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Abstract 30 
 31 
Each year, millions of premature deaths worldwide are caused by exposure to outdoor air 32 
pollution, especially fine particulate matter (PM2.5). Designing policies to reduce these deaths 33 
relies on air quality modeling for estimating changes in PM2.5 concentrations from many policy 34 
scenarios at high spatial resolution. However, air quality modeling typically has high requirements 35 
for computation and expertise, which limits policy design, especially in countries where most 36 
PM2.5-related deaths occur. Lower requirement reduced-complexity models exist but are 37 
generally unavailable worldwide. Here, we adapt InMAP, a reduced-complexity model originally 38 
developed for the United States, to simulate annual-average primary and secondary PM2.5 39 
concentrations across a global-through-urban spatial domain: “Global InMAP”. Global InMAP 40 
uses a variable resolution grid, with 4 km horizontal grid cell widths in cities. We evaluate Global 41 
InMAP performance both against measurements and a state-of-the-science chemical transport 42 
model, GEOS-Chem. For the emission scenarios considered, Global InMAP reproduced GEOS-43 
Chem pollutant concentrations with a normalized mean bias of 59%–121%, which is sufficient for 44 
initial policy assessment and scoping. Global InMAP can be run on a desktop computer; 45 
simulations here took 2.6–4.4 hours. This work presents a global, open-source, reduced-46 
complexity air quality model to facilitate air pollution policy assessment worldwide, providing a 47 
screening tool for reducing the deaths where they occur most. 48 
 49 
Introduction 50 
 51 
Exposure to outdoor air pollution is the largest environmental health risk factor worldwide, 52 
associated with millions of excess deaths each year1,2. The deaths are mostly attributable to fine 53 
particulate matter (PM2.5), which can either be emitted directly, or can form indirectly from 54 
precursor pollutants that are emitted from a wide variety of natural and anthropogenic emission 55 
sources, including transportation, agriculture, and electricity generation3,4. Designing strategies to 56 
reduce mortality relies on understanding how specific emission sources affect ambient PM2.5 57 
concentrations, and thereby, human health, across a range of possible technology or policy 58 
scenarios. 59 
 60 
InMAP5 (Intervention Model for Air Pollution) is a reduced-complexity, open-source air quality 61 
model that has been used to inform strategies to reduce PM2.5-related mortality from specific 62 
emission sources. For example, InMAP has been used to estimate fine-scale pollution impacts 63 
across distances6, measures of pollution inequity across racial-ethnic and socioeconomic 64 
groups7, the health impacts of specific sectors under different policy scenarios8,9, and individual 65 
impacts of commodities10. However, as with other widely used reduced-complexity air quality 66 
models such as EASIUR11, AP212, and COBRA13, InMAP previously has only been configured 67 
and evaluated for the United States, a country with just 4% of the world's population and 2% of 68 
the world's air quality-related deaths2,4. 69 
 70 
Chemical transport models (CTMs) are employed for estimating the effects of emission sources 71 
on pollutant concentrations and health impacts and are considered state-of-the-science for air 72 
quality modeling. However, they require substantial time, expertise, and computational resources 73 
(e.g., several computation days per simulation month), limiting the use cases and therefore the 74 
extent to which they can inform many multidimensional policy decisions5,14, especially when 75 
hundreds of policy scenarios are being considered. Although GEOS-Chem is one of the most 76 
widely used CTMs, 60% of deaths from outdoor air pollution occur in countries where there are 77 
no known users or institutions using GEOS-Chem15,16. Thus, researchers and practitioners would 78 
benefit from additional models and tools beyond CTMs to investigate air pollution and emission-79 
control strategies. Such tools would be useful even though the uncertainty may be higher than 80 
with a CTM. For example, because damages per tonne emitted varies by orders of magnitude, for 81 
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many analyses an uncertainty of a factor of 2 or 3, or higher (e.g., an order of magnitude 82 
estimate), can provide scientifically relevant results that can usefully inform policy decisions. 83 
 84 
Some global air quality models are available with a lower operational difficulty than CTMs, 85 
including TM5-FASST17, source-receptor relationships built from GEOS-Chem adjoint18, and 86 
EMEP19. Compared to the existing global air quality models with lower operational difficulty than 87 
CTMs, InMAP has higher spatial resolution, is easier to use, and has lower computational costs.   88 
A recent notable effort20 to build a monthly life cycle assessment model for PM2.5 has not yet 89 
been tested against measurements or compared with results from a CTM. A diversity of 90 
independently evaluated reduced-complexity models will increase their applicability and the 91 
robustness of policy assessments worldwide21. 92 
 93 
Here, we developed and configured InMAP for use on a global spatial domain (“Global InMAP”). 94 
We ran a year-long, global CTM simulation using GEOS-Chem22, and used its outputs to globally 95 
parameterize the chemistry, physics, and meteorology of InMAP. We then ran InMAP on global 96 
emission inventories to predict total PM2.5 concentrations as well as changes in concentrations 97 
from three specific scenarios of emission changes. We compared the results to a global dataset 98 
of ground observations, as well as to PM2.5 concentrations and changes in concentrations 99 
predicted by GEOS-Chem. Lastly, we compared Global InMAP to the United States versions of 100 
InMAP for two emission scenarios. 101 
 102 
Materials and Methods 103 
 104 
The InMAP model, fully described in Tessum et al.5, estimates annual-average concentrations of 105 
fine particulate matter (PM2.5), including both primary (i.e., directly emitted) and secondary (i.e., 106 
formed in the atmosphere) components, to guide research and policy. As with other reduced-107 
complexity models, InMAP is designed to be faster and easier to use than CTMs, and will 108 
typically have lower accuracy and precision than CTMs as a tradeoff for the greater speed and 109 
ease of use. 110 
 111 
InMAP explicitly tracks secondary PM2.5 contributions from particulate ammonium (pNH4), 112 
particulate sulfate (pSO4), particulate nitrate (pNO3), and secondary organic aerosol (SOA), from 113 
emissions of PM2.5 precursors (sulfur oxides (SOx), nitrogen oxides (NOx), ammonia (NH3), and 114 
non-methane volatile organic compounds (NMVOCs)). InMAP estimates pollutant concentrations 115 
