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Abstract: The development of transition metal heterogeneous catalysts for economical and 

effective synthesis of N-methylamine, especially for the mono-methylation of amines is still 

challenging. Herein, two unprecedented Rh-supported COFs heterogeneous catalysts Rh/MelCOF 

was facile synthesized by Schiff base reaction using melamine as a precursor, and for the first time, 

it was successfully applied to the effective and high selective tandem reaction of transfer 

hydrogenation and mono-methylation of nitroaromatic hydrocarbons with methanol as C1 and 

hydrogenation source, with water as the only by-product. A series of nitroaromatic hydrocarbons, 

including heterocyclic or sterically hindered derivatives, can be well tolerated and the catalyst could 

also be reused 4 times without losing significant reactivity. At the same time, the study of the 

Rh/MelCOF mechanism supports the hydrogen borrowing mechanism and puts forward the reaction 

pathway of azobenzene as an intermediate, which is better than the hydrogen transfer pathway from 

N-phenylhydroxylamine to aniline directly. This work not only expands the COF family but also 

provides an effective way to obtain mono N-methylated amines from nitroaromatic hydrocarbons, 

as well as the detailed mechanism of Rh/COF catalyzed tandem transfer hydrogenation and mono-

methylation of amines. 

1.  Introduction 

N-methylamine is a high-value chemical product, which is widely used in the fields of drugs, 

bioactive products, dyes, preservatives, and agrochemicals[1-8]. Traditional synthesis methods 

require toxic and dangerous stoichiometric reagents, such as halogenated methane [9], dimethyl 

sulfate [10], or diazomethane[11]. Reactions using these reagents produce a large amount of waste 

and exhibit low selectivity due to excessive alkylation to N, N-dimethylamine. At present, more 

environmentally friendly methylating agents such as formaldehyde [12], formic acid [13, 14], and 

carbon dioxide [15-20] are also used to synthesize N-methylated amines, but the reaction requires 

excessive reducing agents or more stringent reaction conditions, such as high reaction temperature 

or excessive reducing sources, such as silane, molecular hydrogen, and so on. Therefore, in this case, 

direct and highly selective N-mono-methylation is a great challenge in drug synthesis chemistry. 

Nowadays, many homogeneous and heterogeneous metal catalysts have been developed for 
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selective N-methylation, such as Ir, Ru, Mn, Ni, and so on. But these methods generally use aliphatic 

amine or aromatic amine as the starting material. 

One of the other traditional synthetic ways for preparing aromatic amines uses inexpensive and 

readily available nitroarenes for reductive amination [21-24]. In these cases, with methanol as an 

economical and sustainable C1 source in the reaction for methylation and water as the sole 

byproduct, this method is more attractive and promising from both economic and environmental 

perspectives [22, 24-29]. Moreover, the dehydrogenation performance of methanol is much higher 

than that of higher alcohols such as ethanol and isopropanol. Therefore, it is of great practical 

importance to use a tandem and cost-effective one-pot method to selectively synthesize N-

methylated amines using nitroarenes as the feedstock methanol as the methylation and 

hydrogenation source. The synthesis of N-methylated amines by such methods is less common 

although there have been a few reports in recent years (Scheme 1). First, the ruthenium NNN pincer 

complexes, which can efficiently catalyze the N-methylation of nitroarenes as well as vinyl nitro 

compounds into mono- and dimethylated amines, and the corresponding mechanisms pathways 

have been proposed [30]. Recent reports have also applied this tandem transformation system based 

on Ir, Ru, Pd, Mn, Pt. Among them, Ir is mainly based on functional NHC ligands. which confer Ir 

higher activity and selectivity, which improves the substrate application range of the series 

conversion system, in which N-heterocyclic carbene-iridium (NHC-Ir) coordination assemblies 

based on bis-pyrenoimidazolium salts are heterogeneous catalyst and has reusability [31-33]. The 

Ru catalyst system uses commercial precursor [RuCl2(p-cymene)2]2 and NNN pincer (amine-

pyridine-imine, API) as ligand to prepare the efficient catalyst in-situ[34]. The Pd based catalysts, 

which are generally referred to as a catalyst system composed of commercial catalyst Pd/C or Pd 

