, VAL60, LYS69, ILE96, PHE114, ILE117, 

ASN119, MET164, ILE175, ASP176 were shown to interact in the bound state. 

We calculated interaction fingerprints in a binary vector to further understand the nature of 

intermolecular interactions between the target proteins and drugs that remain in contact for more 

than 75% of simulation time. The knowledge of interactions in terms of Hydrogen-bonding, 

Hydrophobic interactions, and 𝜋 − 𝜋 stacking and their conformations was considered for protein-

drug. Figure 5 shows the interaction fingerprints for the eIF4E translational factor. THR29, SER31, 

TRP80, and PRO180 residues were observed in all three drug complexes involved in hydrophobic 

interactions. The TRP80 is also shown to form 𝜋 − 𝜋 stacking interaction. In Nafamostat and 

Camostat, SER31 has also been observed to form transient hydrogen bonding. Interestingly, 

ILE177 and MET179 are involved in hydrophobic interactions in Camostat transiently and 

Zotatifin continuously. Similarly, in Figures 6 (a) and (b), the HDAC2 residues TYR29, MET35, 

ARG39, ILE40, ALA141, GLY143, LEU144, CYS156, GLY305 form hydrophobic interactions 

with the drug Nafamostat and Valproic acid. There was a transient hydrogen bonding interaction 

with residues ARG39 in both and TYR308 in Nafamostat and GLY294 in Camostat. We observed 

the 𝜋 − 𝜋 interactions only in Nafamostat at residues HIS134, HIS135. In CK2-Silmitasertib, the 

hydrophobic interactions were observed with LEU46, GLY47, ARG48, GLY49, VAL54, LYS69, 

IL196, PHE114, ILE117, ASN119, MET164, ILE175, ASP176. At the start of the simulations, we 

observed transient hydrogen bonds in LYS69 and ASP176, lost towards the end of the simulations. 

We noticed	𝜋 − 𝜋 interactions to be formed by PHE114 at the start of the simulations.   

 Correlation between thermodynamics and kinetics of drug-target combinations 
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Further, to correlate the host target-drug complexes' thermodynamic behavior and kinetics, we 

calculated free energy barriers and dissociation rates, as shown in Table 2. Figure 7 shows the 

"log(Koff)” vs “free energy barrier ( )" plot for all the drug-target combinations studied and 

discussed above. For better efficacies of drug molecules, the free energy barriers are suggested to 

be high, and the rate of dissociation of the drugs is proposed to be low and vice versa. We observe 

that for systems with higher free energy barriers (low values of ), log(Koff) values are lesser, 

and for low free energy barriers (higher values of ), the log(Koff) is higher. We observe such a 

scenario, especially in the off-target combinations HDAC2-Nafamostat showed a low dissociation 

rate, and eIF4E2-Nafamostat displayed high dissociation rates. Specifically, for eIF4E2 

combinations, the dissociation rates are higher, suggesting the drugs are bound less tightly and 

have lesser affinities. The HDAC2 and CK2 combinations showed lower  values, indicating 

more stable and energetically favorable at the bound state. As a result, it will take longer to 

dissociate from the binding pocket to the solvent crossing the transition barrier.  

Pathways and mechanism of drug dissociations from the binding pocket of the host proteins  

To explore the complete dissociation pathways from its bound pose and uncover the essential 

interacting residues that work as gatekeepers facilitating the (dis)association mechanism, we 

analyzed the crucial interacting residues from the dissociation trajectories for all six combinations. 

To select the important one from the list of all the residues, we chose a minimum distance cut-off 

of < 0.3 nm and a normalized probability of 0.8 (see Figure S4-S9). In Table 3, we showed the list 

of dominant residues for HDAC2 - Nafamostat, eIF4E2 - Nafamostat, eIF4E2 - Camostat, CK2 - 

Silmitasertib, eIF4E2 – Zotatifin, and HDAC2-Valproic Acid while dissociating from the bound 

state to the solvent environment. We observed ARG39 (HDAC2-Nafamostat), TRP80 (eIF4E2-

Nafamostat), GLU81 (eIF4E2-Camostat), LYS69 and ASP176 (CK2-Silmitasertib), and ARG39 
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(HDAC2-Valproic Acid) with the highest probability and with a distance cut-off of < 0.2 nm, 

whereas the residue SER176 (for eIF4E2-Zotatifin) with probability 0.9, distance cut-off < 0.3 nm. 