by approximating the steady-state solution to a set of differential equations governing pollutant 116 
emissions, reaction, advection, diffusion, and removal. It solves the equations by discretizing over 117 
space and time, using a variable resolution grid, and spatially varying parameterizations that 118 
simplify the reaction, advection, and removal terms in the equations. Whereas CTMs simulate 119 
chemistry and physics (reaction, advection, removal) using first principles and mechanistic or 120 
empirical representations for specific processes, InMAP simulates chemistry and physics using 121 
simplified representations that are parameterized by the outputs of a CTM simulation. 122 
 123 
InMAP as configured over the United States (“US InMAP”) was parameterized using outputs from 124 
WRF-Chem23,24. However, WRF-Chem is not commonly used for global simulations. Instead, 125 
InMAP was parameterized here using outputs from GEOS-Chem22, a global CTM. The full list of 126 
equations used in InMAP is given in Tessum et al.5 Details of the model configuration, GEOS-127 
Chem simulation inputs, global emission inventories, and performance evaluation are provided 128 
below. 129 
 130 
Global InMAP computational grid 131 
 132 
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As with previous InMAP configurations for the US5-10, the horizontal resolution of the Global 133 
InMAP computational grid varies across space and is higher in places with larger population or 134 
population density. Here, we used 2020 projected population data at 0.01° resolution25 to create 135 
the computational grid. We employed a population density threshold of 5.5 × 108 deg-2 and a 136 
population threshold of 100,000. For any grid cell, if either threshold was exceeded, then the 137 
model subdivided it into smaller cells until the smallest cell size was reached. 138 
 139 
The resulting computational grid (Figure S1) has ~1.5 million grid cells (ground-level: 170,358 140 
grid cells), whose horizontal resolution at ground-level ranges from 5° × 4° (which corresponds to 141 
~500 km length at the equator) in remote locations to 0.04° × 0.03° (~4 km length at the equator) 142 
in urban locations. The spatial domain encompasses the vast majority of the Earth's surface: 143 
latitudes from -87.0° to +81.0° and longitudes from -178.0° to +172.0°. Global InMAP does not 144 
track pollution across the poles or antimeridian26. The resulting grid covers all but ~5 million 145 
people (< 0.1% of the total population) in parts of New Zealand and other islands in the Pacific 146 
Ocean. The population-weighted average grid-cell size is 1,000 km2 (for comparison, ~39,000 147 
km2 for GEOS-Chem). The resulting pre-processed gridded input data file is ~700 MB and is 148 
provided in a freely available dataset (doi:10.5281/zenodo.4641948). 149 
 150 
GEOS-Chem simulation 151 
 152 
Chemical and physical atmospheric parameters used in Global InMAP, such as annual-average 153 
gas/particle-phase partitioning coefficients, were derived from the outputs of an annual GEOS-154 
Chem “Classic” (version 11-01f) simulation (2016-01-01 until 2017-01-01), with meteorology 155 
provided by MERRA-227. The GEOS-Chem outputs were used in the same way as the 156 
corresponding WRF-Chem variables were used for US InMAP (see Tessum et al.5). The full list of 157 
GEOS-Chem variables used in Global InMAP, and descriptions of how they are used, are in 158 
Table S1. 159 
 160 
The GEOS-Chem model code and configuration were derived from a simulation performed by 161 
Hammer et al.,28 where the chemical mechanism included complex secondary organic aerosol 162 
(SOA) formation with semi-volatile primary organic aerosol29,30. We used the standard horizontal 163 
spatial resolution for global simulations in GEOS-Chem, 2° × 2.5°, (~ 220 km × 275 km at the 164 
equator) with 47 vertical levels, following the configuration described in Hammer et al.28 165 
 166 
GEOS-Chem also allows for higher resolution grids nested within a larger domain31. Again 167 
following Hammer et al.28, we ran GEOS-Chem nested grid simulations over the same time 168 
period for Asia, Europe, and North America, at 0.5° × 0.625° resolution, which covers 75% of the 169 
world's population. First, boundary conditions for the nested grid simulations were recorded every 170 
180 minutes of simulation time, at 2° × 2.5° resolution, during the global simulation. In our 171 
application, emergent properties extracted for use in Global InMAP, such as the annual-average 172 
temperature and wind velocity vectors, are only specified up to this coarse resolution. However, 173 
Global InMAP can still be used on a higher resolution (variable) grid, and the resolution of the 174 
emission inventory is also not limited by the resolution of the GEOS-Chem output. 175 
 176 
Emission inputs 177 
 178 
To estimate concentrations of total PM2.5 and speciated components using Global InMAP, we 179 
compiled a global emission inventory of NH3, primary PM2.5, NOx, SOx, and NMVOC. For 180 
consistency, we chose the same emission inventories as those used in the GEOS-Chem 181 
simulation, but, where possible, processed to a higher spatial resolution as described below for 182 
the Global InMAP computational grid. Total annual emissions fluxes for the emission inventories 183 
used in the Global InMAP simulation are given in Table 1. 184 
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 185 
Where possible, the total emission inventories used for the Global InMAP simulation were 186 
compiled using the standalone version of HEMCO32, using the same configuration as used in the 187 
GEOS-Chem simulation except at 0.25° × 0.25° horizontal resolution.  188 
 189 
Differences in grid resolutions, time steps, and environmental fields can result in small differences 190 
when the same emission inventories are processed. HEMCO standalone provides both high 191 
resolution emissions and consistency with the GEOS-Chem simulation but cannot be used for 192 
some emission inventories that require detailed chemical or meteorological inputs. For those, we 193 
instead saved out emissions (“diagnostics”) from the GEOS-Chem simulation, gridded at 2° × 194 
2.5°, and used these in the global InMAP simulation. 195 
 196 
Table 1 gives the total annual emissions for Global InMAP inputs, and the data source for each 197 
group of emissions used. Global and regional emission inventories used for anthropogenic 198 
sources of PM2.5 and precursors include: EDGAR33 v.4.3.2, the National Emissions Inventory 199 
(NEI) 2011 for the United States, BRAVO34 (Big Bend Regional Aerosol and Visibility 200 
Observational study) for Mexico, the Criteria Air Contaminant (CAC) emission inventory for 201 
Canada, EMEP35 for Europe, MIX36 v1.1 for Asia, MEIC37 v1.2 for China, Lu et al.38 for SOx 202 
