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Abstract

In a previous paper we presented a new hybrid functional B-LYP-osUW12-D3(BJ)

containing the Unsöld-w12 (UW12) hybrid correlation model. In this paper we present

a new 15-parameter range-separated hybrid density functional using a power series

expansion together with UW12 correlation. This functional is optimized using the

survival of the fittest strategy developed for the ωB97X-V functional, fitted to data

from the Main Group Chemistry Database (MGCDB84). In addition we optimize

a standard hybrid and double hybrid using the same method. We show that our

fully self-consistent UW12 hybrid functional WM21-D3(BJ) outperforms both of these

functionals and other range-separated hybrid functionals.

1 Introduction

Density-functional theory (DFT) has in recent years become the most widely used elec-

tronic structure method.1,2 Much of this success derives from the ability of DFT to achieve

reasonable accuracy at a relatively low cost.
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While exact in theory, Kohn-Sham density-functional theory contains an unknown energy

component – the exchange-correlation (XC) functional – which must be approximated. Thus

the accuracy of practical DFT calculations depends on the choice of exchange-correlation

functional.3–6

There is no systematic method to improve the exchange-correlation functional, but strate-

gies have evolved to improve accuracy through including additional terms in the exchange-

correlation functional. The simplest density-functional is the local-density approximation

(LDA) in which the energy density depends only on the electron density at each point. Ac-

curacy may be improved by including terms that depend on the gradient of the electron

density, forming the generalized-gradient approximation (GGA). There are several widely-

used functionals of this type, including BLYP and PBE.7–9

Further improvements in accuracy can be attained by including higher order density gra-

dients and the kinetic-energy density.10 However there appears to be a limit to the accuracy

achievable through such approximations. Problems with these semi-local functionals can be

related to the self-interaction error (SIE), arising from the incomplete cancellation between

the self-interacting portions of Coulomb and exchange energies.11 In semi-local functionals,

the potential felt by a removed electron from a neutral molecule exhibits exponential decay

in the long range, rather the the physically correct −r−1 decay behavior.12,13

Hybrid density-functional methods attempt to reduce these errors by replacing a fraction

of approximate density-functional exchange with exact Hartree-Fock exchange.14,15 Hybrid

functionals remain some the most popular density functionals in use today, though they are

not free from problems. Most popular hybrid functionals such as B3LYP and PBE0 contain

a relatively small fraction of exact exchange,16,17 so they still contain a large amount of self-

interaction error. Also, while Hartree-Fock exchange has the correct long-range behavior,

global hybrid functionals with a fixed fraction cx do not, since the long-range exchange

potential behaves as −cxr−1 instead of the correct −r−1.

One solution to this problem is through range-separation, where the Coulomb operator is
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split into short- and long-range components, such that the amount of exact exchange varies

as a function of inter-electronic distance.18,19 Such functionals are called range-separated hy-

brids (RSHs), and can be constructed to ensure the correct long-range behavior. In addition,

these functionals exhibit reduced self-interaction error according to typical measures.11

It is also possible to further increase the accuracy by including some amount of non-local

correlation by introducing a dependence on the virtual (unoccupied) orbitals.20,21 Double

hybrid functionals achieve this by including a fraction of MP2 correlation; they have received

much interest in recent years.22–24

The UW12 approximation is a non-local correlation approximation given by25

EUW12
c =

1

2

∑
ijab

[〈ij|w12|ab〉 − 〈ij|w12|ba〉] 〈ab|r−1
12 |ij〉 (1)

for occupied spin orbitals |i〉 , |j〉, virtual spin orbitals projector |a〉 , |b〉, and Coulomb op-

erator r−1
12 , and two-electron geminal function w12. This approximation may be formulated

in a way which includes no virtual orbital dependence.25 Global hybrid functionals which

include UW12 correlation such as B-LYP-osUW12 have been shown to give accurate results

without a virtual orbital dependence.26

In this work we wish to create a range-separated UW12 hybrid functional with correct

long-range behavior using the ωB97 exchange-correlation functional as a starting point. Of

particular interest are the ωB97X-V, ωB97M-V and ωB97M(2) functionals optimized using

the survival of the fittest strategy.27–29 These range-separated hybrid functionals are among

the most accurate functionals currently available.

The range-separated GGA hybrid ωB97X-V is a 10 parameter functional containing

range-corrected B97 exchange, B97 correlation, and the non-local VV10 functional,30–32 with

the parameters chosen to minimize the error in both the training and validation datasets con-

sidered. This method was then extended to produce the range-separated meta-GGA hybrid

ωB97M-V, utilizing the large MGCDB84 database for optimization, and including meta-
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GGA components in the optimization,5 as well as an MP2 energy correction in ωB97M(2).33

Following this approach we set out to create a range-separated hybrid functional of the

form ωB97X-osUW12 using the ωB97 functional together with opposite-spin UW12 corre-

lation and a dispersion correction. We do not include any meta-GGA contribution in this

work, but note that this could be included in the future.

2 Theory

The functional we aim to create contains multiple components and we begin with a brief

discussion of each of them.

