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Abstract

Prediction of redox potentials is essential for catalysis and energy storage. Although den-

sity functional theory (DFT) calculations have enabled rapid redox potential predictions for

numerous compounds, prominent errors persist compared to experimental measurements. In

this work, we develop machine learning (ML) models to reduce the errors of redox potential

calculations in both implicit and explicit solvent models. Training and testing of the ML cor-

rection models are based on the diverse ROP313 dataset with experimental redox potentials

measured for organic and organometallic compounds in a variety of solvents. For the implicit

solvent approach, our ML models can reduce both the systematic bias and the number of out-

liers. ML corrected redox potentials also demonstrate less sensitivity to DFT functional choice.

For the explicit solvent approach, we significantly reduce the computational costs by embed-

ding the microsolvated cluster in implicit bulk solvent, obtaining converged redox potential

results with a smaller solvation shell. This combined implicit-explicit solvent model, together

with GPU-accelerated quantum chemistry methods, enabled rapid generation of a large dataset
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of explicit-solvent-calculated redox potentials for 165 organic compounds, allowing detailed

investigation of the error sources in explicit solvent redox potential calculations.

1 Introduction

Redox potential is a fundamental thermodynamic property that describes the tendency of a chem-

ical species to lose or acquire electrons. It is essential in mechanism studies of catalysis1,2 and

energy storage.3 Design and discovery in these fields needs rapid predictions of redox potentials

of thousands or even millions of candidate compounds, which can hardly be achieved with cyclic

voltammetry measurements. Recent developments in accelerated quantum mechanical (QM) meth-

ods and solvent models enabled rapid curation of computational redox potentials datasets with

thousands of molecules. Machine learning (ML) models trained on these computational data sets

can accurately reproduce the QM calculated redox potentials, enabling the exploration of multi-

million compound spaces for redox flow battery design4 and biochemical discovery.5

However, the accuracy of QM predicted redox potentials relative to experiment strongly de-

pends on the QM methods and solvent-model-related parameters. Highly accurate results (≤

65 mV) are only found in small batch studies with specific combinations of methods and param-

eters applied to a specific class of compounds.6 This uncertainty in QM calculations can impact

the accuracy of curated computational redox potential datasets, and hence, the predictivity of ML

models trained on these computational datasets used for design and discovery. Therefore, there is

an urgent need to improve the accuracy of the QM prediction of redox potentials.

Due to the complexity of the solvent environment, errors in QM calculations of redox potentials

can be attributed to many different sources. One prominent source is the solvation-free energy of

species involved in the redox process. Most redox potential calculations were conducted in implicit

solvent models, such as the conductor-like polarizable continuum models (COSMO,7 C-PCM,8–10

GCOSMO,11 IEF-PCM12–14) and its variant COSMO-RS,15 due to their computational efficiency.

However, prominent errors have been observed in implicit solvent redox potential calculations,
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especially for highly charged compounds.16,17 Systematic bias of the calculated redox potentials

relative to the experiment is often corrected with a simple linear regression,18 which, however, can-

not deal with the different error sizes for differently charged species, nor can it remove large-error

outliers. A few strategies have been proposed to correct the errors associated with highly charged

species and verified to be effective on small data sets (ca. 20 compounds), such as the Pseudo-

counterion Solvation Scheme,16 and the variable-temperature H-atom addition/abstraction.17

Explicit solvent approaches are shown to be more accurate for some challenging systems, such

as transition metal complexes.18–20 However, they can hardly be used in high-throughput compu-

tational design and discovery due to their significantly higher computational costs. The high com-

putational costs are caused by the fact that converged redox potential results can only be obtained

by including a large enough explicit solvent shell into QM calculation.21 The optimal solvent shell

size varies among different studies on different solute molecules.22–24

In this work, we develop ML models to reduce the errors of QM redox potential calculations

in both implicit and explicit solvent models. Training and testing of the ML correction models

are based on the large, diverse ROP313 dataset25 with experimental redox potentials of organic

and organometallic compounds measured in different solvents. For the implicit solvent approach,

we trained ML models to improve the accuracy relative to experiments across a diverse set of

molecules regardless of the DFT functionals chosen. For the explicit solvent approach, we sig-

nificantly reduce the computational costs by embedding the microsolvated cluster in C-PCM bulk

solvent, obtaining converged redox potential results with fewer solvation shells. This combined

implicit-explicit solvent model, together with GPU-accelerated QM methods, enabled rapid gen-

eration of a large dataset of explicit-solvent-calculated redox potentials for 165 redox couples,

allowing us to investigate the source of errors in explicit solvent redox potential calculations.
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2 Theory

The general formula for redox potential calculation is given by the Nernst equation

E◦ =−
∆GEA

(sol)

neF
−E◦(REF), (1)

where ∆GEA
(sol) is the free energy change associated with reduction at standard conditions in the

solution phase, ne is the number of electrons, and F is the Faraday constant. In this work, the

one-electron ferrocenium/ferrocene (Fc+/Fc) couple is used as the reference, because Fc+/Fc is

the internal reference used in the experimental measurement of the redox potential of ROP313

dataset25 and is known to be useful to reduce both experimental26,27 and computational errors,28,29

especially when varying the solvent in which the redox potential is measured.