In Figure 8 (a-f), we showed instantaneous snapshots of the host protein-ligand binding pocket 

highlighting the key residues (ligand (orange), residues with probability 1 (yellow), other key 

residues (lime)). In the case of both HDAC2 combinations, for Nafamostat and Valproic Acid, 

common residues ARG39, GLY142, LEU144, HIS146, PHE155 were shown to be interacting. 

Interestingly for eIF4E2 combinations, TRP80 was critical in interactions with all three drugs 

(Nafamostat, Camostat, and Zotatifin). 

Understanding the complete dissociation pathways for a ligand from its bound state and knowledge 

about the central residues facilitating the (dis)association mechanism is vital in accurate, fast, and 

effective drug development purposes. To have a rigorous understanding, we analyzed the wt-

metaD trajectories of the dissociation events for all the systems. We explored all possible pathways 

available for a ligand to dissociate from the bound state. In Figure 9 (a-f), we showed instantaneous 

snapshots for all six systems and all the pathways taken by a specific ligand for a system. For 

HDAC2 – Nafamostat, we observe two dissociation pathways as shown in Figure 9 (a) (i and ii). 

Along one path (shown in Figure 9 (a) i), PHE155 works as the gatekeeper while for the other path 

(Figure 9 (a) ii) HIS183. Out of 10 independent dissociation events, we observed an equal number 

of possibilities for either pathway or both are equally probable. Hence, PHE155 and HIS183 are 

key residues facilitating the (dis)association mechanism for the HDAC2-Nafamostat system. For 

HDAC2-Valproic acid (Figure 9 (b), the ligand is deeply embedded inside the binding cavity 

surrounded by ARG39, ILE40, GLY142, LEU144. While dissociating, it reaches the top of the 

surface and dissociates interacting through PHE155 (Figure 9 (b) i). It also follows two more 

distinct paths between the helices, one interacting with ILE24, LEU117, GLU113 (Figure 9 (b) ii), 
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and in another, the ligand reaches the top between LEU276 and PHE155. Then it dissociates 

interacting with TYR308, ILE310, PHE155, PRO34 (Figure 9 (b) iii). Thus, we observe three 

distinct pathways for the HDAC2-Valproic acid system. Out of these three pathways, we noticed 

the path shown in (Figure 9 (b) i) to be statistically more probable for Valproic acid to follow. 

Hence, for HDAC2, although we observe multiple pathways to be present for Nafamostat and 

Valproic acid, a single path (Figure 9 (b) i) corresponds to the dissociation of the ligand along 

PHE155) is conserved for both the ligands. For eIF4E2 – Zotatifin, we observe a single pathway 

(Figure 9 (c) i) with PRO180 as the gatekeeper residue. For eIF4E2 – Camostat, MET179, THR29, 

SER30 are at the gateway (pathway Figure 9 (d) i), and GLU81, MET79 at the gateway (for 

pathway Figure 9 (d) ii). For eIF4E2- Nafamostat (Figure 9 (e)), TRP80, TYR34 residues (pathway 

Figure 9 (e) i), between helices through TRP80, TYR34 residues (pathway Figure 9 (e) ii), residue 

ARG94 along with the beta-sheet (pathway Figure 9 (e) iii). Hence, for eIF4E2 for all three ligands, 

we did not observe any specific pathway common to all three in contrast to HDAC2, where we 

noticed a conserved path with specific PHE155 residue. For CK2 – Silmitasertib (Figure 9 (f) i), a 

single pathway has LYS69 and ASP176 as two crucial residues at the gateway. Hence, we explored 

various dissociation pathways that might be used while ligand associating into the binding cavity 

and elucidated key interacting residues that facilitate the (dis)association processes for three targets 

and five different ligands. 

Conclusion 

With great efforts and difficulty, researchers around the world are looking for better therapeutics 

to treat SARS-CoV-2. The coronavirus disease COVID-19 has become fatal and has a high 

transmissibility rate, making it difficult to control the spread. Designing new therapeutic 

approaches or repurposing existing drugs requires understanding viral pathogenesis or host targets 
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or pathways that mediate the infection. Various interactome studies have highlighted detailed 

information on key host regulatory proteins for which repurposed drugs are shown to be effective. 

