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ABSTRACT 

The goal of the SAMPL (Statistical Assessment of the Modeling of Proteins and Ligands) 

challenge is to improve the accuracy of current computational models to estimate free energy of 

binding, deprotonation, distribution and other associated physical properties that are useful for 

the design of new pharmaceutical products. New experimental datasets of physicochemical 

properties provide opportunities for prospective evaluation of computational prediction methods. 

Here, aqueous pKa and a range of bi-phasic logD values for a variety of pharmaceutical 

compounds were determined through a streamlined automated process to be utilized in the 

SAMPL8 physical property challenge. The goal of this paper is to provide an in-depth review of 

the experimental methods utilized to create a comprehensive data set for the blind prediction 

challenge.  The significance of this work involves the use of high throughput experimentation 

equipment and instrumentation to produce acid dissociation constants for twenty-three drug 

molecules, as well as distribution coefficients for eleven of those molecules.   

 
 
INTRODUCTION 

Drug discovery and development processes are under increased pressure to deliver medicines 

and vaccines to patients faster than ever. The demand to have robust and efficient clinical 

chemistry, manufacturing, and control (CMC) strategies is the main driving factor in the 

implementation of new approaches which allow for faster experimentation without sacrificing 

the quality of the results. Inspired by biological screening, chemical development of new active 

pharmaceutical ingredients (APIs) has been leveraging parallel experimentation over the past 

few decades to disrupt the approach that scientists adopt to investigate the chemical and 

formulation space. Design of Experiments and advanced statistical tools are essential to design 
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and evaluate results in an efficient manner (1). In fact, the results of these studies generate 

comprehensive datasets across multiple continuous variables and factors which can be fed to 

modeling algorithms (2-5). This provides further insight and knowledge on the effect of multiple 

variables on the target process and can help identify critical operating parameters.  Combining 

High Throughput Experimentation (HTE) with computational modeling may prove to be an 

effective tool for visualizing and reporting results with a fully traceable and consistent 

methodology (6-8).  As these benefits are realized, the reach of HTE has extended into other 

areas of research such as chemical synthesis optimization (4, 9) and conducting drug solubility 

assessments in various media (8, 10-14). 

The determination of API partitioning in aqueous and organic media is one of the key steps in 

developing new synthetic routes and to determine the bioavailability of the drug substance upon 

administration to the patient (15). When investigating new chemical processes, the partitioning 

of impurities and active ingredients is sometimes the costliest unit operation in chemical 

development (16). For this reason, the determination and modeling of this parameter during the 

early phase of drug development can accelerate and simplify the control strategy for process 

quality and robustness. 

Within this context, Statistical Assessment of the Modeling of Proteins and Ligands (SAMPL) is 

a series of blind challenges that bring together scientists on a global scale to improve the 

capability of current computational methods in drug discovery. This collaborative approach aims 

to better facilitate development of the next-generation computational models than can be used as 

predictive tools in drug discovery. Various iterations of SAMPL over the last decade have 

focused on evaluating how well physical and empirical modeling methodologies can predict 

several physicochemical properties of drugs that can be used to aid in drug discovery, such as 
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hydration free energies, acid dissociation, and partition and distribution coefficients (17-27).  

The aim of the SAMPL8 challenge is to assess quantitative accuracies of current methods and 

isolate deficiencies with the advantage of access to a larger database of pharmaceutical 

compounds provided by GlaxoSmithKline, which created a comprehensive data set to be used 

for evaluating new prediction methods.  In this study, research was focused on creating a 

standard data set of solubility-based pKa and pH-dependent distribution coefficients for various 

immiscible solvent combinations by exploiting laboratory automation and HTE.  

Distribution coefficients are values which describe the behavior of solutes in two immiscible 

liquids, and account for the total concentration of ionized and unionized drug in both the aqueous 

and organic phases (28). The distribution coefficient is often used to understand whether a drug 

is more hydrophilic (drawn to aqueous systems) or hydrophobic (drawn to organic or lipophilic 

systems). This in turn, helps predict the movement of the drug through the lipid bi-layer for 

absorption into the bloodstream. The distribution coefficient (logD) is defined as the ratio of the 

sum of concentrations of both charged and neutral species in the organic and aqueous phases. 

This differs from the partition coefficient (logP) since the latter only accounts for the ratio of 

neutral species in organic and aqueous phases. The differences can be seen below in Equation 1 

and Equation 2, describing the two quantities. 

Equation 1.  Partition Coefficient 

𝑙𝑜𝑔𝑃 = 𝑙𝑜𝑔 ቆ
[𝑛𝑒𝑢𝑡𝑟𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑒]

[𝑛𝑒𝑢𝑡𝑟𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑒]
ቇ 

Equation 2.  Distribution Coefficient 

𝑙𝑜𝑔𝐷 =  𝑙𝑜𝑔 ቆ
[𝑖𝑜𝑛𝑖𝑐 + 𝑛𝑒𝑢𝑡𝑟𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑒]

[𝑖𝑜𝑛𝑖𝑐 + 𝑛𝑒𝑢𝑡𝑟𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑒]
ቇ 
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Prior to beginning the process of estimating distribution coefficients, the pKa of each compound 

was first determined using an optimized HTE workflow.  pKa is the acid dissociation constant 

which is used to estimate the pH at which a compound will be optimally dissolved (29).  The pKa 

of a compound affects the fraction of molecules being ionized, which in turn affects the 

solubility of the compound in aqueous media since ionized molecules are more soluble in 

aqueous media than neutral molecules. Using the Henderson-Hasselbalch equation, a relationship 

between the solubility and the pKa can be established: 

𝑆 =  𝑆൫1 + 10(ுିೌ)൯ − − − − − (𝑚𝑜𝑛𝑜𝑝𝑟𝑜𝑡𝑖𝑐 𝑎𝑐𝑖𝑑) 

𝑆 =  𝑆൫1 + 10(ೌିு)൯ − − − − − (𝑚𝑜𝑛𝑜𝑝𝑟𝑜𝑡𝑖𝑐 𝑏𝑎𝑠𝑒) 

Where S0 is the solubility of the neutral compound. Using the above equations, the macroscopic 

pKa can be derived for any compound as a function of the solubility. It also demonstrates that 

solubility is highly dependent on the pH of the solvent. The pKa can hence be used to determine 

the pH of aqueous phase during the computation of distribution coefficients, since it ensures 

solubility of the compound in aqueous phase. 