2.1 Implicit solvent calculation of redox potential

In the implicit solvent models, ∆GEA
(sol) is calculated based on the Born-Haber cycle,21 given by

∆GEA
(sol) = GPCM(red)−GPCM(ox)+∆HT−T ∆S(g). (2)

Here GPCM(red) and GPCM(ox) are the free energy of the reduced and oxidized species obtained

from PCM calculation including electron energy and solvent-solute interaction energy, whereas

∆HT and −T S(g) are the gas-phase enthalpy and entropy contributions to the Gibbs free energy.

Recent studies on large datasets show that the gas-phase enthalpy and entropy contributions have

very limited influence on the accuracy of redox potential prediction, and can be omitted to avoid

computational costs related to vibrational frequency calculation.4 Hence, the equation for redox

potential calculation in implicit solvent in this work is simplified as

∆GEA
(sol) = GPCM(red)−GPCM(ox). (3)
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2.2 Explicit solvent calculation of redox potential

The redox potential of the explicitly solvated molecules is calculated with the thermodynamic

integration (TI) method.30 Specifically, we use the linear response (LR) approximation of TI31–33

to avoid simulations of the nonphysical superposition state of the reduced and oxidized forms of

the system.19 For each redox couple, two QM/MM molecular dynamics simulations are performed

separately for the reduced and oxidized states. The free energy difference of the reduced and

oxidized states is evaluated by thermally averaging the vertical energy gap of the reduced and

oxidized states (Eq.4).

∆GTI =
1
2
(〈Gred−Gox〉ox + 〈Gred−Gox〉red) (4)

The validity of the TI method and the LR approximation can be estimated by comparing the

estimated reorganization energies, λ St and λ var, according to the Marcus theory of electron trans-

fer.34 Here, λ St and λ var are called Stokes reorganization energy and variance reorganization en-

ergy, respectively, defined as

λ
St =

〈∆G〉ox−〈∆G〉red
2neF

, (5)

λ
var =

σ2
ox +σ2

red
4kbT

, (6)

where σ is the variance of the vertical energy gap, and kb is the Boltzmann constant. The reorga-

nization energies λ St and λ var should reach identical values when the LR approximation holds.33

3 Computational details

3.1 Data set

We employ the ROP31325 data set to compare the different computational approaches for pre-

dicting redox potential. This benchmark set with experimental redox potentials for 313 individual
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molecules is composed of two subsets of 193 organics (OROP) and 120 organometallics (OM-

ROP), respectively. It allows a representative comparison of the accuracy of different computa-

tional methods due to the diverse and considerable number of systems. The systems are medium-

sized with the number of atoms ranging from 5 to 82 and total electrons from 22 to 427 (Figure 1).

The data set contains four different solvents spanning a wide range of dielectric constants, in-

cluding acetonitrile (MeCN, ε=35.69), water (ε=78.36), dichloromethane (ε=8.93), and dimethyl-

formamide (DMF, ε=37.22). The experimental redox potentials were converted to an internal

reference of Fc+/Fc in an identical solvent.35,36 The oxidized forms of benchmark molecules have

charges ranging from -4 to 2. The organometallics possess a variety of 3rd row (Ti, V, Cr, Mn,

Fe, Ni, Co) and 4th row (Ru, Rh, Os, Ir) transition metal centers. The accuracy of redox potential

calculations for OROP and OMROP are analyzed separately due to the typically larger errors in

the calculation of organometallic systems.25

Figure 1: Representative systems from ROP313 dataset used in this work. (top left) Three repre-
sentative organics including the cyclic aliphatic Norbornane, the halocarbon diiodomethane, and
the aromatic 4-methylbenzylsulfonyl chloride. (bottom left) Three representative organometallics
with bidentate (3,4,5,6-tetrachlorobenzene-1,2-dithiolate), sandwich (Pentamethylcyclopentadi-
ene), and monodentate (CN−, CO) ligands. (middle) Example structure of a microsolvated cluster
used in our explicit solvent calculation. (right) The distribution of the number of atoms in each
system. All atoms are colored by elements [C in grey, H in white, O in red, N in blue, Cl in green,
S in yellow, I in purple, metal (Mn, Fe) in orange].
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3.2 DFT calculation