emissions in China and India, AEIC39 for aircraft emissions, PARANOX40 for ship emissions, and 203 
RETRO41 for biofuel emissions. Biomass burning emissions are from the RETRO41 and GFED-442 204 
emission inventories. Natural emission inventories used here include Ge et al.43 for volcanic 205 
emissions, Hudman et al.44 for soil NOx, MEGAN45 for biogenic emissions, and DEAD46 for dust 206 
emissions. 207 
 208 
Only a subset of NMVOC emissions is likely to form SOA47,48. For Global InMAP anthropogenic 209 
emissions, we included isoprene, monoterpenes, benzene, toluene, xylenes, trimethylbenzenes, 210 
alkanes with more than 4 carbon atoms, and other aromatics, from the EDGAR33 v4.3.2 emission 211 
inventory. For biogenic emissions, we included limonene, isoprene, alpha-pinene, beta-pinene, 212 
sabinene, carene, and monoterpenes from the global GEOS-Chem simulation. For biomass 213 
burning, we include benzene, toluene, xylenes, alkenes with more than 3 carbon atoms, and 214 
alkanes with more than 4 carbon atoms, from the RETRO biomass burning emission inventory41. 215 
 216 
Although Global InMAP has the functionality to include vertically elevated emissions, there is a 217 
lack of global information on emission heights for many sources33. HEMCO processed emissions 218 
were thus derived at the lowest vertical layer, except for aircraft emissions, lightning NOx and 219 
volcanic SOx. For simplicity in configuring the Global InMAP emissions, here we only used the 220 
emissions from these sources in the lowest vertical layer, which excluded 8% of global NOx 221 
emissions and 16% of global SOx emissions. 222 
 223 
PM2.5 concentrations are not directly tracked in GEOS-Chem, but rather are calculated from its 224 
underlying components that are grouped in such a way as to facilitate chemical and atmospheric 225 
modeling. For example, dust is grouped by several size classes that do not perfectly map onto 226 
PM2.5. HEMCO and GEOS-Chem diagnostic outputs also typically report emissions in these 227 
groups, requiring some conversions for use in Global InMAP. Here, we did so in accordance with 228 
the standard GEOS-Chem recommendations (see Table S1 for the PM2.5 equation used). 229 
Following Hammer et al.28 and Li et al.49, irreversible aqueous formation of SOA from isoprene 230 
was included in total PM2.5 mass, whereas reversible formation was excluded. 231 
 232 
InMAP data inputs for pollutant removal through deposition likewise required modification for 233 
Global InMAP simulations. Specifically, Global InMAP requires land cover data to calculate dry 234 
deposition rates for gases and particles in each ground-level grid cell. For the United States, 235 
InMAP used land cover data from the United States Geological Survey National Land Cover 236 
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Database50. For Global InMAP, we instead used the Olson 2001 Land Use Map at 0.025° × 237 
0.025° resolution51, which is also used in GEOS-Chem. 238 
 239 
Comparison with other air quality models and measurements 240 
 241 
Using the global emission inventories described in the previous section, we generated Global 242 
InMAP results and compared them against other models and measurements (1) for total 243 
concentrations; (2) for three perturbation scenarios wherein we modified global emissions from a 244 
specific sector and predicted the resulting concentration changes; and (3) for United States 245 
electricity and transportation emissions, to compare Global InMAP with US InMAP. 246 
 247 
First, we evaluated Global InMAP predictions of PM2.5 (total and speciated) against annual-248 
average ground-level measurements, as is commonly done for air quality models52,53. To this end, 249 
we compiled and vetted a global measurement dataset for total and speciated PM2.5 (see 250 
Supplementary Text and Table S2 for additional details). We reported metrics commonly used for 251 
evaluating model performance: normalized mean error and bias (NME and NMB), the squared 252 
linear correlation coefficient, R2, and the slope of the best-fit line, S (see Supplementary 253 
Information for equations used)54. Using this approach, model-measurement comparisons were 254 
generated for Global InMAP and (separately) for the GEOS-Chem simulation (described above). 255 
 256 
To provide context for the model-measurement comparison results, we reported model criteria 257 
published by Emery et al.54 (see Supplementary Information). Performance criteria were provided 258 
as a general reference point, not as “pass/fail” criteria. The criteria are intended for evaluating 259 
PM2.5 concentrations over sub-annual lengths of time55, or for daily average measurements within 260 
1000 km, where there are more than 10 measurements54. Here, we used the criteria more 261 
broadly to identify the stronger and weaker aspects of model performance. 262 
 263 
Second, we simulated the effects of three emissions perturbations with Global InMAP and GEOS-264 
Chem simulations and compared their predicted pollutant concentration increments. The 265 
perturbations chosen were: (i) a 100% increase (4.9 Tg) in global SO2 emissions from power 266 
generation for 2 months (2016-01-01 until 2016-03-01); (ii) a 100% increase (7.5 Tg) in global 267 
NH3 emissions from agricultural soils for 3 months (2016-01-01 until 2016-04-01); (iii) a 100% 268 
increase (1.4 Tg) in global NOx emissions from road transport for 1 month (2016-01-01 until 2016-269 
02-01). All emissions changes were from the EDGAR emissions database (v.4.2, 0.1° × 0.1° 270 
resolution) as described above. For each of the scenarios chosen, we ran global, annual 2° × 2.5° 271 
GEOS-Chem simulations similar to those described above, with the change in emissions 272 
implemented using a constant temporal profile over the timescale of the perturbation. As InMAP 273 
is an “intervention” model (designed to model changes in emissions directly), for Global InMAP 274 
we ran the changes in emissions from the EDGAR emission inventories at native resolution. 275 
 276 
Lastly, because InMAP has already been configured and evaluated over the contiguous United 277 
States, we performed two simulations for United States emission changes using Global InMAP 278 
and US InMAP. To this end, we compiled emission inventories over the United States using the 279 
National Emissions Inventory (NEI) 2014v.1, processed exactly as in Thakrar et al.8 We 280 
investigated two sources of PM2.5 and precursor emissions: coal-powered electricity generation 281 
(NEI Source Classification Code: 10100212) and gasoline passenger vehicles (NEI Source 282 
Classification Code: 2201210080). 283 
 284 
Results 285 
 286 
Computational requirements 287 
 288 
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The annual, global simulations described above (system: 98 processors on 1 node of a 289 
supercomputing cluster; 36 GB memory) required 4 hours for Global InMAP (1.5 million grid cells) 290 