(OAc)2 and ligand 1-[2-isopropyl (isopropyl) phenyl]-2-[tert-butyl (2-pyridinyl) phosphino]-1H-

imidazole, usually require high catalyst loading, excessive auxiliary ligands, and longer reaction 

time[35, 36]. It has been reported that the synthesis catalyst [(N,N′-bis(diisopropylphosphino)-2,6-

diaminopyridine)Mn(CO)3][Br] can obtain 90% separation yields after optimization, but the 

existence of alkali and molecular sieve with a high chemical equivalence ratio is necessary[37]. The 

previously reported Pt/C also gave high yields for this reaction, but it also required higher reaction 

temperatures and reaction times[38]. In summary, to make this series conversion reaction more 

widely used, the reaction conditions were milder and more sustainable, therefore, the heterogeneous 

catalysis of different metals was applied to the N-monomethylation of nitroaromatic hydrocarbons 

with methanol as methylation and hydrogenation source. 



 
Scheme 1. Synthesis of N-methylamines by using methanol. 

Covalent organic frame materials are a kind of periodic and crystalline organic porous 

polymers connected by covalent bonds. Because of its good thermal and chemical stability, ordered 

pore structure, good crystallinity, and designability of the unit structure, it has become a research 

hotspot in recent years. [39-45] Among them, the Schiff base COFs are connected by C=N, and both 

N in the precursor and N in the Schiff base can be used to anchor metal atoms to form strong 

coordination bonds. Nowadays, COFs are used in Suzuki reaction [46, 47], Sonogashira reaction 

[48], Diels Alder reaction [49], Michael addition reaction [50], and so on [46], but there are few 

reports on the application of COFs supported transition metal in N-methylation reaction. 

Specifically, when concerning the challenging tandem hydrogenation and N-mono-methylation of 

nitroaromatic hydrocarbons, especially when methanol served as both methylation and 

hydrogenation source, it undoubtedly requires that the transition metals should have the unique 

properties which can dehydrogenate methanol for reductive amination and further catalyze the N-

methylation of amines selectively, and the precious metals are normally one of the choices. As 

mentioned above, catalyst stability and recyclability are of great importance facing the current 

environmental and economical issues. So, in combination with the advantages of both COF 

materials and precious transition metal, developing high and efficient heterogeneous catalysts can 

not only facilitate the challenging tandem experimental operation but also can recover the catalyst, 

this definitely will open COF supported transition metal catalyst wide application in both academic 

and industrial. Therefore, we designed and synthesized two kinds of Rh-anchored COFs using 

melamine as the precursor, and reported for the first time the tandem reaction of transfer 

hydrogenation and N-mono-methylation of nitroaromatic hydrocarbons with methanol as the 

methylation source. In addition, the catalyst is suitable for nitroaromatic hydrocarbons with various 

reaction functional groups and can be recycled without losing reactivity. 

2. Experimental Section 

2.1. Materials and Chemicals 

All aromatic aldehydes and the chemical reagents were analytical grade and used directly 

without purification. The 1,3,5-trimethoxybenzene (99%) was purchased from Alfa Aesar Chemical 



Co., Ltd.; MeOH, EtOH, THF, piperazine-1,4-dicarbaldehyde, Terephthalaldehyde was purchased 

from Shanghai Aladdin Biochemical Technology Co., Ltd.; CDCl3 (99.8% D, containing 0.03% 

TMS, stabilized with Ag), Nitrobenzene (AR ≥ 99%), RhCl3, (AR, 99%), Melamine was were 

obtained from Shanghai Macklin Biochemical Co., Ltd. Acetone was from the Guangzhou Chemical 

Reagent Factory. Cesium carbonate, CH2Cl2 purchased from Energy-Chemical Co., Ltd. 

2.2 Catalyst Preparation 

Melamine (500mg) and piperazine-1,4-dicarbaldehyde (1139mg) were added to 60 ml DMSO 

at a molar ratio of 2:3 and ultrasonic until the precursor was completely dissolved. Then nitrogen 

protective condensation refluxed was carried out at 180 °C for 72 hours. Then the white sediment 

was collected and washed with ethanol, acetone, tetrahydrofuran, and dichloromethane respectively. 