The Hartree-Fock exchange energy for a molecular system is given by:

EHF
x = −1

2

∑
σ

∑
ij

〈
iσjσ

∣∣ r−1
12

∣∣ jσiσ〉 (2)

for r12 = |~r1−~r2| and occupied spin orbitals |iσ〉 , |jσ〉. In the local spin density approximation

(LSDA), the exchange functional is given by

ELSDA
x =

∑
σ

∫
eLSDA
x (ρσ) d~r, (3)

where

eLSDA
x (ρσ) = −3

4

(
6

4π

)1/3

ρ4/3σ (~r) (4)

is the exchange energy per unit volume.

In the range-separation scheme, the Coulomb operator is split into short- and long-range

parts using the error function such that18,19

1

r12
=

erfc(ωr12)

r12
+

erf(ωr12)

r12
(5)
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for range-separation parameter ω. The long-range exchange interaction is then given by

Elr-HF
x = −1

2

∑
σ

∑
ij

〈
iσjσ

∣∣ erf(ωr12)r
−1
12

∣∣ jσiσ〉 , (6)

where the kernel erf(ωr12)r
−1
12 tends to r−1

12 as r12 → ∞. By replacing the r−1
12 operator

with erfc(ωr12)r
−1
12 in the derivation of the LSDA exchange energy, the short range LSDA

functional may be written as

Esr-LSDA
x =

∑
σ

∫
eLSDA
x (ρσ)Fσ(aσ) d~r, (7)

for

F (aσ) = 1− 2

3
aσ

[
2
√
π erf

(
1

aσ

)
− 3aσ + a3σ + (2aσ − a3σ) exp

(
− 1

a2σ

)]
(8)

where aσ = ω/kF,σ, and kF,σ = [6π2ρσ]1/3 is the spin-polarized Fermi wave vector.18

The original range-separation scheme consists of short-range density-functional exchange

and long-range HF exchange, with no HF exchange at short range. It has been shown that

including a small fraction csrx of short-range HF exchange in addition to the short-range DFT

exchange is beneficial without affecting the correct long-range behavior.34

While the LSDA exchange functional is helpful to illustrate range-separation in exchange

functionals, it is not suitable for most applications due to the homogeneous nature of the

functional. A better approach is to use a GGA functional for the density functional exchange

component. The B97 functional uses a power series expansion involving the density and its

first derivative:30

EB97
x =

∑
σ

∫
eLSDA
x (ρσ)gx(sσ) d~r (9)
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where gx is a power series given by

gx(sσ) =
m∑
i=0

cix

[
γxs

2
σ

1 + γxs2σ

]i
, (10)

with sσ = |∇ρσ|/ρ4/3σ , and where cix is the ith coefficient. This expansion includes the non-

linear exchange parameter γx = 0.004,35 while the linear parameters {cix}may be determined.

In a similar manner to the LSDA exchange functional, the B97 exchange functional may

be modified to produce the short-range B97 exchange functional given by:31

Esr-B97
x =

∑
σ

∫
eLSDA
x (ρσ)F (aσ)gx(sσ) d~r. (11)

The B97 correlation functional is constructed in a similar way, with separate expansions

for the same and opposite spin components such that

EB97
c,ss =

α,β∑
σ

∫
eLSDA
c,σσ (ρσ)gc,ss(sσ) d~r (12)

EB97
c,os =

∫
eLSDA
c,αβ (ρα, ρβ)gc,os(sαβ) d~r, (13)

for s2αβ = (sα+sβ)/2. The power series expansions in these expressions are like equation (10),

with different linear parameters {cic,ss} and {cic,ss}, and non-linear parameters γc,ss = 0.02

and γc,os = 0.006 respectively. These were fitted to the correlation energies of He and Ne.35

The same- and opposite-spin LSDA correlation energy densities per unit volume eLSDA
c,σσ , eLSDA

c,αβ

are extracted from the total LSDA correlation energy density using:

eLSDA
c,σσ (ρσ) = eLSDA

c (ρσ, 0) (14)

eLSDA
c,αβ (ρα, ρβ) = eLSDA

c (ρα, ρβ)− eLSDA
c (ρα, 0)− eLSDA

c (0, ρβ) (15)

The linear coefficients {cic,ss} and {cic,os}may be optimized systematically in the same manner

as the exchange coefficients.
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The UW12 correlation energy can also be split into the same and opposite spin compo-

nents such that

EUW12
c,os =

∑
ij

〈iαjβ|wos
12Q̂12r

−1
12 |iαjβ〉 (16)

EUW12
c,ss =

1

2

∑
σ

∑
ij

[
〈iσjσ|wss

12Q̂12r
−1
12 |iσjσ〉 − 〈jσiσ|wss

12Q̂12r
−1
12 |iσjσ〉

]
, (17)

where wss
12 and wos

12 are the same- and opposite-spin geminal functions respectively, with

projector Q̂12 given by

Q̂12 = v̂1v̂2 = (1̂− ô1)(1̂− ô2) = 1̂− ô1 − ô2 + ô1ô2, (18)

for which ô and v̂ are projectors onto the occupied and virtual spaces respectively. Using

this relation the UW12 energy for a given geminal may be evaluated either using the virtual

space or entirely within the occupied space. In the virtual space, the total UW12 energy may

be evaluated for a fixed set of orbitals using equation (1). In the occupied space, the UW12

energy may be written solely in terms of the one-particle reduced density matrix allowing

the orbitals to be optimized self-consistently within a generalized Kohn-Sham scheme.