 

MATERIALS AND METHODS 

Compound Nomenclature:  For simplicity, each compound that is referred to in this manuscript 

is identified by the following nomenclature:  “SAMPL8-X”.  SAMPL refers to the entirety of the 

Statistical Assessment of the Modeling of Proteins and Ligands challenges.  The number “8” 

denotes that this is the eighth SAMPL challenge iteration.  A number follows, in place of the 

“X”, to identify the unique compound, or drug molecule.  As will be described below, there are a 

total of twenty-three compounds analyzed in this investigation.  They are listed in no particular 
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order, and are numbered sequentially from 1 through 23, as “SAMPL8-1” through “SAMPL8-

23”.   

Compound selection:  To assemble the set of compounds for this study, drug molecules 

registered by GlaxoSmithKline were identified as those associated with a compound collection 

enhancement project code (i.e., purchasable compounds) but not with an active program code.  

An additional requirement was that a minimum of 100 milligrams of solid was available in the 

compound stores. From this set of ~77,000 compounds, 88 were selected which contained two 

widely separated polar groups (separated by greater than three bonds), scaffolds often found in 

screening hits, and/or the presence of sulfonamide or sulfone (due to a lack of public ΔGtransfer 

data for such compounds (30)). Three of the selected compounds were matched molecular sets 

(SAMPL8-7, 8-9, and 8-17), with the intention of determining if there is a measurable role that 

small changes on a given scaffold would have on the experimental data. The entire list of 

compounds selected had a molecular weight ranging from 165 to 403 Dalton (Table 4) and zero 

to six rotatable bonds. Of these 88 compounds, some failed with visually observable degradation, 

while many others, which did progress to HTE testing, failed to exhibit a measurable pKa.  

Further to that, additional molecules were not progressed because they would not dissolve in any 

of the solvents selected for this study. The final list of 23 compounds is shown below (Figure 1). 
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SAMPL8-1 

 
SAMPL8-2 

 
SAMPL8-3 

 
SAMPL8-4 

 
SAMPL8-5 

 
SAMPL8-6 

 
SAMPL8-7 

 
SAMPL8-8 

 
SAMPL8-9  SAMPL8-10 

 
SAMPL8-11 

 
SAMPL8-12 

 
SAMPL8-13 

 
SAMPL8-14 

 
SAMPL8-15 

 
SAMPL8-16 

 
SAMPL8-17 

 
SAMPL8-18 

 
SAMPL8-19 

 
SAMPL8-20 

 
SAMPL8-21 

 
SAMPL8-22 

 
SAMPL8-23 

 
 

Figure 1.  Molecules Used in the SAMP8 pKa Challenge. 
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Buffer systems:  For the pH-solubility studies, Britton-Robinson buffers were used (Ricca 

Chemical Company, Arlington, TX, USA). The buffers, listed below in Table 1, have an ionic 

strength of 0.1 M. 

Table 1.  Britton-Robinson Buffers 
pH  Catalog #  pH  Catalog #  

1.98  1154.20-16  7.96  1154.80-16  
2.87  1154.29-16  8.95  1154.90-16  
4.10  1154.41-16  9.91  1154.99-16  
5.02  1154.50-16  10.88  1155.09-16  
6.09  1154.61-16  11.96  1155.20-16  
7.00  1154.70-16      

 

Solvent combination selection:  By collecting logD measurements of small molecules in bi-

phasic systems with a variety of organic solvents, the aim was to develop an opportunity to 

evaluate the performance of computational techniques for modeling solvation effects in different 

solvent environments.  We reasoned that a common solute set measured in different solvent pairs 

will be helpful to understand which solvent systems can be modeled accurately by current 

computational methods, and which solvents may need more thorough selection to improve the 

experimental design approach. 

Octanol-water is the most common bi-phasic system for logD measurements, and it has been 

used as a lipophilicity metric that predicts membrane partitioning of pharmaceutical compounds 

(31). The octanol phase is known to be challenging for physical modeling techniques due to its 

conformational flexibility and tendency to form a heterogenous solvent phase with hydrophobic 

pockets (composed of lipophilic octyl tails) and hydrophilic pockets (composed of polar head 

groups and water molecules) (32, 33). In the past, simpler solvents with more restricted 

conformational ensembles such as cyclohexane were preferred as a modeling test system with 
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intermediate complexity to see the underlying capability of computational techniques when 

conformational sampling problem of the solvent is largely mitigated. The SAMPL5 cyclohexane-

water logD prediction challenge, and the SAMPL6 octanol-water logP prediction challenge for 

physical modeling techniques, resulted in very different prediction accuracies.  One examined 

that the SAMPL6 octanol-water logP predictions were more accurate in general (27, 34). 

However, due to differences in predicted values (logP versus pH-dependent logD that depends 

on pKa predictions) and the number and identity of compounds in datasets, it was not possible to 

investigate where these performance differences stem from. This motivated the desire to collect a 

logD dataset of a common set of solutes with a variety of organic solvents-water pairs which will 

enable investigation of how well models can capture solvation in different organic solvents and 

how the chemical properties of organic solvents can impact the accuracy of logD predictions. 

In the partitioning studies, seven organic solvents were selected.  These solvents are immiscible 

with water to ensure that bi-phasic partitioning conditions could be met: octanol (OCTL), 

cyclohexane (CYHL), ethyl acetate (ETAC), heptane (HP), methyl ethyl ketone (MEK), tert 

butyl methyl ether (TBME) and dimethylformamide (DMF). Comparison of cyclohexane-water 

vs. heptane-water logD can show the effect of conformational flexibility (28). We can learn 

about how modeling accuracy is affected by homogeneous and heterogeneous organic solvent 

phase by comparing the prediction performance for cyclohexane –water and heptane-water logD 

values to octanol-water logD values. Comparative evaluation of ethyl acetate, MEK, and TBME-

water logD predictions can lead to conclusions about how models handle solvents with different 

polarity and hydrogen bond acceptor groups. 