All geometry optimizations and single point energy calculations were performed with the GPU-

accelerated quantum chemistry package TeraChem.37 Unless otherwise specified, the density func-

tional theory (DFT) calculations use the B3LYP hybrid functional with DFT-D3 empirical disper-

sion correction,38 combined with either 6-31G* basis set or LANL2DZ39 effective core potentials

for the transition metals and I and Br. To test the robustness of our machine learning models to

different functionals, a set of hybrid (B3LYP-D3, PBE0-D3) and range-corrected hybrid (ωb97-

D3, ωb97X-D3, ωPBEh-D3, CAM-B3LYP-D3) functionals commonly used for redox potential

calculations are also employed to calculated single point energies to obtain redox potentials. The

geometries optimized with B3LYP-D3 are used in all cases.

For implicit solvent model calculations, geometry optimizations were carried out with the

TRIC40 optimizer using default tolerances of 4.5× 10−4 hartree/bohr for the maximum gradi-

ent and 1×10−6 hartree for the change in self-consistent field (SCF) energy between steps. Initial

structures, charge, and spin states were obtained from the ROP313 data set originally optimized

with ωB97x-c3. Level-shifting41 values of 0.3 Ha for virtual orbitals were applied if the calcula-

tion did not converge without level-shifting. Solvation energies were obtained from single point

energies with a conductor-like polarizable continuum model (C-PCM)42,43 as implemented in Ter-

aChem. The solute cavity was built using defaults available for nonmetals in TeraChem (i.e., 1.2×

Bondi’s van der Waals radii,44) and we provided standard van der Waals radii45 for metals, which

were also scaled by 1.2.

3.3 Explicit solvent calculation

Due to the significantly higher computational costs of the explicit solvation calculations, only 165

organic redox couples solvated in MeCN are calculated (details in Supporting Information/SI). Ini-

tial explicit solvation configurations are generated with Packmol46 in a cubic box of side length 56

Å with Na+ and Cl− counterions. A multi-step approach is chosen to equilibrate the solvated box.

First, molecular dynamics parameters are generated for the organic solute molecules with Amber-
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tools47 using GAFF force field.48 The solvent MeCN molecules are described with a customized

6-site model from literature.49 The explicitly solvated reference Fc+/Fc redox couple is set up in

a similar approach, but the parameters for the Fc+/Fc solute are determined from MCPB.py50 due

to the existence of metal-ligand bonds. These non-polarizable MM force fields allowed long-time

dynamics in Amber 2047 without bond-breaking at minimal computational costs. Second, the sol-

vated system is minimized, and then slowly heated to 300 K over 20 ps with a Langevin thermostat

with a collision frequency of 2 ps−1 and a nonbonded cutoff of 8 Å, and pressure equilibrated to

1 bar over 600 ps with a Berendsen barostat with a pressure relaxation time of 1 ps. This long

pressure equilibration is chosen to improve the density on the interface between the solute and sol-

vent, which is critical for the explicit redox potential calculation. This multi-step solvation of each

system is automated by AutoSolvate, an in-house python script developed in our group, which is

available upon request. The resulting pressure-equilibrated system is the initial structure for the

QM/MM51,52 simulation with TeraChem and Amber 20. The QM region is then solute treated with

B3LYP-D3/6-31G*, and the MM region is the explicit solvent. The QM electrostatic cutoff is 8 Å.

The QM/MM simulation involves an initial energy minimization, followed by 0.5 ps of tempera-

ture equilibration with Langevin thermostat at 298.15K with a collision frequency of 5 ps−1. The

following 5 ps of QM/MM NVT dynamics trajectory are used for TI. For each of the two charge

states, 200 snapshots are extracted from the 5 ps QM/MM trajectories. The large number of snap-

shots is required to average out the variance of the vertical energy gap.53 Each snapshot includes

the solute and dozens of solvent molecules. To conduct DFT single point calculations needed by

TI on these snapshots with reasonable computational costs, a cutoff needs to be applied to generate

a microsolvated cluster that is small enough to calculate with DFT but large enough to generate a

converged redox potential. We tested various cutoff values from 2 Å to 10 Å. We also investigated

how C-PCM implicit solvent applied around these microsolvated clusters impacts the calculated

redox potential.
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Figure 2: ML features used for training machine learning models to correct errors in redox poten-
tial calculations in this study.