The accuracy of the approximation depends on the choice of geminal functions wos
12 and

wss
12. In previous work we have set wss

12 = κwos
12, with κ = 0.5 in XCH-BLYP-UW12,25 or κ = 0

in B-LYP-osUW12, where the same-spin contribution is neglected. In these functionals, the

opposite-spin geminal has been a one-parameter exponential function:36

wos
12 = −1

2
rc exp

[
−r12
rc

]
(19)

Integrals involving this kernel have been derived,36 but we instead expand wos
12 as

wos
12 =

∑
i

ciu exp[−γir212] (20)
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for exponents {γi} and coefficients {ciu}. For a fixed set of exponents the coefficients are

fitted to the exponential function, and in this way the same code may be used to model

other kernels.

Rather than constraining this expansion to fit a fixed function, the coefficients could be

fitted directly to data, and this forms an integral part of the development described in this

paper. In this way the opposite and same spin coefficients could be optimized separately,

however, in this work we continue to use the opposite-spin only UW12 (osUW12) approach

used in B-LYP-osUW12-D3(BJ).

It has been shown that electronic dispersion forces are crucial for a correct description of

long-range electron correlation.37–39 However, most standard XC functionals fail to account

for these effects since they use local properties to calculate the XC energy. This lack of

dispersion is a significant problem in DFT with a number of solutions suggested. Many

modern density-functionals include a dispersion-correction term to account for these effects.

One approach is to use empirical dispersion corrections, such as the D3(BJ) and D4 correc-

tions.40,41 While another is to create long-range (non-local) density functionals specifically

designed to account for these effects, such as the VV10 functional.32

In this work we use the D3(BJ) correction

E
D3(BJ)
disp = −

∑
n=6,8

∑
A<B

sn
CAB

(n)

Rn
AB

f
(n)
damp(RAB), (21)

where CAB
(n) are the dispersion coefficients between atoms A,B, with inter-atomic distance

RAB, scale factors sn, and Becke-Johnson damping function f
(n)
damp given by42–44

f
(n)
damp(RAB) =

Rn
AB

Rn
AB + (a1R0 + a2)

n . (22)

Which includes functional-specific damping parameters a0, a1, and R0 =
√
CAB

8 /CAB
6 . A

future possibility would be to re-optimize the final functional to include VV10 rather than

D3(BJ).
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Table 1: Details of the 8 subsets of the Main-Group Chemistry Database (MGCDB84),
including the multiplicative factors used in the weighting scheme. The naming scheme and
factors fd are taken from Ref. 29, where the labels ‘easy” and “difficult” indicate whether
the associated reactions are considered challenging for density-functionals.

Data-type Details Factor, fd
BH Barrier heights 10
IE Isomerization (easy) 1000
ID Isomerization (difficult) 10
NCED Non-covalent (easy) dimers 100
NCEC Non-covalent (easy) clusters 100
NCD Non-covalent (difficult) 10
TCE Thermochemistry (easy) 1
TCD Thermochemistry (difficult) 1

The resulting functional formed by combining all these components is made up of the

linear parameters csrx , {cix}, {cic,ss}, {cic,os}, {ciu}, s6, and s8. In addition to the non-linear

parameters ω, γx, γc,ss, γc,os, γi, a1, and a2.

3 Datasets and Fitting

Following the method in Ref. 29, we use the Main-Group Chemistry Database (MGCDB84)

to train and evaluate our new functional, for completeness we give a brief summary of the

database and method here.

MGCDB84 is compiled from the work of numerous groups. It consists of 84 datasets

with 4986 data-points, which includes a number of chemical properties. All but two datasets

are arranged into 8 subsets based on the types of chemical reactions involved, these are

summarised in table 1. The other datasets consist of absolute atomic energies (AE18) and

rare-gas dimer potential energy curves (RG10).45,46

The full database is split into three sets for training, validation, and testing, with datasets

from each subset distributed among these. We use the training set to fit the functional pa-

rameters; it contains 25 datasets and 870 data-points. We use the validation set to determine

the whether the fitted functional is transferable; it consists of 35 datasets with 2964 data
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points. We only use the test set to calculate the accuracy of the final functional; it con-

tains 24 datasets with 1152 data-points. This same splitting was previously used to fit the

ωB97M-V and ωB97M(2) functionals.28,29

The functional ωB97X-osUW12-D3(BJ) consists of multiple parameters; the linear pa-

rameters are selected and optimized using the procedure outlined below, while the non-linear

parameters are fixed in advance of the optimization. The range-separation parameter ω = 0.3

was chosen as it is the value used in the ωB97X and ωB97X-V functional.27,31 The B97 pa-

rameters γx, γc,ss, γc,os remain fixed using the original B97 values. The non-linear dispersion

parameters were chosen as a1 = 0.00 and a2 = 5.49. These were taken from the ωB97X-

D3(BJ) functional, a re-implementation of ωB97X-V with a D3(BJ) correction instead of the

non-local VV10 component.47 In addition these parameters are almost identical to those op-

timized for our dispersion-corrected B-LYP-osUW12-D3(BJ) functional, for which a1 = 0.0

and a2 = 5.45.26

Unlike the other non-linear parameters, the UW12 Gaussian exponents are not chosen to

reproduce an observable effect per-se. Instead they are chosen to give a degree of flexibility in

the final fit of the geminal function. To give sufficient flexibility, the exponents were chosen

to be the set {γ−n, . . . , γn} with n = 4 and γ = 3.16228. This covers a number of orders of

magnitude for the scale of the geminal.