The goal was to employ an automated approach to measure the pKa as well as the distribution 

coefficient as visualized by the flowchart in Figure 2. Customized experimentation was avoided 
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in favor of developing standardized workflows due to the large number of compounds and 

solvent combinations that were selected for testing. As will be described in the section below, 

there were a substantial amount of experimental data generated in support of this investigation.  

For context, this publication provides details on the methods and analysis of more than 250 data 

points for the pH-solubility (pKa) portion, and slightly less than 1,000 data points for the logD 

portion.   

 

Figure 2.  Overview of the experimental steps involved in the computation of the distribution 
coefficient. 

 

Analytical Method Development: Solubility data used to obtain the acid dissociation and 

distribution coefficient data for the compounds was acquired using High Performance Liquid 

Chromatography (HPLC) analytical instrument. Hence the first phase involved development of 

analytical methods for HPLC.  An Agilent 1290 HPLC instrument (Agilent Technologies, Santa 

Clara, CA, USA) was used to quantify the amount of solute present in different solutions.  This 

was used in the measurement of the analyte in the different phases for distribution coefficient 

computation and for calculating the experimental pKa as well. A Waters X-Select Charge 

Surface Hybrid (CSH) C18, 2.1 mm x 30 mm, 5μm column was used in the HPLC in a gradient 

elution mode.  Standard solutions were prepared for each compound using a backing solvent 

consisting of 62.5% acetonitrile, 25% tetrahydrofuran, and 12.5% HPLC-grade water v/v to a 

Method Development 
on HPLC 

Generation of 
Standard Curve for 

Solubility 

Aqueous pH-Solubility 
Experiments 

Determine pKa from 
pH-Solubility Curves 

Distribution Coefficient 
Experiments 

Determine Distribution 
Coefficient for a 

variety of solvent 
combinations 
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target of 1 mg/mL concentration. Serial dilution was performed for the following calibration 

standards with the goal of having a total of five standards per curve at 1.0 mg/mL, 0.5 mg/mL or 

0.3 mg/mL, 0.1 mg/mL, 0.01 mg/mL, and 0.001 mg/mL.   

Chromatographic data is analyzed via Agilent ChemStation software with the offline data 

analysis version.  The Unchained Labs CM3 platform Library Studio software communicates 

directly to the Agilent HPLC and prepares the chromatography plate sequence based on the 

library design.  The HPLC sequence is initiated by an instruction from Unchained Labs 

Automation Studio software.  Details of the chromatography data from the entire sequence, such 

as the retention time, peak height, integrated peak area, and the corresponding drug concentration 

are stored in ChemStation software where it can be further curated by the analyst.   

pKa Determination: The pKa was calculated by measuring the concentration of the compounds 

in Britton-Robinson buffers of various pH (2-12). 1 mg of drug substance was added to 500 µL 

of buffer, with the overall workflow shown in Figure 3. The experiments were primarily carried 

out in a high throughput manner on the Unchained Labs Freeslate CM3 robotic platform 

(Unchained Labs, Pleasanton, CA, USA) in high throughput microtiter plates (MTP).   
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Figure 3.  Flow chart of the different steps involved in estimation of experimental pKas of 
compounds. 

The 96-well MTP plates contain 1 mL vials according to the layout in Figure 4.  A target of 1 mg 

of drug substance was weighed into 1 mL 96-well plate vials using a Mettler-Toledo Quantos 

QX96 automated powder dispensing platform (Mettler-Toledo GmbH, Greifensee, Switzerland).  

One Teflon-coated flea stir-bar was added to each vial to facilitate mixing of the constituents.  

500 µL of buffer media was then added to each individual vial using a Rainin multichannel 

pipette, ensuring that the drug substance was in a saturated state before continuation.  The vials 

were capped, and the entire 96-well plate was placed on an Unchained Labs Freeslate CM3 

platform and stirred for 24 hours at 500 RPM with temperature controlled at 22 °C.  At the 

conclusion of stirring, the magnetic stir bars were removed from the vials and the supernatant 

from the samples were filtered using the Hamilton Microlab NIMBUS liquid handler (The 

Hamilton Company, Boston, MA, USA) through a Millipore 0.45-micron hydrophilic filter plate 

by way of plate centrifugation. A Thermo Lynx 4000 plate centrifuge was set for 5 minutes at 

3500 RPM under controlled temperature conditions of 22 °C.  The filtrate was diluted from the 

source plate using a Hamilton NIMBUS Microlab pipetting robot to prepare dilutions at 10X and 
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100X with (50:50 v/v) acetonitrile/water mixture as a diluent. An appropriate dilution factor was 

applied to ensure that the final concentration of the sample was within the linear range of the 

calibration curves collected, between 0.001 mg/mL to 1 mg/mL. At this point, the samples were 

ready for chromatography analysis on an Agilent 1290 HPLC.  At the conclusion of each HPLC 

run, the plates were returned to the Freeslate CM3 to measure the final pH of the solutions for 

confirmation.   

 

Figure 4.  Typical MTP plate design for automated pH-Solubility experiments. Different colors 
along the columns represent the pH2-12 Britton-Robinson buffers. 6 different compounds were 
added to the vials, one per row. 

 

pH-solubility was plotted using Synergy Software's Kaleidagraph data analysis application 

(Synergy Software, Reading PA) based on the chromatography results, and a curve was fitted for 

each compound using the Henderson-Hasselbalch solubility equations (35, 36). The approach 
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used for modeling the pKa was originally established by Jagannadham and Sanjeev, and later 

confirmed by Bahr et al, whereby the final pH of the solution is plotted against the log of the 

concentration, and the resulting plot is modeled against the solubility equations provided in 

Table 2 (13, 37). Each curve was unique to the nature of the compound, for example there were 

unique equations for acids, bases and ampholytes as well as for mono- and di-protic acids and 

bases. The model curve for the pKa determination, chosen by the software, was based on the 

compound’s acidic or basic functional groups.  The curve fitting equations used to solve the 

optimization and determine the pKa for each drug molecule are shown in Table 2. 