3.4 Machine learning models

Machine learning (ML) models are utilized to reduce the errors in computed redox potentials com-

pared to experimental values. Due to the relative small size of the experimental redox potential

dataset, we trained ML methods on a small set of 9 physics-inspired features related to solvent

effects and redox potential calculation, including 4 features for the solute molecule (charge, dipole

moment, spin multiplicity, and nuclear repulsion energy of the oxidized state), 4 features for the

solvent model (implicit solvation cavity surface area and volume, C-PCM solvation energy, and

dielectric constant of the solvent) plus the predicted redox potential (Figure 2). We compared the

performance of different ML models utilizing scikit-learn, including simple linear regression (lin-

1), multiple linear regression (lin-m), random forest regression (RF),54 gradient boost regression

(GB),55 kernel ridge regression (KR),56 and artificial neural network (ANN).57 Hyperparameter

optimization for all models was carried out with grid-search cross-validation to prevent over-fitting,

using a random 80% train/20% test split, with 20% of the training set (16% overall) set aside as

the validation subset for hyperparameter selection (SI Text S1). Input features were normalized

over the training set to have zero mean and unit variance. Final models with optimal hyperparam-

eters were retrained with the whole training set (80% overall). We repeated the training five times

on different 80:20 splittings of the data set, such that the five 20% test sets in total cover all data

points. Performance of the ML correction is reported for the combination of the 5 test sets.
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3.5 Free Energy landscape and TICA

The convergence of the conformation dynamics of the QM/MM trajectories for our explicit solvent

calculations can be confirmed by analyzing the trajectories. One challenge in analyzing the trajec-

tories is the high-dimensional nature with up to hundreds of individual atoms moving. To analyze

the solute conformation changes we use the dimension reduction method Time-lagged Indepen-

dent Component Analysis (TICA),58 which extracts a few dimensions from the high-dimensional

raw trajectories. TICA represents the kinetic behavior of the trajectory better than principal com-

ponent analysis (PCA). The following equations describe how TICA selects the dimensions with

the highest kinetic information. The raw cartesian time-dependent coordinates are converted into

rotation- and translation-invariant mean-free features yi(t), in this case, distances between atoms.

For a lag time τ , the covariance matrix C(0) and the time-lagged covariance matrix C(τ) for the

mean-free coordinates are calculated:

Ci j(τ) =
〈
yi(t)y j(t+ τ)

〉
t

(7)

C(τ)vi = C(0)viλi (8)

The generalized eigenvalue problem allows us to select a few dimensions or eigenvectors vi

with the largest eigenvalues λi, which contain most of the kinetic information of this system and

have the longest associated timescales. The projection of the raw trajectory on the selected eigen-

vectors gives a low-dimensional representation of the solute behavior. In this work, only the two

slowest dimensions are selected, and the lag time utilized is 5 fs due to the fast conformational

dynamics of the systems. In the projection defined by the two selected TICA dimensions, we

calculate the free energy, which allows us to visualize both the ensemble of the reached conforma-

tions and the transitions between the conformations. The free energy landscape is comparable to

the potential energy surface (PES), but with additional degrees of freedom considered59. In order

to plot the redox potential projection in the TICA dimensions, additional redox potential calcula-
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tions were performed for conformations uniformly sampled along the two TICA dimensions from

the QM/MM trajectories.

4 Results

In the following subsections, we will investigate the errors in the calculated redox potential com-

pared to experimental results, and build ML models to correct these errors and reduce computa-

tional costs. We will first investigate the accuracy of the implicit solvation redox potential calcu-

lations and build ML models to correct the errors related to the imbalanced treatment of different

charge states in implicit solvent models. We will also demonstrate that the ML corrections improve

the robustness of the calculated redox potentials with respect to DFT functionals. For the explicit

solvation approach, we investigate the dependency of the calculated redox potential with respect

to the solvent shell size and will demonstrate that by applying C-PCM implicit solvent around the

explicit solvent molecules, a much smaller explicit solvent shell is required to obtain converged

redox potentials, leading to significantly reduced computational costs. We will then discuss the

impacts of applying ML correction to the explicit solvent calculated results. The source of errors

in the explicit solvation redox potential calculations will be analyzed at last.

4.1 Errors in implicit solvent redox potential calculations

It is known that redox potential calculations in implicit solvent typically have relatively large uncer-

tainties in the solvation free energy since electrochemical half-reactions involve the consumption

or generation of charge species.6 Although low unsigned errors of less than 100 mV were observed

in small batch studies, more realistic errors can be much larger when larger and more diverse test

sets are considered. In our calculation of the ROP313 dataset with B3LYP-D3 and C-PCM (Fig-

ure 3, Figures S1-S4), two types of errors are present: systematic bias and large-error outliers.