For the linear parameters, we impose the uniform-electron gas limit c0x+csrx = 1, the long-

range exchange limit (clrx = 1), and the correct leading-order dispersion behavior (s6 = 1.0).

The remaining linear parameters may then be fitted using least-squares regression, with the

power series expansions of the B97 functionals all calculated up to fourth order.48

Fitting is performed using energy components calculated on a fixed set of orbitals, there-

fore we must choose a functional with which to calculate the initial orbitals. Unlike the

optimizations of ωB97X-V and ωB97M-V we chose an established functional to calculate the

initial orbitals, namely ωB97X.31

The fitting procedure starts with the basic functional containing all zeroth order B97
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components, the long- and short-range HF exchange, and the D3(BJ) components. This

functional is optimized using a (weighted) linear regression on the training set. All possible

combinations of additional parameters are added to this initial functional and re-optimized.

The fitted parameters and weighted root-mean-square error (RMSE) for both the training

set and validation set are recorded for each combination. The combinations which minimize

the error across both these sets are then taken to be the optimal result.

Once the optimal combination of parameters has been chosen, the training set energies

are re-evaluated using orbitals calculated with this new fit and the parameters re-fitted to

these new energies.

The weighting scheme used is the same as the one used to optimise ωB97M(2).29 Each

data-point in a given dataset is assigned an initial weighting wi = (Ni∆Ei)
−1 where Ni

is the total number of data-points in the dataset, and ∆Ei is the root-mean-square of the

reaction energies in the dataset i. For each data-type, the weights are then normalised by

dividing all values by the minimum initial weight wdmin, and exponentiated so that they lie in

between 1 and 2. During this calculation the AE18 dataset is included in the TCE data-type.

Each data-type is then given a multiplicative weight fd, as shown in table 1. For the RG10

dataset, the set is subdivided the set into attractive and repulsive interactions, with factors

fd = 10000 and fd = 1 respectively.29

4 Computational Details

All calculations were performed in Entos Qcore unless otherwise noted.49 Calculations use the

Def2-QZVPPD basis set.50,51 The density-fitting approximation is used to calculate Coulomb,

exchange, and UW12 contributions using the Def2-universal-JKFIT basis set.52 The three-

electron term in the UW12 approximation is calculated using an RI-approximation which

utilizes the Def2-QZVP-RI basis set.53 54 Exchange-correlation contributions were calculated

numerically using Neese fixed pruned quadrature grids,55 56 which use Laqua partitioning.57
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Results for all previously established functionals with the exception of UW12 functionals are

taken from Ref. 5.

5 Results

In order to test the fitting method, the procedure was used to fit an ωB97X-D3(BJ) type

hybrid (without UW12). Fitting all possible combinations of parameters and analyzing the

weighted error in the validation set results in the best possible functional with 8 linear

parameters (see figure 2). When the procedure was repeated with the UW12 components

included, the optimal number of parameters was found to be around 15. However, the

fitted B97 coefficients for these functional combinations were found to be significantly larger

than those present in the non-UW12 fitted functionals. While this effect was significantly

reduced if our search was limited to combinations where higher order B97 terms are only

included if all lower order terms are already present for each series expansion – where no

B97 components were skipped. The coefficients were still significantly greater than in the

non-UW12 functional.

To eliminate this problem, it was decided to use regularization on the regression. This

was done using ridge regression where an additional parameter α which adds a penalty for

the size of coefficients equal to the sum of squares. This method is equivalent to ordinary

least-squares regression for α = 0. To determine the optimal value of α, we looked at the

weighted RMSE in the validation as a function of α for a single combination at a time.

Figure 1 shows the weighted RMSE for the training and validation sets as a function of α for

the fifteen parameter combination in which no B97 parameters are skipped and produced the

lowest error in the validation set with linear regression. The plot shows a minimum in the

validation error for α in the range 1–10, while the training set error remains almost constant.

It was decided to use a value of α in this range, with the final value of α = 4 chosen.

Figure 2 shows the weighted RMSE in the validation set for different combinations. All
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Figure 1: Weighted root-mean-square errors (wRMSEs) for the training (purple) and valida-
tion (green) sets as a function of the ridge regression parameter α. Errors are computed with
the set of parameters used in the final functional, calculated using ωB97X orbitals. Dotted
line shows at α = 4 to demonstrate the final choice for α.

possible combinations were considered, though for ωB97X-osUW12-D3(BJ) only the lowest

error combinations are plotted. Combinations which include no UW12 are also shown in the

plot, these are also optimized using α = 4, though the difference in these results is negligible

compared to the standard linear fit.