and 100 hours for GEOS-Chem (2° × 2.5° grid resolution, 0.6 million grid cells). The perturbation 291 
simulations, when run on the same system, took 2.6–4.4 hours. 292 
 293 
Other GEOS-Chem simulations require comparably high resources56. The variable resolution 294 
InMAP grid allows for much higher spatial resolution over areas with high population density than 295 
is possible with the GEOS-Chem uniform grid, while only requiring 4% of the computational time. 296 
 297 
Model-to-measurement comparisons 298 
 299 
The Global InMAP simulation using total emissions was able to predict total PM2.5 concentrations 300 
against measurements globally with NMB = –60%; NME = 63%; and R2 = 0.35 (see Figures 1–2, 301 
S2). As with the GEOS-Chem simulation, the performance of the Global InMAP simulation varied 302 
by region (see Figures S3–S9). The Global InMAP simulation was generally most accurate in 303 
Oceana (NMB: -45%; R2: 0.64; see Figure S7), North America (NMB: -54%; R2: 0.59; see Figure 304 
S6), and Europe (NMB: -64%; R2: 0.28; see Figure S5), and least accurate in South America 305 
(NMB: -74%; R2: 0.05; see Figure S8). Across many heavily polluted regions in Asia, the Global 306 
InMAP simulation predicted much lower PM2.5 concentrations than are measured (difference: > 307 
30 μg m-3) (Figure S5), in particular across the Indo-Gangetic Plain. The underprediction may 308 
have arisen because of potentially low emissions inputs, e.g. from industrial and agricultural NH3 309 
emissions57 or missing NMVOC species from biomass burning58. The Global InMAP simulation 310 
may have underpredicted pollution from episodic events, such as biomass burning in the Indo-311 
Gangetic Plain, because Global InMAP assumes that emissions occur at an annual-average rate. 312 
Furthermore, the chemistry that is included in Global InMAP may not be sufficiently complex to 313 
predict PM2.5 with high accuracy in heavily polluted areas59. 314 
 315 
We also compared annual-average predicted concentrations from the Global InMAP simulation to 316 
annual-average measurements of pSO4, pNO3, and pNH4 globally (Figures 3–6). The Global 317 
InMAP simulation predicted these components well (NME: 50%–67%; R2: 0.24–0.38) and was 318 
generally biased low against measurements for pNO3 (especially in areas with pNO3 >2 μg m-3), 319 
and high for pSO4 and pNH4. Because the Global InMAP simulation did not have a strong low 320 
bias against secondary inorganic PM2.5 measurements, it is likely that much of the low bias of the 321 
Global InMAP simulation against total PM2.5 measurements arose from its prediction of primary 322 
PM2.5 concentrations (see Figure 7). However, measurement data for SOA and primary PM2.5 323 
concentrations were not available at the evaluation sites (see Figure 8 for ground-level 324 
concentrations of these species). 325 
 326 
We also compared the GEOS-Chem simulation against the same measurement data, to 327 
contextualize the Global InMAP results. The GEOS-Chem simulation predicted total PM2.5 328 
measurements with an R2 of 0.55. For comparison, a GEOS-Chem simulation that used the same 329 
code and emissions28 reported an R2 of 0.61 when using a more comprehensive measurement 330 
dataset and averaging results across years 2010–2018 instead of just 2016. 331 
 332 
Both the Global InMAP and the GEOS-Chem simulations predicted lower annual-average total 333 
PM2.5 concentrations than were observed. For all species and regions, the direction of bias 334 
against measurements was the same for the Global InMAP simulation as for the GEOS-Chem 335 
simulation. This suggests that the Global InMAP simulation was inheriting the bias from the 336 
GEOS-Chem simulation inputs to some extent. If that was the case, then future improvements to 337 
the GEOS-Chem model and to the emission inventories used here could further reduce Global 338 
InMAP biases. 339 
 340 
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The Global InMAP simulation broadly reproduced spatial patterns of pollutant concentrations 341 
predicted by GEOS-Chem. However, there were some features present in the GEOS-Chem 342 
simulation that were not captured by the Global InMAP simulation. Such features included high 343 
annual-average PM2.5 concentrations from biomass burning, including the Alberta fires, crop 344 
burning in the Indo-Gangetic Plain, peatland fires in Singapore and Malaysia, and burning in 345 
Siberia. InMAP may have underpredicted PM2.5 concentrations from biomass burning relative to 346 
the GEOS-Chem simulation because it assumes emissions happen at an annual-average rate. 347 
Across Western China, the Global InMAP simulation tended to misrepresent the spatial patterns 348 
provided by the parent GEOS-Chem simulation for both primary and secondary PM2.5, including 349 
high concentrations over the Himalayas and Sichuan Basin, and low concentrations in 350 
surrounding areas. This may suggest that the annual-average advection scheme used by InMAP 351 
does not yet adequately capture complex air flows over steep terrain. 352 
 353 
Evaluation of predicted responses to changes in emissions 354 
 355 
The major intended use of InMAP is to estimate the changes in human exposure to PM2.5 356 
concentrations for given scenarios of emission changes. Therefore, its ability to reproduce the 357 
changes predicted by the original CTM could be considered its most important attribute, more 358 
important than its ability to reproduce current absolute concentrations. However, InMAP is 359 
designed to predict human exposure with high spatial resolution in urban areas, while GEOS-360 
Chem is designed to predict global chemical transport and runs at comparatively low resolution. 361 
Directly comparing the two models requires re-gridding the higher-resolution Global InMAP 362 
results to match the lower-resolution GEOS-Chem results, which cancels out predictive 363 
advantages Global InMAP might gain from its use of higher spatial resolution. Therefore, results 364 
in this section could be considered a conservative evaluation of Global InMAP’s predictive 365 
performance. 366 
 367 
Figures 9–11 show annual-average pollutant concentration increments predicted by the GEOS-368 
Chem and Global InMAP simulations for increases in SOx emissions from power generation, NH3 369 
emissions from agricultural soils, and NOx emissions from road transportation. When regridding 370 
Global InMAP predictions to the GEOS-Chem grid, we found that Global InMAP reproduced the 371 
GEOS-Chem results with an average area-weighted NME of 118–182% and an average area-372 
weighted NMB of 59–121% (see Table 2). For the NOx and NH3 emissions scenarios, Global 373 
InMAP exhibited better performance against GEOS-Chem on a population-weighted basis than 374 
on an area-weighted basis. For the SOx emissions scenario, Global InMAP exhibited the lowest 375 