Comparing to experimental results, the calculated redox potentials of the OMROP data set

show a systematic overestimation, especially in the higher value range (Figure 3). This type of
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Figure 3: Parity plots of implicit solvent approach calculated vs experimental redox potentials for
compounds in the OMROP dataset. Data points are colored by kernel density estimation (KDE)
density values, as indicated by the color bar on the right. (left) Raw data from implicit solvation
calculations. (right) ML corrected data obtained with the best performing lin-1 model.

systematic bias is commonly seen in implicit solvent redox potential calculations and is often

corrected with simple linear fitting between the calculated and experimental redox potentials21,60.

After applying the linear regression correction for OMROP, the mean absolute error (MAE) is

reduced from 0.76 V to 0.44 V (Table 2).

However, the traditional linear fitting correction typically cannot help fixing errors that do

not follow a systematic linear trend, including big-error outliers. For example, transition metal

complexes with excess positive/negative charges are known to be typical outliers because implicit

solvent models usually have an imbalanced treatment of solvation free energy for molecules with

different net charges.16,17 Inspired by this idea, we analyzed the errors of redox couples of different

charge states. For the OROP data set, most systems have either +1/0 or 0/-1 charge states. Statistics

on the distribution of signed errors of these two groups have different trends (Figure 4). The mean

signed errors (MSEs) of both groups are negative, but the MSE of the +1/0 group (-0.25 V) is

further from zero than that of the 0/-1 group (-0.08 V). The difference in MAE is even more

significant: the 0/-1 group has a much higher MAE of 0.56 V than the 0.35 V of the +1/0 group
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due to larger numbers of outliers. Similar results are observed in the OMROP dataset (SI Figure

S5).

Because of different distributions of errors in systems with different charges, simple linear fit-

ting cannot effectively correct the errors. A few methods have been proposed in previous works

to fix these charge-dependent errors, including the pseudo-counterion solvation (PCIS) scheme

that applies a charge-dependent correction formula,16 and the variable-temperature H-atom ad-

dition/abstraction approach that modifies the thermodynamic cycle.17 Here, we correct the sys-

tematic bias and charge-dependent outliers simultaneously by training machine learning models

that are aware of the complex mapping between solute/solvent features and the errors in implicit

solvent calculations, which will be discussed further in Section 4.2.
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Figure 4: Implicit solvation redox potential errors in V for different system charges are shown
in the histograms. The red vertical lines indicate the mean signed error for each charge. The
gray dashed vertical lines show the size of the standard deviation. Results shown are for organic
systems, organometallic systems are shown in SI Figure S5. The top two histograms show systems
with a charge state of +1/0 and the bottom two histograms show a charge state of 0/-1. The left two
histograms show raw implicit solvation results, and the mean is non-zero and different for each
of the charge states. The two right histograms show results after ML correction (KR), where the
mean bias is removed for both charge states.
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4.2 ML corrections for implicit solvent calculations

We train ML models to correct the errors in implicit solvent redox potential calculations, focusing

on reducing the uncertainty in solvation free energy. Since the C-PCM solvation free energy is

determined by the charge distribution of the solute, the solvent dielectric constant, and the cavity

shape, we use features that represent these physical properties and can be easily extracted from

calculation output files (Figure 2). Specifically, net charge, dipole moment, and spin multiplic-

ity of the solute represent the solute charge distribution; solvent dielectric constant describes the

electrostatic screening strength; cavity surface area and volume describe the cavity shape; nuclear

repulsion energy of the solute contains implicit information about the solute structure; and the cal-

culated redox potential is also included in the features to allow for various corrections in different

ranges of the redox potential.

For the B3LYP-D3 results discussed in Section 4.1, we observed reduced MAE after correc-

tions with all types of ML models (Table 1). For the OROP dataset, all methods except for the

linear models have significantly reduced the MAE by 7%-52%, with KR as the best performing

model reducing the MAE from 0.30 V to 0.21 V. Even more prominent improvement is observed

in the OMROP dataset, where all ML models present a MAE reduction of over 33%, with RF as

the best performing model reducing the MAE to 0.43 V.