Finally, vacuum drying at 90 °C for 8 h, and expressed as MelCOF-1. For comparison, MelCOF-2 

was synthesized using melamine (500mg) and terephthalaldehyde (1074mg) at the same molar ratio 

of 2:3 and the same method. To prepare Rh-anchored COF, the RhCl3 methanol solution is 

introduced into the pre-synthesized COF with a metal content of 5wt% and stirred at room 

temperature for 24 hours. After the reaction, the excess unloaded RhCl3 was removed by Soxhlet 

extraction, and then dried in a vacuum at 80 °C for 12 h. 

2.3 Catalyst Characterization 

The crystal structure of the catalyst was recorded by X-ray powder diffraction using Cu-Kα 

radiation, with 2θ ranging from 5° to 80°. X-ray photoelectron spectroscopy (XPS) was carried out 

using AXIS Ultra DLD (Kratos, Britain), and the standard C1s peak is used as a reference for 

correcting the shifts. Field emission scanning electron microscope (FESEM) images and 

transmission electron microscope (TEM) images were performed to determine the morphology of 

the catalyst. These images were taken by JEOL JSM-6700 and JEM-2010 electron microscopes. 

After vacuum degassing at 90 °C for 15 hours, the adsorption-desorption isotherms of N2 samples 

were measured by Tristar3010 isothermal nitrogen absorption analyzer (Micromeritics, USA) at 77 

K. The 1H NMR spectrum is carried out on Bruker400 with reference to the use of tetramethylsilane 

by 400MHz in CDCl3. The 13C SSNMR spectrum was recorded on the Bruker AVANCE III 

spectrometers. 

2.4. Catalytic Tests 

The methylation of nitroaromatic hydrocarbons is carried out in a pressure tube. The 3 mg 

catalyst is usually placed in the pressure tube together with 0.2 mmol nitroaromatics 2.4 mmol 

cesium carbonate and 2 ml methanol. And put it into the preheated oil bath pot, magnetic stirring 

heating for the corresponding time. After the reaction time is over, the pressure tube is removed and 

cooled to room temperature, and the solid catalyst is separated by a 0.22 μm filter membrane. The 

mixture was analyzed by GC or GC-MS and quantitatively analyzed by the normalization method. 

3. Results and Discussion 

3.1 Characterization and analysis of catalysts 

Both COFs catalysts were synthesized by simple stirring, and the synthesis process was as 

shown in Scheme 2. Melamine was used as a monomer to react with piperazine-1,4-dicarbaldehyde 

or terephthalaldehyde in DMSO to obtain MelCOF-1 or MelCOF-2. Then the metal ions were 

introduced into the COFs by the strong coordination interaction between the metal ions and the N 

in the substrate of the COFs, and the Rh/MelCOF-1 or Rh/MelCOF-2 was obtained. 
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Rh

 
Scheme 2. Representation of the synthesis of Rh/MelCOF. 

The synthesized MelCOF and Rh/MelCOF were characterized by scanning electron 

microscope (SEM) and transmission electron microscope (TEM). Typical SEM images, as shown 

in Figure 1 a, b, d, e, revealed that MelCOF and Rh/MelCOF showed the irregular shape of 200nm, 

and the introduction of Rh did not destroy the structure of COF, but made the whole structure of 

COF more agglomerated, forming a compact state, resulting in the decrease of its morphology and 

size. In order to understand the crystal structure of the synthesized COF, powder X-ray diffraction 

(PXRD) was carried out. Figure 1c, 1f shows the PXRD diffraction spectra of the amorphous 

MelCOF and the corresponding Rh/MelCOF. As expected, since there is no regular nm-level 

morphology in SEM, and Rh riveted MelCOF is in ionic form, the diffraction peak of COF in the 

low angle range and the diffraction peaks of Rh are not observed. The relatively wide signal at 22° 

coincides with the reflection (001), which is attributed to the π-π accumulation between the ordered 

adjacent layers of COF sheets. 



 

Figure 1. SEM images of MelCOF-1(a), Rh/MelCOF-1(b), MelCOF-2(d), Rh/MelCOF-2(e) and 

XRD pattern of as-synthesized MelCOF and Rh/MelCOF(c,f). 