It is in line with our previous study, where we have done an exhaustive screening of existing drugs 

and human targets using molecular docking and free energy calculations. From this study, we were 

able to filter out potential drug-target combinations that not only have better docking scores, good 

free energy, and residence time but they are in clinical phase trials. Our current study wanted to 

extend our previous understanding to describe residue-level details, kinetics, and target-drug 

(dis)association mechanisms. Such a systematic approach can help us towards a better 

understanding of host-targeted therapies.  

The dissociation of a drug from its binding pocket is a rare event in nature. It occurs in the timescale 

of microseconds or more and beyond the reach to study using conventional MD simulations. Here, 

we used enhanced sampling techniques, wt-metaD, to facilitate our understanding of 

thermodynamics and kinetics of drug-protein interactions. We found the key residues interactions 

formed in metaD simulations in the bound state. The probability distribution indicates that there is 

no single well-defined dissociation path. Drugs are diffused in all combinations that have a low 

dissociation rate. The combinations explore the surface of the target protein by forming metastable 

states. The HDAC2 have deep concave pockets that maximize the protein-drug interactions. The 

predominant pathway taken by both HDAC2 combinations is from the catalytic region referred to 

as a lipophilic tube, which includes the residues PHE155 and HIS183. 

Similarly, CK2-Silmaterstib, the residues LYS69, and ASP176 are mediators involved in 

interaction with the drug molecule. Here we observe LYS69 and ASP176 facilitating the 

dissociation of the drug. The unbinding process discussed here can involve steps from forming a 

stable state when the drug is in the binding pocket and then metastable intermediate conformations 
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where the drug has contact with the extracellular surface of the receptor. The later step constitutes 

substantial dehydration of the drug and the binding pocket, representing a high energy barrier to 

an association. The residues involved in each stage can be considered testable cases for further 

understanding of the mechanism or better therapeutics with better efficiency. 

 

Supporting Information 

Table showing the interacting residues of target protein that remain in contact with the respective 

drug molecules for more than 75% of the simulation time; hydrophobic and 𝜋 − 𝜋 interaction 

between the ligand-target; minimum distance plot of the protein residues with that of ligand heavy 

atoms and minimum distance plot with cut-off 0.2 nm; normalized probability distribution with 

distance cut-off for all six systems.  
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Table 1. The host target protein and drug combinations studied in this paper, and their role of 

specific pathways involved in host cells. 

Target Pathway 
Structure 
(PDB ID) Drug 

eIF4E2 Translation 2JGB Nafamostat 

eIF4E2 Translation 2JGB Camostat 

eIF4E2 Translation 2JGB Zotatifin 

HDAC2 
Epigenetic 

factor 4LY1 Nafamostat 

HDAC2 
Epigenetic 

factor 4LY1 
Valproic acid 

CSK22 Transcription 6HMB Silmitasertib 

 

 

 

Table 2: Average free energy barriers[26] and dissociation rates are shown for six target – drug 
combinations.  

Target Drug ΔG (kcal/mol) K_off (1/min) 

eIF4E2 Nafamostat -4.3 (0.31) 1.3E-04 

eIF4E2 Camostat -3.3 (0.34) 1.3E-02 

eIF4E2 Zotatifin -3.5 (0.31) 5.6E+00 

HDAC2 Nafamostat -13.3 (0.45) 2.3E-09 
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HDAC2 Valproic acid -12.8 (0.34) 7.7E-11 

CK2 Silmitasertib -8.6 (0.56) 7.7E-10 

 
 

 
 
 

 

 

 

 

 

 

Table 3: List of target protein residues interacting with the ligand from metadynamics simulations 

from 10 independent runs for each system. The target residues having probability of >= 80 % and 

with the distance < 0.3 nm have been chosen. The table shows interaction sites and corresponding 

protein residues of the target for HDAC2 - Nafamostat, eIF4E2 - Nafamostat, eIF4E2 - Camostat, 

CSK22 - Silmitasertib, eIF4E2 – Zotatifin and HDAC2-Valproic acid for dissociation pathways.    