This plot shows that the optimal number of parameters for ωB97X-osUW12-D3(BJ) is

around 15. From this we investigated the lowest error functionals. We decided to use the

lowest error 15 parameter functional for which no B97 components were skipped, which

resulted in a final functional form containing the parameters: csrx , c0x = 1− csrx , c1x, c
0
ss, c

1
ss, c

2
ss,

c3ss, c
4
ss, c

0
os, c

1
os, c

2
os, s8 as well as four osUW12 components c−4

u , c−3
u , c−2

u , c1u where coefficients

cnu corresponds to the UW12 component Gaussian with exponent γn.

With this combination decided on, energies for all molecules in the training set were

recalculated using the self-consistent orbitals obtained using this functional. Energies for

all individual components were calculated using these orbitals and the coefficients re-fitted

using this new data. This procedure was then repeated multiple times until the coefficients
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Figure 2: Weighted root-mean-square error (wRMSE) in the validation set as a function
of the number of linear parameters. Each point represents a single combination of compo-
nents. Only the best 1000 combinations are shown for each number of parameters. In each
case coefficients were fitted to the training set data and the validation set errors recorded.
All possible combinations of components were calculated for a functional with all ωB97X,
osUW12 components and D3(BJ) (shown in purple). Optimized combinations containing no
osUW12 contribution are shown in green.

converged. Table 2 shows the values of the coefficients at each cycle of the optimization. The

zeroth cycle corresponds to the original fit using coefficients fitted using energies calculated

on ωB97X orbitals. The final converged functional is shown in bold in the final column. We

name this functional WM21-D3(BJ).

Throughout this optimization, a majority of the parameters remain mostly unchanged,

with the difference between the final and initial values less than 0.05 in all but four cases. The

c−4
u value changes by 0.0554, while the first through fourth order same-spin B97 coefficients

differ more significantly from the initial values than the other components. The greatest

change is seen in the c1ss coefficient (0.5958). The large change in these values is the reason

for the numerous re-optimization cycles performed on the functional. Also of note is the
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Table 2: Optimized coefficients for the ωB97X-osUW12-D3(BJ) functional at each stage
of the optimization. The first set of coefficients are fitted using energies calculated using
the ωB97X functional, subsequent fittings are performed on the training set data obtained
using the functional defined in the previous column. The final WM21-D3(BJ) functional
parameters are shown in bold.

0 1 2 3
csrx 0.2645 0.2658 0.2642 0.2638
c0x 0.7355 0.7342 0.7358 0.7362
c1x 0.7686 0.7679 0.7690 0.7660
c0ss -0.1882 -0.2017 -0.1901 -0.1891
c1ss 1.4625 1.3045 1.2285 1.2545
c2ss -0.6501 -0.2124 -0.0306 -0.0543
c3ss -2.8600 -3.2029 -3.3474 -3.3595
c4ss 2.3564 2.4251 2.4468 2.4690
c0os 0.9544 0.9670 0.9676 0.9673
c1os -1.3819 -1.4163 -1.4170 -1.4147
c2os 1.1881 1.1774 1.1875 1.1877
c−4
u -0.0913 -0.1307 -0.1324 -0.1467
c−3
u 0.0836 0.1092 0.1030 0.1108
c−2
u -0.1944 -0.2016 -0.1973 -0.1995
c1u -0.0051 -0.0040 -0.0038 -0.0026
s6 1.0000 1.0000 1.0000 1.0000
s8 -0.1016 -0.1146 -0.1179 -0.1123

small value for the c1u coefficient.

As the optimization proceeds, the weighted root-mean-square error (wRMSE) in the

training set is reduced from 3.832 kcal mol−1 in the initial cycle to 3.692 kcal mol−1 in the

final step. Results for most of the datasets improve with the re-optimization with the error

in 17 of the 24 datasets reduced compared to the initial results. Of the remaining sets,

the greatest increase occurs in the DBH24 diverse barrier height dataset where the RMSE

increases by 0.08 kcal mol−1. Though the minimum RMSE observed for some sets is seen in

the intermediate cycles. A summary of RMSEs for each training dataset at each stage of the

optimization is presented in the supporting information.

Figure 3 shows the form of the UW12 geminal function present in the WM21-D3(BJ)

functional as a function of inter-electronic distance r12. We note a significant difference from

the Slater-function used previously. Though while the decision to use a Slater-type geminal
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Figure 3: Plot showing the geminal function w(r12) present in the final WM21-D3(BJ)
functional. Scaled so that w(0) = −1.

function was made independent of the choice of the functional it was to be used in, the new

geminal has been fitted in the presence of the other parts of the functional. In particular

the long-range portion is optimized to work with the D3(BJ) dispersion correction, we have

previously shown that this term can affect the range of the geminal function.26

Following the same procedure as for WM21-D3(BJ), we optimize the best standard hybrid

functional of the type ωB97X-D3(BJ), looking at figure 2 it can be seen that the best possible

hybrid contains 8 linear parameters, with the lowest error functional combination containing

the coefficients csrx , c0x = 1 − csrx , c1x, c
2
x, c

0
ss, c

0
os, c

1
os, c

2
os, and s8. This combination has a

weighted RMSE on the training and validation sets of 5.49 kcal mol−1 and 3.67 kcal mol−1

respectively. This combination of B97 components is slightly different than the one used in

ωB97X-V, which does not include c2os, including c1ss instead, this combination had weighted

training and validation set RMSEs of 5.82 kcal mol−1 and 3.96 kcal mol−1 respectively. We

refer to this functional as ωB97X21-D3(BJ).