The adsorption-desorption isotherms of MelCOF and corresponding Rh/MelCOF are shown in 

Figure 2. It was found that the Brunauer-Emmett-Teller (BET) surface areas of MelCOF-1 and 

Rh/MelCOF-1 were 357m2g-1 and 239m2g-1 respectively. The BET surface areas of MelCOF-2 and 

Rh/MelCOF-2 were 457 m2g-1 and 284 m2g-1, respectively. In addition, according to the Barrett-

Joyner-Halenda (BJH) method, the load Rh reduces the Vpore of MelCOF-1 and MelCOF-2 from 

0.339 cm3 and 0.827 cm3 to 0.289 cm3 and 0.592 cm3, respectively. The reduction of specific surface 

areas and pore volume can be attributed to the successful encapsulation of ionic rhodium in MelCOF 

channels after the introduction of Rh. The relatively narrow pore size distribution of Rh/MelCOF-1 

and Rh/MelCOF-2 is concentrated between 1.5 nm-5.7 nm, and the pore size changes slightly 

compared with the carrier MelCOF, indicating that the existence of Rh does not block the cavity 

channel of Rh/MelCOF. 

 

Figure 2. Nitrogen adsorption–desorption isotherms of MelCOF and Rh/MelCOF. 



In addition, the Rh/MelCOF-1 and Rh/MelCOF-2 supported by MelCOF materials are further 

analyzed by EDS. As shown in Figure 3, there exist S elements in addition to C and N of synthetic 

COF materials. Although a variety of solvents are used to wash the COF material carrier in the 

synthesis process, and Soxhlet extraction is used in the process of loading Rh, there is still a small 

amount of DMSO unwashed, so some S elements is detected. At the same time, the Rh element was 

also observed. It can be seen that Rh was uniformly loaded into MelCOF, but the content of Rh 

(1.32Wt%) in Rh/MelCOF-1 was significantly lower than that in Rh/MelCOF-2 (5.86Wt%). 

 

Figure 3. EDS mapping of Rh/MelCOF. 

At the same time, the surface composition and element valence of the synthesized Rh/MelCOF-

1 or Rh/MelCOF-2 were analyzed by X-ray photoelectron spectroscopy (XPS). Figure 4 (a) clearly 

shows the signals of Rh3d, N1s, C1s, and O1s. C1s is used as a reference to correct the binding 

energy of XPS analysis under 284.8 eV and used for analysis. The corresponding high-resolution 

C1s spectra of Rh/MelCOF-1 and Rh/MelCOF-2 in Figure 4 (b) show that the peaks centered by 

287.0 eV and 287.5 eV follow the sp2-coordinated C=N bond on COF materials[51]. In addition, 

the two peaks fitted by the N1s spectra Figure 4 (c) of the two kinds of Rh/MelCOF also belong to 

sp2 hybrid nitrogen, corresponding to the environment of C-N=C and C-N, respectively. Then the 

most important thing is the Rh3d XPS spectrum. From Figure 4 (d), Rh/MelCOF-1 can see that the 

binding energy spectrum has two peaks in 309.6 eV and 314.1eV, which are Rh3d3/2 (Rh-Nx) and 

Rh3d5/2 (Rh-Nx) energy levels belonging to Rh (III) species. At the same time, the 305.9 eV 

satellite peak of Rh is also observed. There is also a corresponding peak in Rh/MelCOF-2. In 



addition, compared with Rh/MelCOF-1, the Rh/MelCOF-2 has more signal peaks of 317.0 eV and 

312.1eV, which is attributed to the peak of rhodium chloride that is not strongly coordinated with N 

in the COF ligand. Thus it can be seen that the Rh species mainly exist in the form of Rh-NX in 

Rh/MelCOF-1, while in the Rh/MelCOF-2 catalyst, in addition to Rh-NX, there is rhodium chloride 

that filled in the MelCOF2 channel. Therefore, although the amount of rhodium chloride used in the 

synthesis process of the two COF catalysts is the same, the content of Rh on the actual load 

MelCOF-2 is higher than that of MelCOF-1, which also confirms the results of EDS characterization. 

The binding energy of rhodium chloride decreases from 317.0 eV and 312.1 eV energy to 314.6 eV 

and 309.7 eV respectively, which indicates the electron transfer from N to Rh and reveals the strong 

metal-carrier interaction between Rh and MelCOF. 

 

Figure 4 (a) XPS spectra of survey patterns, (b) C XPS spectra, (c) N XPS spectra, and (d) Rh 

XPS spectra of the synthesized Rh/COFs. 