Target PDB ID Drug Interacting Residues 

eIF4E2 2JGB Nafamostat TYR34, TRP80, LYS90, ARG94, SER128 

eIF4E2 2JGB Camostat THR29, SER30, MET79, TRP80, GLU81, ARG130, MET179 

eIF4E2 2JGB Zotatifin SER30, SER31, TRP80, SER176, PRO180, ARG187 

HDAC2 4LY1 Nafamostat 
ARG39, GLY142, LEU144, HIS146, GLY154, PHE155, CYS156, 

HIS183, GLY306 

HDAC2 4LY1 
Valproic 

Acid ARG39, ILE40, GLY142, LEU144, HIS146, PHE155, LEU276 
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CSK22 6HMB Silmitasertib 
GLY47, ARG48, GLY49, SER52, VAL54, LYS69, GLU82, 

LEU86, ILE96, LYS159, MET164, ASP176, SER195 
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HDAC2  eIF4E2 CSK22 
(a) 

Zotatifin  Valproic Acid Nafamostat 

Camostat Silmitasertib 

(b) 
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Figure 1: (a) Instantaneous snapshots of the secondary structures of HDAC2, eIF4E2 and CSK22 

protein targets. (b) 2D chemical structures of Nafamostat, Valproic acid, Zotatifin, Silmitasertib 

and Camostat.   

 

 

 

 

 

Figure 2: Root mean square deviation of target eIF4E2 complexed to different drugs Nafamostat 
(black),  Camostat  (red), Zotatifin (green), target HDAC2 complexed to Nafamostat (blue), 

Valproic acid (yellow) and target CSK22 Silmitasertib (brown) 
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Figure 3: Root mean square fluctuation of protein backbone (a) eIF4E complexed to drug 
Nafamostat (cyan), Camostat (red), Zotatifin (orange) (b) HDAC2 complexed to Nafamostat 

(cyan), Valproic acid (red)  (c) CSK22 complexed to Silmitasertib (cyan) 
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Figure 4: Contact frequency of the drug bound to target protein was calculated for (a) eIF4E – 

Nafamostat (blue), Camostat (red) and Zotatifin (orange) (b) HDAC2 – Nafamostat (blue), 

Valproic acid (red) (c) CSK22 - Silmitasertib (blue) 
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Figure 5: Interaction fingerprint for (a) eIF4E - Nafamostat (b) eIF4E - Camostat (c) eIF4E – 

Zotatifin 

 

 

Figure 6: Interaction fingerprint for (a) HDAC2 – Nafamostat (b) HDAC2 - Valproic acid (c) 

CSK22 - Silmitasertib 
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Figure 7: ‘log(Koff)’ vs ‘free energy barrier’ has been plotted here for various target - ligand 
combinations as shown by separate colors and symbols. Different drugs have been shown in 
separate symbols.   
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Figure 8: Interacting residues having probability more than 80 % and distance < 0.3 nm for six 

systems. Orange colors show ligands, yellow residues with probability 1 and lime colors are with 

probability > 0.8 and distance < 0.3 nm. (a) HDAC2 - Nafamostat, (b) eIF4E2 – Nafamostat, (c) 

eIF4E2 – Camostat, (d) CSK22 – Silmitasertib, (e) eIF4E2 – Zotatifin, (f) HDAC2 – Valproic 

Acid.   

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 9: Dissociation pathways for (a) HDAC2 – Nafamostat (i and ii), (b) HDAC2 - Valproic 

acid (i, ii and iii), (c) eIF4E2 – Zotatifin (i), (d) eIF4E2 – Camostat (i and ii), (e) eIF4E2 – 

i ii 

(d) eIF4E2-Camostat 

i 

(c) eIF4E2-Zotatifin 

i ii iii 

(e) eIF4E2-Nafamostat 

i 

(f) CSK22-Silmitasertib 
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Nafamostat (i, ii and iii), (f) CSK22 – Silmitasertib (i). The time evolution of the dissociation 

events for the ligands have been shown in Timestep representation with Licorice drawing method 

and the colors denote: red (bound state) à pink à white à light blue à blue (unbound state).  

 

 

 

 

 

 