performance against the GEOS-Chem simulation, having overpredicted changes in pSO4 376 
concentrations especially in populated areas. 377 
 378 
The Global InMAP simulations predicted greater variability in concentration changes over urban 379 
areas than the 2° × 2.5° GEOS-Chem simulations for the same emissions scenarios, owing to its 380 
higher resolution computational grid. Figure 12 compares the pNO3 concentration changes over 381 
Cairo, São Paulo, and Tokyo (the largest cities in Africa, South America, and Asia60) for the NOx 382 
perturbation scenario as predicted by Global InMAP and GEOS-Chem. Changes in 383 
concentrations predicted by Global InMAP correlated with changes in emissions at the urban 384 
scale. Higher resolution GEOS-Chem simulations that resolve intra-urban gradients would be 385 
even more computationally expensive than the GEOS-Chem simulations performed here56. 386 
 387 
Global InMAP predicted similar spatial patterns and magnitudes of changes in pollutant 388 
concentrations as did US InMAP for a given emissions perturbation (see Figure S10), with NME 389 
and NMB within ± 50% for both scenarios considered (see Table 2). This demonstrated 390 
consistency between the InMAP versions derived from WRF-Chem and GEOS-Chem inputs, 391 
suggesting that no major errors were introduced in the Global InMAP model development (see 392 
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Table S1; Tessum et al.5). For InMAP applications focusing only on the United States, continued 393 
use of US InMAP is warranted, as the WRF-Chem simulation used to parameterize US InMAP 394 
provides higher spatial resolution than does the nested GEOS-Chem simulation employed for 395 
Global InMAP. 396 
 397 
Discussion 398 
 399 
Here, we extended InMAP, a reduced-complexity air quality model originally developed for use in 400 
the United States, to simulate a global-through-urban spatial domain. InMAP is designed to 401 
supplement rather than supplant state-of-the-science tools such as GEOS-Chem or other global 402 
models, e.g., for cases in which (i) resources to implement a CTM are unavailable, (ii) numerous 403 
simulations are needed to evaluate a large variety of policy scenarios, or (iii) the primary need is 404 
initial assessment and screening. The accuracy of InMAP is not as good as with a CTM (e.g., 405 
here, a normalized mean error of 63% (InMAP) versus 41% (GEOS-Chem)), yet for many 406 
scientific and policy questions lacking readily-available CTM-quality results, InMAP provides 407 
useful information. 408 
 409 
Global InMAP requires relatively low computational resources, allowing it to be run on a desktop 410 
computer rather than a supercomputer. Simulations predicting annual-average concentrations 411 
take several hours rather than days. For example, compared to the global GEOS-Chem 412 
simulation described here, the Global InMAP simulation was 25× faster at predicting total annual-413 
average PM2.5 concentrations, despite the Global InMAP simulation having 39× higher 414 
population-weighted average spatial resolution (down to ~4km in urban areas). 415 
 416 
As expected, the expedience of Global InMAP comes at the expense of lower predictive accuracy 417 
compared to a comprehensive CTM. This Global InMAP simulation is biased low against 418 
measurements for total PM2.5 across all regions. Among species, it is biased high against 419 
measurements of pSO4 and pNH4, and low against measurements of pNO3. The low 420 
computational resource requirements make Global InMAP particularly well-suited to applications 421 
where hundreds of policy scenarios are evaluated, as is often done using reduced-complexity 422 
models for the United States8,10,61, or when no other air quality models are available at the urban 423 
scale. In places with higher population and pollution exposure than the United States, there is 424 
even more potential for a reduced-complexity model such as Global InMAP to inform impactful 425 
policy decisions. Global InMAP may be important for informing preliminary hypotheses about 426 
policy decisions in its early stages (e.g., “What is the best location to site a new facility that may 427 
be a major pollution source?”), allowing computational resources to be used instead for CTMs at 428 
a later stage to check consistency with the findings. 429 
 430 
Global InMAP performance varies regionally, and it tends to perform worse against 431 
measurements in places where GEOS-Chem also performs poorly (e.g., South America). This 432 
suggests that predictive accuracy in those areas is generally lower across models, so that Global 433 
InMAP may provide a comparative advantage. Further, this suggests that Global InMAP 434 
performance in those regions may improve based on future advancements in emission 435 
inventories or GEOS-Chem model inputs. 436 
 437 
By directly estimating annual-average PM2.5 concentrations at high spatial resolution, Global 438 
InMAP is configured to easily estimate changes in human exposure and health impacts. When 439 
estimating human health effects of emissions changes, there will also be sizeable uncertainties 440 
from estimating the emissions changes themselves and from the concentration-response function 441 
employed62; Global InMAP errors should thus be contextualized with those in mind. For the 442 
United States, a previous study6 found that the largest source of uncertainty in estimating 443 
monetized PM2.5 health impacts was the economic valuation of premature mortality, followed by 444 
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the concentration response function, whereas uncertainty in PM2.5 concentrations from the choice 445 
of air quality model was the smallest source of uncertainty considered. Since uncertainty in the air 446 
pollution model is not the largest source of uncertainty in many contexts, a reduced-complexity 447 
model (RCM) can deliver useful information; that conclusion especially applies to the many cases 448 
where resources may exist to run an RCM but not to establish and run a conventional CTM. 449 
Indeed, there are many cases in which a CTM simulation is infeasible, yet an RCM or other 450 
approach could provide some information. As mentioned above, InMAP is not a replacement for a 451 
CTM; instead, it provides screening-level information, results for questions that would involve too 452 
many model runs to use a CTM, or results that would be otherwise infeasible. By providing a 453 
global, open source, air quality model with high spatial resolution and low computational 454 
requirements, we hope to facilitate the wide practice of air pollution policy assessment worldwide.  455 
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Figures and Tables 670 
 671 
Table 1. PM2.5 and precursor emissions inputs into GEOS-Chem and Global InMAP. 672 