Table 2: The table below shows the model curves used to fit the pH-solubility data and determine 
the experimental pKas for the compounds. It should be noted that a0, b0, c0 represent the 
optimization constants being solved. These are pKa1, pKa2 and pS0. 

Type of Model 
Curve 

Equation 

Monoprotic Acid 𝑤𝑒𝑎𝑘𝑎𝑐𝑖𝑑1(𝑎, 𝑏) = log(1 + 10௫ିೌభ) − 𝑝𝑆 

Diprotic Acid 𝑤𝑒𝑎𝑘𝑎𝑐𝑖𝑑2(𝑎, 𝑏, 𝑐) = log(1 + 10௫ିೌభ + 10ଶ௫ିೌభିೌమ) − 𝑝𝑆 

Monoprotic Base 𝑤𝑒𝑎𝑘𝑏𝑎𝑠𝑒1(𝑎, 𝑏) = log(1 + 10ೌభି௫) − 𝑝𝑆 

Diprotic Base 𝑤𝑒𝑎𝑘𝑏𝑎𝑠𝑒2(𝑎, 𝑏, 𝑐) = log(1 + 10ೌభି௫ + 10ೌభାೌమିଶ௫) − 𝑝𝑆 

Ampholyte 𝑎𝑚𝑝ℎ𝑜𝑙𝑖𝑡𝑒1(𝑎, 𝑏, 𝑐) = log(1 + 10ೌభି௫ + 10ೌమି௫) − 𝑝𝑆 

 
 

The five equations listed in Table 2 are the Kaleidagraph software iterations of the Henderson-

Hasselbalch solubility equation. The constants correspond to different ionization states of the 

compound (pKa values), while the pS0 term represents the solubility of neutral species. 
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Distribution Coefficient Protocol: Once the experimental pKa was determined for each 

molecule, automated experiments to measure the distribution coefficient could then be 

progressed as demonstrated in the flowchart illustrated in Figure 5.  

 

Figure 5.  Flow chart of the different steps involved in determination of experimental distribution 
coefficients of compounds. 

 

The diagram shown in Figure 6 illustrates the experimental design on the HTE platform.  Each 

organic solution is placed on the Freeslate CM3 deck in 20 mL vials on an 8-well plate, along 

with dispensing heads for each of the drug substances (labeled “API”).  Since a greater volume 

of aqueous buffer is used across all samples in this design, a larger 125 mL glass container holds 

the aqueous medium.   
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Figure 6.  Depiction of a typical automated distribution coefficient design. Refer to the list of 
abbreviations for the names of the solvents used in the experiment. The 8-well plates contain 20 
mL vials while the 2-well plate on the bottom left contains 125 mL vials. The solvents and the 
compounds are added to 24-well plates on the top containing 8 mL vials.  Extracted samples are 
transferred into a 96-well plate containing 1 mL vials.   

As previously mentioned, seven different solvent combinations were selected. The Mettler 

Toledo Quantos was used to dispense powder into 8 mL vials which were assembled onto a 24-

well plate. After each compound was dispensed into the vials, the organic and the aqueous 

phases were added respectively.  

3 mL of each solvent phase was added to the vials containing compounds. The samples were 

vortexed for 30 minutes and then allowed to settle for 60 minutes. Once the solutions reached 

equilibrium, they were checked for any particulate in both the top and bottom phases to ensure 

that the drug was in solution.  If particulate was still observed in the phases, the vials would be 

vortexed for an additional 30 minutes, then allowed to reach equilibrium. 500 µL of solution was 

drawn from the upper and lower phases of the 8 mL vials (Figure 7) by way of a 22 gauge 

syringe needle attached to the Unchained Labs CM3 platform.  This narrow-gauge needle is 
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beneficial to reducing potential error due to the low surface area of the exposed needle, the 

positive air gap inside the needle capillary, and the presence of a septum on the vial cap which 

wipes away any errant solvent when the needle is withdrawn from the vial.  The aliquots of 

solution were then individually transferred into separate 1 mL vials on the 96-well plate for 

HPLC analysis using the Agilent 1290 auto-sampler. The sampling height was optimized so that 

the needle withdraws the liquid at the mid-height position for each of the phases to avoid cross 

contamination due to liquid eddies that may potentially form due to the sampling needle creating 

turbulence at the solution interface. This ensured consistent and reproducible sampling 

conditions for every sample analyzed. 

 

Figure 7. Image of an 8 mL vial showing the organic (top) and aqueous (bottom) phases. 

 

The aqueous phase used in the above experiments involved the use of Britton-Robinson buffers. 

The pH of the buffers used in the solution mixture was selected based on the pKa of the 

compound. This approach was necessary due to the low aqueous solubility of the drug 

substances in their neutral state, hence it was necessary to determine logD at a pH that the 

molecules were significantly ionized in the aqueous state to ensure total dissolution of the drug 

within the bi-phasic solvents.  The samples were analyzed using the HPLC analytical instrument, 
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which included a needle-wash for the HPLC injection needle to eliminate cross-contamination, 

and the distribution coefficient was computed using the equation below (Equation 3): 

 

Equation 3. Distribution Coefficient (logD) 

𝑙𝑜𝑔𝐷 = 𝑙𝑜𝑔ଵ ൬
𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑝ℎ𝑎𝑠𝑒

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑎𝑞𝑢𝑒𝑜𝑢𝑠 𝑝ℎ𝑎𝑠𝑒
൰ 

  

In the case of cyclohexane and dimethylformamide, the cyclohexane was taken as the top phase 

and the dimethylformamide was taken as the bottom phase.  The experimentally computed pKa 

and distribution coefficient for each compound was compared to predicted pKa and distribution 

coefficient that were found using Schrodinger software package, LiveDesign. 

 
RESULTS 
As described in the Methods section, final pH was measured for each aqueous sample and was 

plotted against the LogC (concentration).  This data was fitted to the Henderson-Hasselbalch 

equation to determine the pKa.  An example is shown in Figure 8.  The experimental pKa for the 

example of SAMPL8-7 was calculated to be 6.63 (R2= 0.997).  
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Figure 8.  Example table listing the data points obtained experimentally using pH-solubility 
experiments for a single compound (SAMPL8-7) and a plot of the data fitted with a monoprotic 
base version of the Henderson-Hasselbalch Equation to obtain the pKa of the compound. 