3.2 Study on Catalytic performance 

The catalytic applicability of two kinds of Rh/MelCOF-1 or Rh/MelCOF-2 was studied by 

investigating the single N-methylation of nitrobenzene as a model reaction (Table 1). In the initial 

condition screening process, we used Rh/MelCOF-2 with a relatively high content of Rh load, and 

the substrates were 2 mmol nitrobenzene, 2 ml methanol and 1.2 eq base. With the increase of 

reaction time, the conversion of reactant 1a increased, while the selectivity of by-product 1e and 1f 

decreased, while the selectivity of main product 1c increased, so it was inferred that 1e and 1f were 

possible intermediates. The reaction temperature has a great influence on catalytic performance. 

When the reaction temperature increases from 90 to 130 degrees Celsius, the conversion rate of 1c 

is also greatly increased to 98%. At the same time, it is observed that only 1e and 1f are formed at 

90 degrees Celsius, indicating that these two substances are preferentially formed under the catalysis 



of Rh/MelCOF, which provides an important idea for the kinetic analysis in the following article. 

In order to confirm whether the reaction was catalyzed by Rh or MelCOF in Rh/MelCOF, other 

comparision experiments were conducted and found that 1c was not formed in the reaction without 

catalyst, or only using RhCl3 or MelCOF2 as the catalyst. Then the effects of different bases on the 

reaction were evaluated at 130 °C for 16 h. Different from the effects of different kinds of bases in 

the existing literature, almost all inorganic bases had good selectivity, such as Cs2CO3, NaOH, KOH, 

KOtBu, Na2CO3, K2CO3, and there was no methylation. The formation of 1d was mainly the 

selective competition between 1b and 1c. However, the conversion of organic alkali Et3N is low due 

to its weak basicity. For this reason, under the optimum reaction conditions of 130 °C, 16 h and 

Cs2CO3, the 1c selectivity is lower when using the Rh/MelCOF-1 than that of use Rh/MelCOF-2. 

Table 1 Optimization of Single N-methylation of Nitrobenzene in One-Pot to Produce N-

Methylanilinea.  

NO2

+ MeOH

NH2

+

H
N

+
N

+ N
N + N

N

O
Rh/MelCOF

Base 1.2 eq

1a 1b 1c 1d 1e 1f  

Entry Catalysts Base T (°C) Time (h) 1a Con（%）b Sel (%)b 

1b 1c 1d 1e 1f 

1 Rh/MelCOF-2 Cs2CO3 110 14 >99 8 81 0 9 3 

2 Rh/MelCOF-2 Cs2CO3 110 16 >99 9 85 0 4 2 

3 Rh/MelCOF-2 Cs2CO3 110 18 >99 8 90 0 1 1 

4 Rh/MelCOF-2 Cs2CO3 90 16 38 0 0 0 50 50 

5 Rh/MelCOF-2 Cs2CO3 130 16 >99 2 98 0 0 0 

6 Rh/MelCOF-2 NaOH 130 16 >99 5 94 0 1 0 

7 Rh/MelCOF-2 KOH 130 16 >99 3 97 0 0 0 

8 Rh/MelCOF-2 KOtBu 130 16 >99 2 97 0 1 0 

9 Rh/MelCOF-2 NaOMe 130 16 96 4 88 0 4 4 

10 Rh/MelCOF-2 Na2CO3  130 16 >99 3 97 0 0 0 

11 Rh/MelCOF-2 K2CO3  130 16 >99 2 98 0 0 0 

12 Rh/MelCOF-2 Et3N 130 16 19 43 38 0 13 6 

13 Rh/MelCOF-1 Cs2CO3 130 16 >99 10 72 0 9 9 

aReaction conditions: 3 mg catalyst, 2 mmol nitrobenzene, 2 mL MeOH, 1.2 eq base. bConversion and selectivity 

were determined by GC. The types of products were confirmed by GCMS and 1H NMR. 