Pollutant 
GEOS-Chem 
(Tg/yr) 

Global InMAP 
(Tg/yr) 

Global InMAP data 
sources 

Maximum 
resolution 

Anthropogenic  
 

  
PM2.5 24.45 32.93 EDGAR, NEI, CAC, 

MEIC 
0.25° × 0.25° 

NH3 51.52 47.39 EDGAR, CAC, NEI, 
MIX, MEIC 

0.25° × 0.25° 

SOx 84.33 84.33 EDGAR, BRAVO, 
EMEP, NEI, CAC, 
MIX, MEIC, Lu et al. 

2° × 2.5° 

NOx 64.85 76.28 EDGAR, BRAVO, 
EMEP, NEI, CAC, 
MIX, MEIC, AEIC 

0.25° × 0.25° 

NMVOC - b 58.15 EDGAR 0.1° × 0.1° 
Natural 

  
  

PM2.5 244.53 244.53 DEAD, GEOS-Chem 
diagnostics 

2° × 2.5° 

NH3 17.38 15.97 GEIA 0.25° × 0.25° 
SOx 28.32 0.42a Ge et al., GEOS-

Chem diagnostics 
2° × 2.5° 

NOx 28.02 16.60a Hudman et al., 
GEOS-Chem 
diagnostics 

2° × 2.5° 

NMVOC - b 553.14 MEGAN, GEOS-
Chem diagnostics 

2° × 2.5° 

Biomass burning 
  

  
PM2.5 35.30 35.30 GFED-4 0.25° × 0.25° 
NH3 4.24 4.24 GFED-4 0.25° × 0.25° 
SOx 2.25 2.25 GFED-4 0.25° × 0.25° 
NOx 20.28 20.28 GFED-4 0.25° × 0.25° 
NMVOC - b 5.10 RETRO 0.5° × 0.5° 

    
aOnly NOx and SOx emissions in the lowest vertical layer were used in Global InMAP, yet the 673 
majority of natural NOx and SOx emissions are emitted from lightning and volcanoes at higher 674 
levels. bNot all NMVOC emissions from GEOS-Chem simulation are reported.  675 
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Table 2. Area- and population-weighted normalized mean bias (NMB) and error (NME) for Global 676 
InMAP predicted changes in concentrations against changes in concentrations from GEOS-Chem 677 
or US InMAP, arising from scenarios of changes in emissions. Positive bias indicates that Global 678 
InMAP has higher average concentration changes than the other model. 679 

Model comparison Scenario Weighting NME (%) NMB (%) 
Global InMAP 
against GEOS-
Chem 

NH3 increase from 
agricultural soils 

area-wtd. 118.2 58.7 
population-wtd. 88.6 52.5 

NOx increase from road 
transportation 

area-wtd. 180.7 96.2 
population-wtd. 102.2 40.8 

SOx increase from power 
generation 

area-wtd. 181.3 120.7 
population-wtd. 273.4 259.3 

Global InMAP 
against US InMAP 

Coal-powered electricity area-wtd. 38.4 -18.8 
population-wtd. 38.7 -10.5 

Gasoline passenger 
vehicles 

area-wtd. 48.4 -23.0 
population-wtd. 48.8 -46.7 

  680 
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Figure 1. Annual-average ground-level total PM2.5 concentrations from the Global InMAP and 681 
GEOS-Chem simulations for year 2016. 682 

 683 
  684 
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Figure 2. Annual-average total PM2.5 concentrations from the Global InMAP and GEOS-Chem 685 
simulations against measurements. Only values ≤100 μg m-3 are plotted here, excluding 25 686 
(1.5%) model-measurement pairs (full figure shown in Supplementary Information, Figure S2). 687 
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Figure 3. Global InMAP and GEOS-Chem annual-average ground-level pSO4 concentrations. 690 
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Figure 4. Global InMAP and GEOS-Chem annual-average ground-level pNO3 concentrations. 693 
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Figure 5. Global InMAP and GEOS-Chem annual-average ground-level pNH4 concentrations.  696 
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Figure 6. Global InMAP and GEOS-Chem annual-average pSO4, pNO3, and pNH4 699 
concentrations against measurements. 700 
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Figure 7. Global InMAP and GEOS-Chem annual-average ground-level SOA concentrations. 703 
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Figure 8. Global InMAP and GEOS-Chem annual-average ground-level primary PM2.5 706 
concentrations. 707 
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Figure 9. Comparison between Global InMAP and GEOS-Chem for predicting changes in pNO3 710 
concentrations from a 100% increase in NOx emissions from road transportation. 711 
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Figure 10. Comparison between Global InMAP and GEOS-Chem for predicting changes in pSO4 714 
concentrations from a 100% increase in SOx emissions from power generation. 715 
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Figure 11. Comparison between Global InMAP and GEOS-Chem for predicting changes in pNH4 718 
concentrations from a 100% increase in NH3 emissions from agricultural soils. 719 