Further analysis shows that the error reduction is achieved by fixing both the systematic bias

and the outliers discussed in Section 4.1. Compared to the raw calculated redox potential for OM-

ROP, the ML-corrected results distribute more evenly on both sides of the diagonal of the parity

plot (Figure 3), significantly removing the overestimation trend. More importantly, the more chal-

lenging charge-state dependent errors are reduced simultaneously (Figure 4). The MSEs of both

the 0/-1 group and +1/0 group are both closer to 0 after applying ML correction (Figure 4). The

MAEs of both groups are reduced by about 50%, demonstrating balanced correction to differently

charged groups. Mitigation of large-error outliers is even more obviously shown by the reduced

number of systems with an error above 1V. After applying the ML model, such systems are reduced

from 14 to 2 for OROP dataset, and from 35 to 11 for OMROP dataset.
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4.3 Robustness of the ML correction to DFT functional choice

In this section, we demonstrate the robustness of the ML corrections developed in Section 4.2 with

respect to the choice of DFT exchange correlation (XC) functional. It is widely known that the

accuracy of redox potential calculation in the implicit solvent is highly sensitive to the choice of XC

functional, and the optimal functional is usually system dependent, leading to the lack of general

strategy to obtain highly accurate computational redox potentials for large, diverse datasets.25

This high sensitivity is also observed in our calculations. For the OROP dataset, the MAEs of the

best-performing PBE0-D3 (0.30 V) and the worst-performing ωb97-D3 (0.64 V) differ by 0.34 V

(Table 1). An even larger variation (0.76 V - 1.35 V) in the MAEs of different functionals is

observed for the OMROP set (Table 2).

Table 1: DFT functional-dependence of the test set MAE (in V) of redox potentials predicted by
implicit solvent model in combination with various ML correction models for the OROP dataset.
For each functional, the best ML correction model with the smallest MAE (in V) is shown in the
last column. For each column (ML model), functional sensitivity denotes the MAE difference
between the best and worst performing functionals, and best functional denotes the MAE of the
best performing functional.

MAE (V) No ML lin-1 lin-m KR GB RF ANN best model
B3LYP-D3 0.43 0.33 0.32 0.22 0.27 0.27 0.25 KR/0.22
B3LYP 0.41 0.34 0.32 0.23 0.27 0.26 0.27 KR/0.23
ωb97-D3 0.64 0.55 0.36 0.33 0.32 0.30 0.33 RF/0.30
ωb97X-D3 0.47 0.48 0.35 0.29 0.33 0.27 0.30 RF/0.27
ωPBEh-D3 0.44 0.44 0.34 0.26 0.33 0.27 0.30 KR/0.26
PBE0-D3 0.30 0.31 0.31 0.21 0.25 0.25 0.27 KR/0.21
CAM-B3LYP-D3 0.40 0.42 0.34 0.26 0.31 0.28 0.25 ANN/0.25
functional sensitivity 0.34 0.23 0.05 0.11 0.08 0.05 0.08 RF/0.05
best functional 0.30 0.31 0.31 0.21 0.25 0.25 0.25 KR/0.21

In contrast, ML corrected results are always less sensitive to the choice of DFT functional. For

the OROP dataset, any of the non-linear ML models can reduce the MAEs of each functional and

reduce the performance difference among functionals to no more than 0.11V (Table 1). KR is gen-

erally the most efficient ML model for OROP, reducing the organic MAE down to 0.21 V. With KR

correction, the MAE of each functional is reduced by at least 0.08 V, and a greater improvement is

observed for the originally worse-performing functionals. As a result, the performance difference
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Table 2: DFT functional-dependence of the test set MAE (in V) of redox potentials predicted by
implicit solvent model in combination with various ML correction models for the OMROP dataset.
For each functional, the best ML correction model with the smallest MAE (in V) is shown in the
last column. For each column (ML model), functional sensitivity denotes the MAE difference
between the best and worst performing functionals, and best functional denotes the MAE of the
best performing functional.

MAE (V) No ML lin-1 lin-m KR GB RF ANN best model
B3LYP-D3 0.76 0.44 0.46 0.46 0.50 0.47 0.46 lin-1/0.44
B3LYP 0.82 0.46 0.47 0.47 0.50 0.45 0.47 RF/0.45
ωb97-D3 1.35 0.67 0.70 0.75 0.79 0.74 0.73 lin-1/0.67
ωb97X-D3 1.27 0.60 0.63 0.60 0.71 0.67 0.77 KR/0.60
ωPBEh-D3 1.10 0.58 0.60 0.61 0.62 0.60 0.64 lin-1/0.58
PBE0-D3 0.83 0.45 0.47 0.45 0.47 0.43 0.48 RF/0.43
CAM-B3LYP-D3 1.32 0.59 0.61 0.63 0.72 0.67 0.65 lin-1/0.59
functional sensitivity 0.59 0.23 0.25 0.30 0.33 0.32 0.31 lin-1/0.23
best functional 0.76 0.44 0.46 0.45 0.47 0.43 0.46 RF/0.43

between any two functionals is reduced to less than 0.11 V from 0.34 V. (Figure 5). Similar re-

duction of functional sensitivity after ML-correction is observed for the OMROP dataset (Table 2).