Then, based on the optimized conditions of methylation and hydrogenation of nitroaromatic 

hydrocarbons using methanol as the source of methylation and hydrogenation, it is proved that 

Rh/MelCOF is generally applicable in the synthesis of N-monomethylamine substrates. As shown 

in Table 2, 2 mmol substrates, 3 mg Rh/MelCOF-2 catalyst and 2.4 mmol Cs2CO3 (1.2eq) are used 

for COF supported Rh catalyzed tandem hydrogenation and mono-methylation in 2 ml MeOH at 

130 °C for 16 h. It can be seen that many nitro compounds with different functional groups have 

good tolerance, which proves their universal application in mono-N methylation. Among them, the 

substrates with para-electron donor groups have good reaction selectivity, and all of them are 

quantitatively converted into monomethylated derivatives (2c, 5c, 5c, 6c, 7c). However, the electron 

donor groups on the m and ortho-position will lead to the decrease of selectivity and even incomplete 

conversion, and the main competitive product is aniline aromatics, which may be attributed to the 

increase of spatial shielding of nitro functional groups. As a result, the transfer hydrogenation step 



is inhibited (3c). However, the conversion and selectivity of electron-withdrawing halogen-

substituted derivatives at the para-position are poor, and the main competitive products are aniline 

aromatics, azobenzene, and azobenzene oxide homologs (8c, 9c, 10c). On the other hand, the 

reaction effect of the meta-electron-absorbing group is better than that of the para-substituent, the 

conversion can reach more than 99%, and the selectivity is also higher, which may be attributed to 

the synergistic effect of electron synergy and space effect (11c, 12c, 13c). On the other hand, the 

spatial effect of ortho-electron-absorbing halogen-substituted derivatives is stronger than that of 

electron synergism, which leads to a decrease in the yield of N-monomethylamine (14c, 15, 16c). 

However, heterocycles, biphenyl rings, and substrates with steric hindrance all have good reactivity 

(17c, 18c, 19c, 20c). Moreover, according to the reaction law, the effect of electronic synergy on the 

methylation and hydrogenation of nitroaromatic hydrocarbons using methanol as a methylation 

source is higher than the spatial effect, and heterocyclic compounds can counteract the effect of 

electronic synergy. These prove that the prepared Rh/MelCOF heterogeneous catalyst can obtain 

hydrogen directly from methanol resources and carry out the mono-N methylation, and highly 

selective synthesize the challenging N-mono-methylamine products via the tandem transfer 

hydrogenation and mono-metylation of amine. 

Table 2. Rh/MelCOF-2 catalyzed N-mono-methylation of Various Nitroaromatic Hydrocarbons 
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N
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N
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OCl

H
N

N

130 °C,16 h

H
N

2c
Con > 99%
Sel > 99%

1c
Con > 99%
Sel = 98%

5c
Con > 99%
Sel = 92%

4c
Con > 76%
Sel = 80%

3c
Con > 99%
Sel = 89%

7c
Con > 99%
Sel = 96%

6c
Con > 99%
Sel = 94%

10c
Con = 23%
Sel = 49%

9c
Con = 56%
Sel = 62%

8c
Con = 27%
Sel = 30%

12c
Con > 99%
Sel = 81%

11c
Con > 99%
Sel = 95%

15c
Con = 57%
Sel = 59%

14c
Con = 20%
Sel = 74%

13c
Con > 99%
Sel = 76%

17c
Con > 99%
Sel > 99%

16c
Con > 99%
Sel = 10%

20c
Con > 99%
Sel = 66%

19c
Con > 99%
Sel = 91%

18c
Con > 99%
Sel = 99%

 
a Reaction conditions: 3 mg Rh/MelCOF-2 catalyst, 2 mmol substrates, 2 mL MeOH, 2.4 mmol Cs2CO3, 130 °C, 

16 h. Conversion and selectivity were determined by GC. The types of products were confirmed by GCMS and 1H 

NMR. 

Then the reusability of Rh/MelCOF-2 catalyst was tested for N-monomethylation reaction of 



1a (Figure 5a). The catalyst recycle ability test was carried out under the optimized reaction 

conditions, and when every single reaction was finished, the reaction samples were analyzed using 

GC. Then the residue was centrifugally precipitated and the reaction solution was extracted, 

afterward, methanol is added to the remaining solid-liquid mixture, and again the centrifugal 

precipitation is carried out which is repeated until no color showed according to TLC. In this case, 

the next catalyst recycle test could be carried out according to the standard procedure, the reaction 

mixture is loaded into the tube and carried out for the next run. As shown in Figure 5a, the catalyst 

can be successfully recycled 4 times without losing significant catalytic reactivity and product 

selectivity. In the fifth cycle, although the conversion still kept over 99%, the selectivity of 1c 

decreased to 49%, which is probably due to the decrease of catalyst performance and the decrease 

in the reaction rate from 1b to 1c. 