 

Although the pH range of viability for modeling the pKa, based on the Henderson-Hasselbalch 

equation, is pH 5-9 (36), much of our experimental data provided sufficient information to fit 

calculated pKa values, with a high degree of confidence, that were outside of that range.  For 

each molecule studied in this investigation, ChemAxon JChem software with the pKa Plugin 

(ChemAxon, Budapest, Hungary) was used to predict pKa values based on the structure and 

functional groups of each molecule.  These predicted values are excellent starting points, but 

since they are not based on experimentally measured values, it is important to confirm the acid 

dissociation experimentally.  Reijenga et al. investigated several methods historically used for 

pKa determination, and concluded that HPLC analysis is a strongly favorable approach with 

good precision, but is limited at the far ends of the lower and upper pH scale (38).  The use of 

HPLC instrumentation is reported, also by Reijenga, as a time-consuming experimental approach 



20 
 

that is only effective if the analyte has a chromophore.  The novelty of this work is in the use of 

automation to streamline the data collection process.  However, due to a limited amount of drug 

substance available for these studies, repeated replicate samples could not be prepared, which we 

acknowledge could be a risk for uncertainty in the reported pKa values.   Settimo et al. reported 

that pKa predictors may provide a degree of inaccuracy due to a significant molecular weight 

difference between the generic organic molecules used in modeling software and the larger and 

more complex molecules typically found in drug research (39).  In some cases of the molecules 

investigated, the experimentally determined pKa did not match the predicted values, and this was 

likely due to pKa values that were at the extreme ends of the upper or lower pH scale and 

therefore could not be experimentally measured.  An example of this is SAMPL8-13, which had 

a predicted pKa of 13.86, which could not be confirmed experimentally.  This same approach 

was used for all twenty-three compounds, with the results provided in Table 4.   

There were no replicate measurements performed for pKa estimation, hence it is difficult to 

estimate any uncertainty associated with the pKa values obtained. However, a robustness study 

was performed with the distribution coefficient samples as mentioned above in the methods.  

This accounted for the error and variability associated with any measurement performed by the 

HPLC instrument and hence can be associated with both the pKa measurements as well as the 

distribution coefficient measurements. As previously stated, limits on the amount of available 

drug substance made it not possible to prepare replicate samples for testing, as might commonly 

be expected of high throughput experimentation.  Table 3 below lists the mean absolute 

deviation (MAD) (Equation 4) and the standard mean error (Equation 5) for the three compounds 

that were subjected to replicate HPLC injections to ensure robustness in the chromatography 

instrumentation. 
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Equation 4.  Mean Absolute Deviation. 

𝑀𝐴𝐷 =  
∑|𝑋 − 𝜇|

𝑛
 

 
 
Equation 5.  Standard Mean Error. 

𝑒𝑟𝑟𝑜𝑟 =  
ఙ

√
     

 
 
Where 𝜎 is the standard deviation, n is the total number of samples, X is an individual sample 
and 𝜇 is the mean. 
 

Table 3. Results of Robustness Study performed for three compounds (n= 3 replicates for each 
compound). 

Compound Mean absolute deviation Standard mean error 
SAMPL8-16 0.01 0.05 
SAMPL8-17 0.01 0.07 
SAMPL8-14 0.01 0.07 

 
 
Given the lack of opportunity to produce replicate samples over the course of this invesigation, 

the authors are confident that every opportunity was taken to ensure accurate sample preparation 

and data collection. In pre-candidate selection experimental methodology at GSK, it is 

commonly accepted to perform high throughput studies without replicates when access to drug 

substance is limited.  Rather, the experimental approach may typically sacrifice statistical 

significance in favor of generating volumes of data over a larger span of experimental design.  

That was the same approach taken in this investigation, where the collaborators agreed to focus 

on as many bi-phasic solvent combinations as possible.  One of the purposes of this publication 

is report on the data that was generated for the SAMPL8 challenge, and not necessarily to 

introduce a new assay.   
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As described in the Compound Selection section in Materials in Methods, twenty-three 

compounds were ultimately investigated in the work.  Where it was possible to calculate acid 

dissociation, the results are provided in Table 4 along with a standardized compound identifier 

(beginning with “SAMPL8-X”), the molecular scaffolding structure, molecular weight, and the 

pH range tested for the drug substance.   

 
Table 4. Compound List with Experimentally Determined pKa Values. 

Compound Scaffold MW 
pH 

Range 
Tested 

Measured 
pKa1, 

Measured 
pKa2 

Confidence 
(R2) 

SAMPL8-1 anthranilate 281.2 2-9 2.54 5.01 0.978 
SAMPL8-2 phenyl 228.3 2-7 4.41 - 0.999 
SAMPL8-3 furosemide 330.7 2-8 4.00 - 0.931 
SAMPL8-4 anthranilate 293.7 2-11 5.77 - 0.948 
SAMPL8-5 anthranilate 296.1 2-8 3.92 - 0.993 
SAMPL8-6 phenyl 281.8 2-8 4.17 - 0.994 
SAMPL8-7 benzimidazole 326.2 3-12 6.63 - 0.997 
SAMPL8-8 benzimidazole 244.2 2-10 2.78 - 0.952 
SAMPL8-9 benzimidazole 324.2 4-12 6.08 - 0.968 

SAMPL8-10 phenyl 403.9 4-12 7.71 - 0.985 
SAMPL8-11 undetermined 305.4 2-12 - - n/a 

SAMPL8-12 
pyrimdine-

diamino 
284.4 3-12 6.98 - 0.995 

SAMPL8-13 benzimidazole 476 2-12 - - n/a 

SAMPL8-14 
pyrimdine-

diamino 
286.4 5-11 7.27 - 0.990 

SAMPL8-15 quinazoline 269.7 2-11 2.54 - 0.993 
SAMPL8-16 benzimidazole 247.3 2-9 5.10 - 0.967 
SAMPL8-17 benzimidazole 340.2 3-12 6.58 - 0.990 
SAMPL8-18 quinazoline 315.8 2-12 2.72 - 0.910 
SAMPL8-19 benzimidazole 394.5 2-12 4.93 6.99 0.986 