As with WM21-D3(BJ) we re-optimize the coefficients after recalculating the energies in

the training set self-consistently and repeating for multiple cycles until converged. Table 3

shows the coefficients for the hybrid functional at each stage of the procedure. Four of the
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Table 3: Optimized coefficients for the ωB97X21-D3(BJ) functional at each stage of the
optimization. The first set of coefficients are fitted using energies calculated using orbitals
optimised with the ωB97X functional. Subsequent fittings are performed on the training
set data obtained using the functional defined in the previous column. The final functional
parameters are shown in bold.

0 1 2
csrx 0.1784 0.2183 0.2164
c0x 0.8216 0.7817 0.7836
c1x 0.7595 0.7911 0.7916
c2x 0.2515 0.0312 0.0336
c0ss 0.1775 0.0432 0.0471
c0os 1.2235 1.2744 1.2728
c1os -2.3243 -2.7704 -2.7611
c2os 1.4293 2.0522 2.0428
s6 1.0000 1.0000 1.0000
s8 0.5272 0.4589 0.4575

coefficients undergo a significant change during the first optimization cycle, with c1os, c
2
os, c

0
ss,

and c2x all changing by more than 0.1, though these have converged after the second iteration.

We note that the amount of same spin correlation contribution is greatly reduced by this

re-optimization. Also we note that the non-linear parameters for both range-separation and

dispersion are not re-optimized with the same ones used for both functionals.

Unlike for the UW12 functional, upon re-optimization, the weighted RMSE of the training

set increases compared to the initial orbital version going from 5.49 kcal mol−1 to 6.45 kcal mol−1

in the final functional. A complete summary of the RMSEs for each dataset in the training

data at each stage in the optimization of ωB97X21-D3(BJ) is shown in the supporting infor-

mation. Of the 24 datasets only 9 have reduced errors on re-optimization, though 6 of these

errors are reduced by more than 0.1 kcal mol−1. Large increases of more than 0.1 kcal mol−1

in the RMSE are observed in 10 of the sets, with the greatest increases being for the AE18

atomization energies set, the CRBH20 barrier heights set and the G21EA electron affinity

sets which all increase by more than 0.5 kcal mol−1. The RMSE for the atomization energy

set AE18 increases by 2.19 kcal mol−1, by far the greatest increase. The cause of this increase

is most likely due to the small amount of same-spin correlation in the resulting functional,
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Table 4: Mean absolute errors (MAEs) in kcal mol−1 for each of the datasets in the testing
set of MGCDB84. The minimum and maximum errors for each set are highlighted in green
and red respectively.

B3LYP-
D3(BJ)

CAM-
B3LYP-
D3(BJ) M11-D3(BJ) wB97X-D3 wB97X-V

wB97X21-
D3(BJ)

B-LYP-
osUW12-

D3(BJ)
WM21-
D3(BJ)

3B-69-DIM 0.22 0.31 0.36 0.20 0.14 0.30 0.24 0.13

3B-69-TRIM 0.59 0.81 0.76 0.49 0.31 1.19 0.75 0.34

AlkBind12 0.14 0.15 0.53 0.28 0.10 1.34 0.23 0.17

BSR36 3.90 4.26 1.31 5.14 2.55 0.89 0.46 0.28

C20C24 27.20 18.83 18.17 9.07 4.31 6.89 5.52 2.92

CE20 1.62 3.27 1.05 0.63 0.38 0.58 0.59 0.45

CO2Nitrogen16 0.06 0.17 0.29 0.45 0.09 0.52 0.32 0.18

H2O16Rel5 0.64 0.82 1.11 0.11 0.30 0.53 0.31 0.03

H2O20Bind10 8.84 22.12 6.03 6.36 1.17 0.96 7.93 1.06

H2O20Bind4 11.90 23.45 5.76 5.68 1.85 0.59 3.79 3.20

H2O20Rel10 0.23 0.37 0.70 0.27 0.07 0.13 0.17 0.52

H2O20Rel4 0.66 0.86 0.87 0.33 0.22 0.53 0.22 0.08

HB49 0.42 0.69 0.42 0.22 0.20 0.25 0.23 0.16

HNBrBDE18 4.15 4.79 1.29 3.86 2.35 1.21 2.00 1.69

Ionic43 0.64 0.94 1.09 0.71 0.61 1.04 1.67 0.81

Melatonin52 0.27 0.32 0.91 0.13 0.10 0.43 0.17 0.13

PlatonicHD6 2.98 1.22 10.77 6.47 4.78 1.45 1.70 2.12

PlatonicID6 7.74 9.65 6.94 7.47 3.94 3.93 2.07 1.70

PlatonicIG6 19.77 27.82 25.31 19.60 5.49 7.99 5.29 10.46

PlatonicTAE6 14.32 3.25 17.94 4.13 7.27 5.14 21.75 1.67

PX13 5.93 8.06 3.23 2.19 2.84 2.35 1.55 2.52

WCPT27 3.49 3.43 1.98 1.59 1.67 1.89 1.63 1.73

WCPT6 0.99 0.89 1.43 0.97 0.88 0.99 0.90 0.86

YMPJ519 0.37 0.34 0.67 0.35 0.24 0.35 0.27 0.19

with the amount of same-spin correlation greatly reduced in the orbitals compared to the

initial ωB97X orbitals.