However, due to smaller OMROP dataset size, the linear ML correction performs similarly to non-

linear ML corrections. Overall, RF has the best performance, reducing the OMROP MAE down

to 0.43 V, whereas the lowest sensitivity to function choice [MAE(worst)-MAE(best)=0.23 V]

is observed with lin-1. Although the functional sensitivity is much smaller after ML correction,

B3LYP-D3 and PBE0-D3 are overall the best for both OROP and OMROP datasets. Therefore,

B3LYP-D3 will be used in the explicit solvent model calculations in Sections 4.4 and 4.5.

The effectiveness of the ML-corrections in reducing MAE is also verified for DFT calculations

with different basis set choices (SI Figure S10). After ML correction, calculations obtained with

larger basis sets with diffuse functions show higher accuracy for both OROP and OMROP (Figures

S2, S4, and S10), but the improvement to 6-31G* is only up to 0.04 V. Without ML correction, we

observe an increased MAE for OMROP when larger basis sets are used, consistent with previous

reports for transition metal complexes.61
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Figure 5: ML improvement dependence on the chosen functional. Values and description in
Table 1. Only the best ML approach for each functional is shown. Values for OROP (top) and
OMROP (bottom) data sets.

4.4 Convergence of explicit solvent redox potential calculations

Explicit solvent models are expected to provide a more accurate prediction of redox potential,

but their application is limited by the higher computational costs compared to implicit solvent

calculations. It was shown in previous studies that multiple layers of solvent shells are needed

to obtain converged redox potential, requiring QM calculations of large microsolvated systems

with hundreds of atoms.22,62 Here we demonstrate that embedding the microsolvated cluster in

C-PCM can effectively reduce the number of explicit solvent molecules needed without affecting

the accuracy.

We first investigated the dependence of calculated redox potential values on the solvation shell

size for system 141, Cyclohexanone, a typical system picked from ROP313 dataset (17 atoms, 54

electrons, Figure 6). For the traditional explicit solvent model without C-PCM, the redox potential

varies strongly with solvent shell size and only converges above 10 Å (Figure 6). The existence of

multiple plateaus at around 5, 8, and 10 Å is likely to be caused by the boundaries of solvent lay-
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ers. In contrast, the redox potential obtained with the microsolvated cluster embedded in C-PCM

converges rapidly as the solvent shell size increases and remains unchanged after 4 Å (Figure 6).

The faster convergence of explicit solvent model embedded in C-PCM can be explained by a more

efficient representation of long-range and polarization interactions with the bulk solvent compared

to including only a few explicit solvation shells. The explicit solvation redox potentials calculated

with and without C-PCM converge to different values, which is likely to be caused by the inherent

deficiencies of C-PCM model in describing solvation free energy. We will show that these poten-

tial artifacts caused by C-PCM can be effectively removed with ML corrections, as demonstrated

with the implicit solvent approach in Section 4.2-4.3.

Figure 6: Convergence of redox potential with respect to the radius of the explicit solvation shell
for system 141. (top) Explicit solvation shell only. Different explicit solvent shell sizes without
pcm are shown at the top. (bottom) Explicit solvation shell together with pcm. The range of redox
potentials with pcm is significantly smaller. Schema of combination explicit+implicit solvation at
the bottom.

To demonstrate that the radius convergence holds for different systems, we repeat the inves-

tigation to determine the optimal solvent shell size for general redox potential calculations in the

explicit solvent model with and without the C-PCM embedding for two additional OROP systems

(SI Text S2). For each system, we calculate the absolute deviation of the redox potential at a

given solvent shell size compared to the reference value obtained at 10 Å. The averaged absolute
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deviations over the 3 systems at solvent shell sizes 2, 4, 6, and 8 Å are 5.7, 2.5, 2.3, and 1.8 V,

respectively, for the explicit solvent model without C-PCM. In contrast, these values are 0.65, 0.03,

0.05, and 0.03 V for the explicit solvent model embedded in C-PCM. In summary, the explicit sol-

vent model without C-PCM does not converge even at 8 Å, whereas a 4 Å solvent shell embedded

in C-PCM reaches an accuracy and convergence sufficient for most use cases. The embedding of

microsolvated clusters in C-PCM reduces the required solvation shell size and computational cost

while maintaining accuracy.

4.5 Accuracy of explicit solvent calculations and ML corrections

Thanks to the reduced computational costs enabled by C-PCM embedding, we are able to rapidly

curate a dataset of redox potentials of 165 organic systems calculated with explicit solvent model.

Compared to previous studies with explicit solvent models typically involving only a few systems,

this larger dataset allows us to summarize some statistically meaningful trends in this type of

calculation. Similar to implicit solvent calculations, both systematic biases and large-error outliers

are present in our explicit solvent calculations (Figure 7). The predicted values are systematically

below the experimental values, and in the low redox potential region (E◦ ≤ 0 V), there are more

outliers with overestimated redox potential, similar to the trend in implicit solvent calculations

(Figure 3).