SAMPL8-20 
pyrazolo[3 4-
d]pyrimidine 

244.7 2-12 2.44 11.44 0.918 

SAMPL8-21 
pyrimdine-

diamino 
306.3 2-12 5.38 - 0.930 

SAMPL8-22 quinazoline 239.7 2-12 3.36 - 0.926 
SAMPL8-23 benzothiazole 165.2 2-12 2.65 9.02 0.992 

Note: SAMPL8-11 and SAMPL8-13 were not progressed to partitioning studies due to a 
lack of measurable pKa.   
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From the twenty-three molecules that were tested for pH-solubility to determine pKa, automated 

logD experiments were successfully conducted for eleven molecules.  The eleven that were 

successful are presented in Table 5 and are composed of four weakly acidic compounds 

(SAMPL8-1, 3, 5, 6) and seven weakly basic compounds (SAMPL8-7, 9, 10, 12, 14, 16, 17).  

For the weak acids, Britton-Robinson pH 8 buffer (identified in the table as BR-8) was selected 

for the aqueous phase to ensure that the drug was in a protonated state, whereby the drug would 

be in a concentration below saturation for proper partitioning.  Similarly, for the weak bases, 

Britton-Robinson pH 3 buffer (identified as BR-3) was selected for the aqueous phase to ensure 

the drug was de-protonated for partitioning with the organic phase.  In each experiment, the final 

pH of the aqueous phase was measured, and is included in Table 5 where appropriate.  In many 

cases, either the drug did not adequately dissolve in the organic phase, or the measured 

concentration was below the limit of quantification. In those instances, logD cannot be calculated 

from an indeterminate fraction, and is therefore represented by a “-“.   
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Table 5. Compound List with Experimentally Determined logD Values. 

Compound Measure 
OCTL/ 
BR-8 

CYHL/ 
BR-8 

ETAC/ 
BR-8 

HP/ 
BR-8 

MEK/ 
BR-8 

TBME/ 
BR-8 

CYHL/ 
DMF 

SAMPL8-1 
logD 0.8 - 0.3 - -0.2 0.1 -0.7 
pH 7.91 7.88 7.74 7.91 8.10 7.99 - 

SAMPL8-3 
logD - - -0.8 - -0.6 - - 
pH 7.98 7.97 7.82 7.97 8.19 8.07 - 

SAMPL8-5 
logD -0.5 -1.1 0.1 -1.2 -0.4 - - 
pH 8.01 8.02 7.81 8.02 8.20 8.09 - 

SAMPL8-6 
logD -0.4 - -0.1 - -0.5 -0.2 - 
pH 7.97 7.96 7.79 7.97 8.15 8.03  

Compound Measure 
OCTL/ 
BR-3 

CYHL/ 
BR-3 

ETAC/ 
BR-3 

HP/ 
BR-3 

MEK/ 
BR-3 

TBME/ 
BR-3 

CYHL/ 
DMF 

SAMPL8-7 
logD -1.3 - - - -0.4 - - 
pH 3.1 3.1 3.2 3.1 3.5 3.1 - 

SAMPL8-9 
logD -0.1 - -0.8 - 0.4 - - 
pH 3.1 3.1 3.2 3.1 3.7 3.1 - 

SAMPL8-10 
logD -0.6 - 0.1 -1.0 0.0 -0.9 - 
pH 3.09 3.01 3.13 3.04 3.39 3.08 - 

SAMPL8-12 
logD -0.7 - -1.4 - -0.4 - - 
pH 3.1 3.05 3.35 3.07 3.42 3.12 - 

SAMPL8-14 
logD -1.0 - -0.8 - 0.1 - - 
pH 3.07 3.05 3.26 3.05 3.48 3.13 - 

SAMPL8-16 
logD -0.4 - -0.5 -1.0 -0.3 -1.2 -1.3 
pH 3.13 3.10 3.29 3.11 3.46 3.18 - 

SAMPL8-17 
logD - - -1.4 - -0.8 - - 
pH 3.17 3.09 3.21 3.10 3.35 3.16 - 

Note:  “-“ indicates that the drug did not dissolve in the organic phase.   
 

DISCUSSION 

Several drug substances initially selected for this study failed to progress through the screening 

process.  This was mainly due to a few factors; the first being that there were multiple 

compounds for which a calibration curve for the analytical HPLC method could not be 

established. This was caused by a lack of solubility of these compounds in the solvent used for 

preparation of standards which meant that a standard curve for measurement of solubility of 
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these compounds could not be applied. An often standardized solvent for dissolving poorly-

soluble molecules is dimethyl sulfoxide (DMSO); considered a universal solvent because it can 

dissolve both polar and non-polar molecules (40).  However, since the melting point of pure 

DMSO is 19°C, it can pose a risk when running high throughput experiments near room 

temperature, as was the case for the work presented here.  As a result, the HTE lab at GSK 

standardizes on a common “backing solvent” consisting of 62.5% acetonitrile, 25% 

tetrahydrofuran, and 12.5% HPLC-grade water v/v for all high-throughput experiments on the 

Unchained Labs CM3 platforms.  This backing solvent serves multiple purposes in the HTE lab, 

and is the primary diluent of choice.  The use of this backing solvent has proven beneficial in 

nearly all applications in GSK’s HTE lab, with few exceptions.  Using a DMSO-based solution 

in place of backing solvent would not likely have improved the outcome, since the few 

compounds that were excluded due to low solubility were not soluble at the lower concentrations 

of 0.001 mg/mL.  One of the goals of this research was to develop a standardized automated 

approach to measuring the ionization constant and distribution coefficients of a large number of 

molecules.  The utility of the backing solvent selected for this work extends beyond the 

experiments described here.  This solvent mixture is employed in a variety of applications 

throughout the lab, and is used as the primary diluent for the majority of our experiments, by 

default.  For this reason, we elected not to complicate any aspects of the experimental design by 

using customized solutions for each individual molecule.   