In order to assess the accuracy of our new functionals we compare the errors for the

datasets in the testing set data, this was not utilized during the training and validation of

the functionals. We compare to other (range-separated) hybrid functionals, in particular the

ωB97X-V functional optimized using the same method.14–16,27,34,40,58–60 Also shown is data

from our previous functional B-LYP-osUW12-D3(BJ).

Table 4 shows the mean absolute errors for each dataset in the MGCDB84 testing set.

Beginning with the ωB97X21-D3(BJ) functional, it can be easily observed that this func-

tional is outperformed by ωB97X-V. However, it does give improved results for 8 of the 24

datasets, notably the (H2O)20 binding energy sets (H2O20Bind10 and H2O20Bind4), and the

N–Br bond dissociation set (HNBrBDE18) where the functional results in the lowest overall

errors. The largest errors for this functional are seen for the binding energy datasets – Alk-
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Bind12, 3B-69-DIM, 3B-69-TRIM, and CO2Nitrogen16 – for which errors are significantly

greater than ωB97X-V. Overall this functional demonstrates similar errors to the ωB97X-D3

functional, with lower errors for 10 of the datasets. Notable improvements over ωB97X-D3

are seen in the hydrocarbon bond-separation set (BSR36), as well as for three of the datasets

containing reactions involving platonic hydrocarbon cages (PlatonicHD6, PlatonicID6, Pla-

tonicIG6). This functional could be further improved by re-optimizing the D3(BJ) damping

parameters or by replacing D3(BJ) with the non-local VV10 functional as in ωB97X-V.

The B-LYP-osUW12-D3(BJ) functional gives lower errors than ωB97X-V for 7 of the

20 datasets, for the platonic hydrocarbon cages dataset (PlatonicIG6) as well as proton

exchange barrier height set (PX13), B-LYP-osUW12-D3(BJ) results in the smallest overall

errors. This functional produces significant errors for the binding energies of ionic dimers

(Ionic43) and total atomization energies (PlatonicTAE6) sets; the second of which is much

larger than for any other functional considered.

The new WM21-D3(BJ) functional represents a significant improvement over B-LYP-

osUW12-D3(BJ) for these sets, with lower errors for 19 of the 24 datasets. The two largest

errors for B-LYP-osUW12-D3(BJ) are significantly reduced; for PlatonicTAE26, where B-

LYP-osUW12-D3(BJ) resulted in the largest error, WM21-D3(BJ) gives the lowest error.

The functional gives lower errors than ωB97X-V for 14 of the 24 sets, with large improve-

ments seen for isomerization energies (C20C24), bond separation energies (BSR36), total

atomization energies (PlatonicTAE6) and reactions involving hydrocarbon cages (Platoni-

cID6). This functional gives the lowest error for 10 of the 24 datasets. The only significantly

large errors of note are seen in the PlatonicIG6 dataset of isogyric reaction energies, as well

as in two of the (H2O)20 datasets, namely H2O20Bind4 and H2O20Rel10. The error observed

in the H2O20Rel10 dataset is significantly greater than the other ωB97 functionals, though

this remains within chemical accuracy. Also for the H2O20Bind10 set of binding energies

which uses the same set of low energy (H2O)20 isomers, WM21-D3(BJ) results in one of the

lowest errors. Counter-intuitively the opposite is true for the datasets with the higher energy
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Table 5: Optimized coefficients for the ωB97X-MP2-D3(BJ) functional optimized using
ωB97X orbitals.

csrx 0.4681 c0ss -0.1545 c0os 0.6354
c0x 0.5319 c1ss 2.0088 c1os -0.0551
c1x 0.6052 c2ss -2.0638 c2os -0.6478
cMP2
os 0.3108 s6 0.3738
cMP2
ss 0.1719 s8 0.5478

(H2O)20 isomers; while WM21-D3(BJ) results in the lowest error for the isomerization ener-

gies (H2O20Rel4), a much greater error is observed for the binding energies (H2O20Bind4).

Based on the comparison of ωB97X21-D3(BJ) and ωB97X-V, we note that WM21-D3(BJ)

could be further improved by utilizing the VV10 non-local correlation functional instead of

D3(BJ).

As an additional test of this functional, using the same procedure as ωB97X21-D3(BJ)

and WM21-D3(BJ), we optimize a double hybrid density functional of the form ωB97X-

MP2-D3(BJ). For this we allow the coefficients of opposite-spin and same-spin MP2 to be

free parameters. In addition we let the s6 coefficient in D3(BJ) be free to account for the

long-range behavior of MP2. As with ωB97X21-D3(BJ), we use the same non-linear pa-

rameters as WM21-D3(BJ) and use ωB97X orbitals to calculate the energies. Following

the procedure used previously and taking the combination which minimizes the weighted

validation error with the minimum number of parameters without skipping any B97 terms.