 720 
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Figure 12. First column: 100% increase in NOx emissions from road transport across Cairo, São 722 
Paulo, and Tokyo. Second and third column: resulting changes in pNO3 concentrations predicted 723 
by the Global InMAP and the GEOS-Chem simulations. For each map, blue lines indicate rivers 724 
and black lines indicate land borders. 725 
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Supplementary Information Text 764 
 765 
Measurement data description 766 
 767 
Ground-level measurements of total PM2.5, pNH4, pNO3, and pSO4 concentrations across year 768 
2016 were compiled from the World Health Organization database and supplemented with 769 
additional measurements from other official channels such as governmental and non-770 
governmental agencies (see Table S2). Included measurements were vetted according to quality 771 
control criteria, including those used by the 2012 United States National Ambient Air Quality 772 
Standards. Only measurements that directly measured PM2.5 were included; PM10 measurements 773 
that were converted to PM2.5 were excluded. Further, data without correct latitude and longitude 774 
were excluded. Global InMAP directly estimates annual-average pollutant concentrations, so 775 
measurement data from each monitoring site were averaged across the year. To avoid temporal 776 
biases across the day, all measurement data were averaged daily values of pollutant 777 
concentrations. To avoid seasonal biases, measurements had to be reported for at least 75% of 778 
days in the year from each monitoring site included in our dataset. 779 
 780 
After vetting, the final dataset of annual-average pollutant concentrations included ~1,700 total 781 
PM2.5 data points across 62 countries; 171 pNH4 data points across 1 country (the US); 334 pNO3 782 
data points across 4 countries, and 385 pSO4 data points across 12 countries. The final dataset is 783 
provided in Dataset S1. 784 

 785 
Performance metric and criteria descriptions 786 
 787 
Normalized mean bias and error (NMB and NME), are given by: 788 

 789 

𝑁𝑀𝐵 =	
∑ 𝑃! −! 𝑂!
∑ 𝑂!!

× 100 790 

 791 

𝑁𝑀𝐸 =	
∑ |𝑃! − 𝑂!|!

∑ 𝑂!!
× 100 792 

where, for monitor location 𝑖, 𝑃! are the model predictions and 𝑂! are the observations of annual-793 
average pollutant concentrations. 794 

 795 

Model criteria for PM2.5, pSO4, and pNH4 concentrations, are R2 ≥ 0.16, NME ≤ 50%, and |NMB| ≤ 796 
30%. For pNO3, model criteria are NME ≤ 115%, |NMB| ≤ 65% (with no criteria for R2). 797 

 798 

For model-to-model comparisons, weighted NMB and NME are given by: 799 

𝑁𝑀𝐵"#!$%&#' =	
∑ (𝐺𝐼! −! 𝑀!) × 𝑤!

∑ 𝑀!! ×𝑤!
× 100 800 

 801 
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𝑁𝑀𝐸"#!$%&#' =	
∑ |𝐺𝐼! −𝑀!|! ×𝑤!

∑ 𝑀!! ×𝑤!
× 100 802 

 803 

Where 𝑤! are the weights (areas or population counts) for each grid cell	𝑖, 𝐺𝐼 are the Global 804 
InMAP predictions, and 𝑀 are the predictions from the other model (GEOS-Chem or US InMAP). 805 

 806 

  807 
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Supplementary Figure 1. Detail of the Global InMAP horizontal computational grid over West 808 
Africa, Central America, and Europe for illustration. Grid cells are as small as 0.04° × 0.03° (~4 809 
km length) in areas with a higher population such as Lagos in Nigeria, San Salvador in El 810 
Salvador, and London in the United Kingdom. Grid cells are as large as 5° × 4° (~500 km length) 811 
in places with a lower population, such as across the Atlantic Ocean. 812 

 813 
  814 
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Supplementary Figure 2. InMAP and GEOS-Chem annual-average primary PM2.5 815 
concentrations against measurements, including outliers (above 100 μg m-3). Pop-wtd: 816 
population-weighted metrics.817 

 818 

  819 



 

 

36 

 

Supplementary Figure 3. Performance of Global InMAP and GEOS-Chem simulations against 820 
total annual-average PM2.5 measurements for Africa. Dots on each map show measurement site 821 
locations, whose color corresponds to the model-measurement difference in PM2.5 822 
concentrations.823 

 824 

  825 
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Supplementary Figure 4. Performance of Global InMAP and GEOS-Chem simulations against 826 
total annual-average PM2.5 measurements for East Asia. Dots on each map show measurement 827 
site locations, whose color corresponds to the model-measurement difference in PM2.5 828 
concentrations. 829 

 830 

  831 
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Supplementary Figure 5. Performance of Global InMAP and GEOS-Chem simulations against 832 
total annual-average PM2.5 measurements for South Asia. Dots on each map show measurement 833 
site locations, whose color corresponds to the model-measurement difference in PM2.5 834 
concentrations. 835 

 836 

  837 
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Supplementary Figure 6. Performance of Global InMAP and GEOS-Chem simulations against 838 
total annual-average PM2.5 measurements for Europe. Dots on each map show measurement site 839 
locations, whose color corresponds to the model-measurement difference in PM2.5 840 
concentrations.841 

 842 
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Supplementary Figure 7. Performance of Global InMAP and GEOS-Chem simulations against 844 
total annual-average PM2.5 measurements for North and Central America. Dots on each map 845 
show measurement site locations, whose color corresponds to the model-measurement 846 
difference in PM2.5 concentrations.847 

 848 
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Supplementary Figure 8. Performance of Global InMAP and GEOS-Chem simulations against 850 
total annual-average PM2.5 measurements for Oceana. Dots on each map show measurement 851 
site locations, whose color corresponds to the model-measurement difference in PM2.5 852 
concentrations.853 
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Supplementary Figure 9. Performance of Global InMAP and GEOS-Chem simulations against 856 
total annual-average PM2.5 measurements for South America. Dots on each map show 857 
measurement site locations, whose color corresponds to the model-measurement difference in 858 
PM2.5 concentrations. 859 

 860 

  861 



 

 

43 

 