The second reason that some of the molecules from the initial group were rejected was due an 

inability to estimate the pKa of the compound due to a lack of trends shown in their respective 

pH-solubility curves. In other words, across the pH 2-12 range, an ionization state was not 

observed, indicating that the actual pKa was either outside of the test limits, or that the molecule 
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was indeed a non-ionizable species.  The third possible reason for rejecting a drug substance was 

due to the inability of the compound to dissolve completely in either phase of a bi-phasic 

mixture. Hence all three of the above-mentioned factors are related to poor solubility of certain 

compounds under specific conditions, and cause for removal from the study. 

High Throughput pH-solubility Assessment  

Accurate measurement of aqueous solubility across a range of pH provides an ideal starting point 

for ultimately determining the distribution coefficient of a drug substance.  Without first 

knowing the pH-solubility profile, the appropriate pH of the aqueous phase for the 

aqueous/organic bi-phasic mixture would be in question.  The research presented here initially 

focuses on the development of an automated approach to determine pH-solubility profiles for a 

variety of drug substances with a wide range of physicochemical properties such as molecular 

weight, scaffolding, and tendencies for protonation/deprotonation.  The experimental designs 

leveraged several HTE robotic platforms to enable the development of aqueous solubility 

profiles.  Because of the efficiency of these automated platforms, the pH-solubility studies were 

conducted with minimal demand on resources for the investigators, so it was determined early in 

the project to include these studies as part of the experimental approach.  At the onset of this 

portion of work, the investigators assumed that specific pH buffers would be required for each 

drug molecule, with the goal of being at least 3 pH away from the measured pKa in order to 

ensure that the molecule was fully dissolved in the aqueous phase.  However, after the data was 

collected and analyzed, it was recognized that the distribution coefficient experiments could 

standardize on either pH 3 or pH 8 buffers as the aqueous phase, depending on the ionic state of 

each molecule.    
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Ultimately, twenty-three compounds were successfully measured for pH-solubility using an HTE 

approach.  These included weak acids, weak bases, amphoteric, and (apparently) non-ionizable 

molecules.  The primary goal was to efficiently conduct the experiments with a simplified and 

standardized design, while also ensuring accurate data capture for the range of Britton-Robinson 

buffers selected.  A primary limitation to consider was a lack of abundant drug substance 

availability, so it was determined that experiments which utilized a 96-well plate were ideal for 

this first portion of the study.  The limitation of available drug substance also prevented any 

possibility of running these experiments with replicate samples.  Following sample preparation, 

the vials were mixed for 24 hours at room temperature to ensure that full drug saturation was 

achieved.  A standardized analytical HPLC method was developed with the intent of using the 

same primary method for all drug substances investigated in this study, with the exception of 

establishing the appropriate wavelength and retention time for each drug substance.  The final 

pH of each sample was collected from the multi-tip pH probe configuration on the Unchained 

Labs CM3 platform.  This automated pH measurement process includes a water bath followed by 

blow-drying each pH probe in between measurements.  It is possible that some error is 

introduced into the final pH reading, if there remains a small droplet of water on the pH probe 

when it is being inserted into the 500 µL volume sample.  This is likely not to be a considerable 

introduction of possible error, but it needs to be included as a possible source if one exists.   

This experimental approach seemed ideally suited for pKa determination.  With solubility data 

that was collected, ionization constants were computed using Kaleidagraph software (37).  Once 

established, the ionization constants were then used to confirm at which pH the appropriate 

aqueous buffer would be selected for the subsequent distribution coefficient experiments.  

Predicted pKa values are provided by ChemAxon/JChem, and are not based on experimental 
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data, but rather from models that calculate all possible ionization constants based on the 

molecular structure.  Three of the molecules from this set of 23 were selected because of their 

commonality as matched sets (SAMPL8-7, 8-9, and 8-17).  These three weak bases are all 

benzimidazole scaffolds with molecular weights between 324.2 and 340.2 dalton.  One reason 

for including these three was to ascertain how closely their JChem predicted pKa values align 

with the experimentally determined pKa values.  The JChem predicted pKa values for these three 

molecules were close together, and averaged 7.56.  The experimentally determined pKa’s for 

these three molecules, as reported in Table 4, average 6.43.  The experimentally determined 

pKa’s were 85% less than the predicted values, and provide support to the decision for 

measuring the ionization constants rather than relying exclusively on the JChem predicted 

values.  The original intent was to select individual pH buffers as the aqueous media depending 

on the experimentally determined pKa. However, after evaluation of the complete data set, it was 

concluded that the distribution coefficient experiments could be conducted with standardized pH 

buffers in groupings.  This resulted in running entire sets of distribution coefficient experiments 

with either pH 3 or pH 8 buffers.  This significantly simplified the experimental process, and 

conveniently eliminated any additional complexity in the automated design.    

Determination of logD Values 

The acid dissociation and distribution coefficient measurements prepared for this study were 

entirely solubility-based. Solubility workflows are easily adaptable to the current automated 

platforms available for sample preparation and high throughput chromatography for determining 

drug concentrations in a variety of solutions.  Utilizing an HTE approach ensured that a 

multitude of drug substances and solvent systems could be analyzed in a rapid manner, with 

limited availability of raw materials.  The conventional shake-flask method continues to remain 
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as the gold standard for traditional distribution coefficient measurements, despite the high drug 

substance demand for experiments involving large volumes of solvents (41, 42).  The automated 

method presented here, for determining logD, has similarities to the shake-flask method yet was 

performed at a significantly lower volume.  However, instead of manually shaking the flask, the 

sample vials were vortexed for no less than 30 minutes, and then allowed to reach equilibrium. 

The traditional shake-flask approach for partition coefficient studies that use octanol and water 

may sometimes involve pre-saturation of the biphasic systems for 72 hours, primarily because 

water is 20% soluble in octanol (43).  However, due to the high-throughput nature of the 

experiments presented here and the number of solvent mixtures investigated, our experiments did 

not pre-saturate all of the solvent combinations. It is possible that the lack of pre-saturated 

solvents may introduce error in the solubility readings, which should be considered when 

performing final data analysis.  Since traditional experiments typically focus on octanol/water, 

the benefits of the approach presented in this manuscript include the ability to perform 

experiments at a smaller scale using glass vials to explore a multitude of solvent combinations, 

and to allow the SAMPL participants an opportunity to determine if the range of solvent 

combinations are beneficial to data science and modeling.   