Under the optimized reaction conditions, the reaction curve of p-methylnitrobenzene 2a 

showed that 2a was rapidly consumed within 4 hours to form 2c (Figure 5b). In the early stage of 

the reaction, the intermediate compound 2e gradually increased and reached the highest amount 

within 2 hours and then decreased gradually after 2 hours. Interestingly, another intermediate 

compound 2f continuously stays at a low level with the emergence of 2e. The intermediate amine 

2b also slowly increased to the maximum in 4 h, which is consistent with the result that the starting 

material 2a was completely consumed at 4 h. Then the intermediates compound 2b, 2e was gradually 

transformed into 2c, which was consistent with the observed selectivity. 

 

Figure 5. (a) Durability Test for N-mono-methylation of Nitrobenzene in One-Pot to Produce N-

Methylaniline, (b) Time-dependence of the N-methylation of 1-methyl-4-nitrosobenzene with 

methanol catalyzed by Rh/MelCOF-2. 

 

Table 3. Validation of Mono-N-methylation of Nitrobenzene to Generate N-methylaniline as a 

Possible Reaction Intermediate in One-Pot 

Entry Substrate mol (%) 

1b 1c 1e 1f 



1 

 

55 45 0 0 

2 

 

0 >99 0 0 

3 

 

58 33 9 0 

4 

 

30 9 60 1 

 

Then, to support the hydrogen borrowing mechanism and determine that the reaction 

intermediates are involved in the reaction, 1b, 1c, 1e, and 1f are used as the substrates for the reaction 

under the optimized conditions. It is found that 1b and 1e are all reaction intermediates, and once 

1c is produced, it is difficult to reverse the reaction. According to the reported kinds of literature, it 

is speculated that the hydrogen transfer reduction of nitrobenzene to aniline occurs in two ways, and 

then N-methylaniline is synthesized by N-methylation of aniline. One way is that nitrobenzene is 

reduced to N-phenylhydroxylamine by intermediate nitrosamine with the help of hydrogen transfer, 

which is directly dehydrated to aniline. The other path is the reductive coupling of nitrosamine with 

N-phenylhydroxylamine to get azobenzene by oxidation of azobenzene, which is further reduced to 

aniline by 1,2-diphenylhydrazine. From the analysis of mechanical inquiry dynamics, the second 

path plays a major role in it. Then, as previously reported, aniline was dehydrogenated with 

methanol to form the intermediate N-phenylmethylimine, and then continued to be reduced to N-

methylaniline (Figure 6). 

Rh

 

Figure 6. Proposed mechanistic pathways for the transfer hydrogenation, reduction and N-mono-

methylation of nitrobenzene to aniline using methanol as a hydrogen source. 



4. Conclusions 

In conclusion, we successfully synthesized and fully characterized two kinds of novel 

Rh/MelCOF catalysts, and realized the highly selective synthesis of N-methylamine by only using 

methanol as the methylation and hydrogenation source, and nitroarene as the raw material. Two 

kinds of Rh/MelCOF carrier materials were prepared by a simple heating and stirring method, and 

the relatively narrow pore size distribution was concentrated in 1.5 nm-5.7 nm. Rh is anchored 

uniformly on the two COF materials. According to XPS, it is found that the strong coordination 

bond of MelCOF has a strong interaction with Rh, which makes the catalyst have the catalytic 

performance of carrier and rhodium chloride to carry out the mono-N-methylation of nitroaromatic 

hydrocarbons. A series of functionalized nitroaromatic hydrocarbons with electron-donating and 

electron-withdrawing substituents, including heterocyclic or sterically hindered derivatives, have 

been effectively converted to corresponding N-methylamines with good to excellent yields under 

low catalyst support using Cs2CO3. On the other hand, according to the study of the reaction path, 

the reaction path here is different from the previously reported mechanism, and the reaction path 

with azobenzene as an intermediate is faster and much more selective. With the help of Rh/MelCOF, 

it is widely used to realize the high-value conversion of nitroaromatic compounds to a variety of N-

methylamines. The synthesis process using methanol as methylation and hydrogenation source is 

more economical and green. Currently, we are focusing modify and improve the stability of these 

novel COF-supported heterogeneous catalysts and exploring their more applications in challenging 

organic transformations. 
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