Supplementary Figure 10. Changes in Total PM2.5 concentrations from road vehicle emissions 862 
and from power generation emissions as predicted by Global InMAP (which has GEOS-Chem 863 
preprocessor inputs) alongside US InMAP (which has WRF-Chem preprocessor inputs). 864 

  865 
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Supplementary Table 1. Names and descriptions of GEOS-Chem outputs used to calculate 866 
Global InMAP parameters. 867 
 868 
Name(s) Description and use in Global InMAP 

preprocessor 
BENZ, TOLU, XYLE, NAP, POG1, POG2 Anthropogenic VOCs that are SOA precursors; 

used to determine VOC/SOA partitioning 
ASOA1, ASOA2, ASOA3, ASOAN Anthropogenic SOA; used to determine 

VOC/SOA partitioning 
ISOP, LIMO, MTPA, MTPO Biogenic VOCs that are SOA precursors; used 

for model evaluation 
TSOA0, TSOA1, TSOA2, TSOA3, SOAGX, 
SOAMG, SOAIE, SOAME, LVOCOA, ISN1OA 

Biogenic SOA; used for model evaluation 

NO, NO2 Components of NOx; used to determine NOx 
/pNO3 partitioning 

NIT, NITs Components of pNO3; used to determine NOx 
/pNO3 partitioning 

SO2 Gaseous SO2 and sulfate; used to determine 
SOx /pSO4 partitioning 

SO4, SO4s, DMS Particulate SO4; used to determine SOx /pSO4 
partitioning 

NH3 Ammonia; used to determine NH3/pNH4 
partitioning 

NH4 Particulate Ammonium; used to determine 
NH3/pNH4 partitioning 

1.33×(NH4 + NIT + SO4) + BCPI + BCPO + 
1.4×(POA1 + POA2) + 2.1×(OPOA1 + OPOA2) 
+ 1.16×(TSOA1 + TSOA2 + TSOA3 + ASOAN 
+ ASOA1 + ASOA2 + ASOA3 + SOAGX + 
INDIOL + SOAMG + SOAIE + SOAME + 
LVOCOA + ISN1OA) + DST1 + 0.38×DST2 + 
1.86×SALA 

Total PM2.5 concentration in the baseline 
simulation; used for model evaluation 

Z0M Momentum roughness length 
U, V, OMEGA Wind fields; used to determine advection and 

mixing coefficients 
PBLH Planetary boundary layer height; used to 

determine mixing coefficients 
HFLUX Surface heat flux; used to determine mixing 

and dry deposition 
USTAR Friction velocity; used to determine mixing and 

dry deposition 
T Temperature; used to calculate chemical 

reaction rates and plume rise 
PS, P Base state pressure plus perturbation pressure; 

used to calculate 
chemical reaction rates and plume rise 

OH, H2O2 Hydroxyl radical and hydrogen peroxide 
concentrations; used to cal- 
culate chemical reaction rates 

FRSNO Fraction of land covered by snow; used to 
calculate dry deposition 

PFLCU, PFLLSAN Mixing ratio of rain; used to calculate wet 
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deposition 
CLOUD Fraction of grid cell covered by clouds; used to 

calculate wet deposition 
QL Cloud mixing ratio; used to calculate aqueous-

phase chemical reaction rates 
AIRDEN Inverse air density; used to calculate mixing 

and to convert between 
mixing ratio and mass concentration 

PARDF, PARDR Downward shortwave and longwave radiative 
flux at ground level; used to calculate dry 
deposition 

 869 
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Supplementary Table 2. Measurement data sources for 2016 used in evaluating Global InMAP 871 
and GEOS-Chem annual-average predictions of pollutant concentrations. The World Health 872 
Organization data includes data from other regulatory sources and monitoring networks globally. 873 
 874 
Region Data Source 
Global PM2.5 World Health Organization 
Europe PM2.5, pNO3, pSO4 European Environment Agency 
Canada PM2.5 National Air Pollution 

Surveillance Program 
United States of America PM2.5, pNO3, pSO4, pNH4 Environmental Protection 

Agency 
India PM2.5 Central Pollution Control Board 
Australia PM2.5 Australian Government State 

of the Environment 
 875 
 876 
 877 
 878 
 879 

 880 

  881 



 

 

47 

 

Supplementary Table 3. Global InMAP and GEOS-Chem performance metrics for total PM2.5 882 
concentrations globally, speciated PM2.5 concentrations globally, and total PM2.5 concentrations 883 
regionally. Bold values do not meet the performance criteria (see Supplementary Text). NMB: 884 
normalized mean bias (%); NME: normalized mean error (%). Pop. wtd.: population-weighted 885 
metrics. 886 

 Global InMAP GEOS-Chem 
 NMB (%)  NME (%) R2 NMB (%) NME (%) R2 
Total PM2.5 -60 63 0.35 -37 41 0.55 
   -  pop. wtd. -61 64 0.56 -37 40 0.75 

pSO4  48 67 0.38  18 37 0.42 
pNO3 -24 50 0.24 -12 53 0.25 
pNH4  35 65 0.24  79 110 0.08 

Africa -41 52 0.22 -42 50 0.47 
   -  pop. wtd. -45 55 0.46 -46 51 0.82 
East Asia -55 58 0.20 -28 32 0.46 
   -  pop. wtd. -55 58 0.18 -28 31 0.80 
South Asia -78 79 0.07 -65 66 0.21 
   -  pop. wtd. -79 80 0.00 -66 66 0.68 
Europe -64 64 0.28 -35 38 0.24 
   -  pop. wtd. -63 63 0.71 -29 34 0.85 
North & Central America -53 55 0.59 -29 35 0.08 
   -  pop. wtd. -55 58 0.45 -34 41 0.91 
Oceana -45 47 0.64 -49 49 0.68 
   -  pop. wtd. -43 46 0.58 -58 58 0.87 
South America -74 79 0.05 -79 79 0.05 
   -  pop. wtd. -76 80 0.07 -73 73 0.87 
       
       
       
  887 
 888 
 889 
 890 
 891 
 892 
 893 
 894 
 895 

 896 