The automated approach used here overcomes certain limitations by reducing the time required 

to prepare and execute the experiment while also providing for an opportunity to create the 

volume of samples per compound that were desired for this iteration of the SAMPL challenge.  

This approach extended into the chromatography analysis by way of an autosampler and a high-

throughput sequence on the HPLC instrumentation for data collection.  Because the experimental 

design was automated, the goal was to prepare samples that ensured the solute would go 

completely into solution, thereby avoiding the need for determining mass balance.   
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The pH of the aqueous phase of bi-phasic mixture was selected according to the pKa of the 

compound being used. This was done to ensure that the entirety of solid drug substance would go 

into solution for the analysis of the bi-phasic mixture, to provide for the computation of the 

distribution coefficient. Typically, logD measurement experiments are performed at a specific 

pH of interest, such as physiological pH. In this study which aims to create a benchmark dataset 

for evaluating computational predictions, there wasn’t a need to focus on a particular pH. We 

had the freedom to select any pH that would make the logD measurements easier and more 

accurate by ensuring adequate aqueous solubility. If any solid particles were to be found in either 

phase, it could hinder the chromatography analysis which may contribute to a significant error 

when computing logD. 

 

Limits of Detection 

As can be observed in Table 5, there are several instances of data for logD that could not be 

computed since the logarithm of zero is undefined.   This result is determined by the lowest 

concentration that could be detected on the HPLC instrument.  Chromatography instruments are 

very precise and can calculate an analyte to a high degree of accuracy.  However, there are limits 

of detection (LoD) based on the inherent molar absorptivity of the compounds and the dynamic 

range of the photo-diode array detector used to analyze the compounds. Additionally, the 

precision of the balances and pipettes that are used for sample preparation have a role in 

assessing the LoD. In the experiments presented here, it was determined that any 

chromatography data that presented an area below 5 milli-absorbance units (mAU), which 

equates to concentrations at or below 5 µg/mL, could not justifiably be provided.   

Experimental Design Considerations 
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Given the large number of compounds and experiments that were investigated, standardization of 

the experimental design was very beneficial wherever possible, given that one of the goals was to 

utilize high-throughput instrumentation.  While this approach enabled experiments to be 

conducted with a high degree of efficiency, and produced accurate data for analysis, it was noted 

during the investigation that improvements could be made for future work.  The inclusion of 

replicates for future experiments would be beneficial, since this could establish standard errors 

associated with either human error or with sample preparation and would allow for statistical 

data analysis. Further improvements to the experimental design could be accommodated using 

larger vials to possibly improve dissolution of the samples and utilizing light scattering as a 

means of monitoring the presence of undissolved particles. To ensure full dissolution of the drug 

particles in the bi-phasic sample vials, the vials could possibly be mixed for a longer time period, 

and analyzed at various timepoints, to ensure equilibrium is reached. 

Uncertainty Analysis 

From the robustness study that was performed, it is evident that Mean Absolute Deviation and 

Standard Mean Error values for the three samples (SAMPL8-16, SAMPL8-17 and SAMPL8-14) 

that contained replicate measurements were very similar and demonstrated that the measured 

drug concentrations of those three samples were repeatable. However, it should be noted that 

these replicates were sampled from the same sample vial, which may imply that the MAD and 

SME are measures related to the sampling capabilities of the robotic platform rather than the 

actual samples themselves. To improve upon the uncertainty analysis, replicate sample vials 

should be prepared, and replicate measures should be drawn from each individual vial.  
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CONCLUSIONS 

The investigations described here provide a collection of data intended for use in the SAMPL8 

Physical Properties Challenge (https://doi.org/10.5281/zenodo.4245127) (44).  The zenodo link 

provides a presentation from the SAMPL satellite conference at the 2020 German Conference on 

Cheminformatics. The presentation describes the automated approaches taken to determine the 

distribution coefficients and pKa for the set of GSK compounds used in this investigation. This 

challenge is composed of two distinct components:  the pKa challenge and the logD challenge.  

The data was generated predominantly using high-throughput experimentation platforms and 

instrumentation.  pKa values were determined for 23 compounds, and logD values were 

determined for 11 compounds in a variety of bi-phasic systems with an Unchained Labs 

Freeslate CM3 robotic platform and an Agilent 1290 HPLC with auto-sampler.  The logD for 

these compounds was determined using the following bi-phasic mixtures: aqueous-octanol, 

aqueous-cyclohexane, aqueous-ethyl acetate, aqueous-heptane, aqueous-MEK, aqueous-TBME, 

and cyclohexane-DMF. Not all combinations of distribution coefficient are available because we 

experienced compound solubility issues below the limit of detection in several of the different 

phases which resulted in incalculable distributions due to an undefined logarithm.  At the onset 

of the experimental design, we did not anticipate that some of the solvent combinations would 

eventually result in incalculable distributions, but the investigators favored the inclusion of any 

data that could be provided rather than eliminating any solvent combination data series (such as 

CYHL/BR8) despite the presence of only a single data point being available.  There were several 

integratable peaks in some of the data, however the limit of detection restricts the authors from 

publishing those values.   
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During this work, we determined that several areas for improvement could be implemented to 

enhance the volume of data collected.  Of those, we recognize that two calibration curves – one 

for the organic, one for the aqueous – would greatly improve the logD calculations by producing 

appropriate quantification limits on the chromatography instrumentation.  Streamlining this 

process could be realized by employing emerging technologies such as an online mini-LC to 

reduce sampling time, resulting in the ability to screen more compounds (45).  This process can 

be further enhanced and automated with the deployment of imaging tools and imaging analysis 

software packages.  In addition, further insight may be gained from future studies if the 

analytical approach included the use of LC-MS/MS (46).  LC-MS/MS is highly sensitive and 

selective and can provide insight into the ionization state which may not be possible with the 

chromatography approach presented here (47).   

The experimental data collected could potentially be used in future SAMPL blind prediction 

challenges as the data sets continue to grow and provide more information that is useful in 

building accurate and comprehensive drug substance prediction models.   
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