The resulting functional is a 12 parameter spin component scaled double hybrid. Unlike

the other functionals we do not re-optimize this functional to work with self-consistent or-

bitals and use ωB97X orbitals for the final functional. Table 5 shows the coefficients in the

ωB97X-MP2-D3(BJ) functional. The weighted RMSEs for this functional for the training

and validation sets are 3.58 kcal mol−1 and 2.48 kcal mol−1 respectively. The validation set

value is lower than the wRMSE for the initial WM21-D3(BJ) for which the training and

validation errors are 3.83 kcal mol−1 and 3.17 kcal mol−1 respectively. However, this is before

the parameters are re-optimized for self-consistent orbitals.
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Figure 4: Weighted root-mean-square-error (wRMSE) in kcal mol−1 for the test set data
for each of the functionals optimized in this paper. This includes the range-separated hy-
brid (RSH) ωB97X21-D3(BJ), the double hybrid (DH) ωB97X-MP2-D3(BJ), and the UW12
hybrid WM21-D3(BJ). Both ωB97X21-D3(BJ), and WM21-D3(BJ) refer to the final self-
consistent versions of the functionals, while ωB97X-MP2-D3(BJ) is calculated using ωB97X
orbitals. For comparison, the results for the initial fitted version of ωB97X21-D3(BJ) and
WM21-D3(BJ) calculated using the ωB97X orbitals are also included. These are given the
suffix ‘-0’ to differentiate them from the final functionals.

We compare this functional to the others we have optimized in this paper for the test set

data. Figure 4 shows the weighted root-mean-square-errors (wRMSEs) for the testing set

data for each of the functionals fitted in this paper, with both the final self-consistent and

initial ωB97X orbital versions included for ωB97X21-D3(BJ) and WM21-D3(BJ).

For ωB97X21-D3(BJ), the re-optimization results in an significantly increased error com-

pared to the initial functional fit. This is consistent with what was observed for the training

set data. The double hybrid functional ωB97X-MP2-D3(BJ) produces a lower overall error

than the hybrid ωB97X21-D3(BJ), including the initial optimized version. However, both
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versions of WM21-D3(BJ) result in a smaller wRMSE than the double hybrid functional for

this set, with the fully-self-consistent WM21-D3(BJ) producing the lowest wRMSE value for

these functionals.

6 Conclusions

We have presented WM21-D3(BJ) – a new range-separated hybrid functional with opposite-

spin UW12 correlation and D3(BJ) dispersion which we have optimized using the survival

of the fittest strategy on the main-group chemistry database (MGCDB84).27–29 We have

compared this functional to other range-separated hybrid functionals, including the ωB97X-

V functional optimized using the same approach, and shown that for the test set data not

used in the optimization procedure WM21-D3(BJ) results in lower errors for the majority of

datasets considered without the VV10 non-local functional. The functional also offered sig-

nificant improvement over the B-LYP-osUW12-D3(BJ) functional for a number of datasets.

We also optimized a standard range-separated hybrid ωB97X21-D3(BJ) using the same

approach, this functional produced greater errors than ωB97X-V, despite containing similar

components (with the exception of the dispersion component). The WM21-D3(BJ) func-

tional results in much lower errors than ωB97X21-D3(BJ), showcasing the ability of UW12

correlation to improve the accuracy of a calculation.

In addition we compared results for WM21-D3(BJ) to a double hybrid functional ωB97X-

MP2-D3(BJ) optimized using the same strategy, but without self-consistent optimization.

We showed that the ωB97X-MP2-D3(BJ) double hybrid fitted to data calculated using

ωB97X orbitals produces a greater overall error for the test set data than the initial version

of WM21-D3(BJ) calculated in the same way. In addition, by using the self-consistent opti-

mization procedure, the final WM21-D3(BJ) functional results in even lower errors for this

set; demonstrating the advantage of the fully self-consistent UW12 approximation.

Overall, UW12 functionals allow increased accuracy compared to standard hybrid func-
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tionals in a similar manner to double hybrids, but without using the virtual orbitals. In

addition, the fully self-consistent nature of UW12 avoids a number of the problems associ-

ated with double hybrid functionals. The ability to capture correlation effects neglected by

standard DFT functionals using only the occupied orbitals and a simple geminal function is

both useful and theoretically interesting.

In future the functional could be re-optimized using the VV10 non-local correlation in-

stead of D3(BJ) as this has been shown to offer great improvement for the standard hybrid

ωB97X-V (compared to ωB97X21-D3(BJ)). In addition, following on from ωB97X-V the

survival of the fittest strategy has also been used to optimize functionals with meta-GGA

contributions such as ωB97M-V and the double hybrid ωB97M(2) – this could be added to

a UW12 hybrid to further increase accuracy. In addition, while we have neglected same-

spin UW12 contributions in this paper, a same-spin UW12 geminal could be optimized in

a similar way to the opposite-spin UW12 with a separate geminal function for each spin

pairing.
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