Table 3: Performance of explicit solvent approach before and after various ML corrections. The
mean absolute error (MAE) in V and the number of systems with an error above 1V are shown for
the analyzed 165 systems from OROP. The "No ML" column shows the explicit solvation results
without any ML correction. The Implicit and Implicit+ML columns show the results of implicit
solvent approach without ML correction and with the best performing model (KR). All calculations
are performed with B3LYP/6-31G*.

No ML lin-m KR GB RF ANN Best ML Implicit Implicit+ML
MAE (V) 0.64 0.22 0.20 0.22 0.19 0.24 RF/0.19 0.40 0.20
Errors >1V 3 3 2 3 4 4 GB/2 11 1

We then train machine learning models to correct the systematic bias and outliers in the ex-

plicit solvent redox potential calculations, using the same procedure as the implicit solvent ML
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Figure 7: Accuracy of the predicted redox potentials with the explicit solvent approach with the
miscrosolvated cluster embedded in C-PCM. (left) Raw results without ML correction show a
systematic bias. (right) Results after ML correction with RF.

corrections, as shown in Figure 7. All tested ML models significantly reduce the test set MAE,

with the best-performing RF reducing the MAE from 0.64 V to 0.19 V (Table 3). The number of

outliers stays almost unchanged after applying all ML corrections. The comparison of the error

histograms for explicit and implicit solvation is shown in SI Figure S11. Before ML correction, the

explicit solvent approach has a higher systematic bias than the implicit solvent approach, which is

significantly reduced by the ML correction. The ML features with the highest importance are the

raw predicted redox potential, the nuclear repulsion energy, and the C-PCM solvation energy (SI

Figure S9).

We then compare and contrast the performance of the explicit and implicit solvent approaches

on the same subset of 165 organic systems. Although previous small batch studies indicate that

the computationally more expensive explicit solvent approach tends to be more accurate than the

implicit solvent approach, our data show exceptions. Before ML correction, the explicit solvent

approach has a larger MAE (0.64 V) than the implicit solvent approach (0.40 V) due to a larger

systematic bias. However, it produces fewer outliers (3 vs. 11), which can be attributed to the
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more accurate representation of solvent-solute interactions in explicit solvation. After ML cor-

rection, the explicit solvent approach has a significantly improved MAE (0.19 V) similar to the

implicit solvent approach (0.20 V), but its advantage in generating fewer outliers disappears due

to the significant reduction of outliers for the implicit solvent approach. These counter-intuitive

observations motivate us to further investigate the errors in our explicit solvent redox potential

calculations in Section 4.6.

Figure 8: Dimension reduced landscape for system 29. (left) Free energy landscape along the
slowest two TICA dimensions shows three minima. (right) The averaged redox potential along the
slowest two TICA dimensions. The redox potential varies significantly across the conformational
space.

4.6 Analysis of error sources in explicit solvent calculations

To understand why the explicit solvent approach did not outperform the implicit solvent model

as expected, we further analyze potential sources of errors, and which systems are more likely to

suffer from these errors. A typical error source for explicit solvent model is the sampling of redox

couple configurations, so we picked a representative system (system 29) and investigated the vari-

ation of its calculated redox potential projected onto a TICA dimension-reduced landscape of the

solute conformations (Figure 8). The projected redox potential is estimated only for the oxidized

charge state since the free energy landscapes for the two charge states are generally different and
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separate. Additional systems are shown in SI Figures S6-7. The dimension-reduced landscape is

generated from the QM/MM trajectory used for TI calculation of redox potential, as described in

Section 3.5. The free energy landscape of system 29 has three local free energy minima, with a fast

transition time in the femtosecond range (Figure 8, left). The sparse sampling of the transition re-

gions indicates that longer QM/MM trajectories are necessary to converge the sampling. Although

conformations around the local minima have similar redox potential values of about 0.4 V, the

transition region between the minima has some conformations with redox potential values as high

as 0.7 V or as low as 0.1 V (Figure 8, right). For systems with multiple local minimas, insufficient

sampling or analyzing only one conformation as in the implicit solvation approach can be one of

the contributions to the observed redox potential errors and outliers.

Another potential error source is the LR approximation utilized in TI for the explicit solvent

redox potential calculation. We compare the estimated reorganization energies λ St and λ var to

validate the LR approximation. For the 165 explicit solvated systems calculated, the median λ St

is 0.37 V and the median λ var is 0.30 V. The small difference between the two estimates indi-

cates that the LR approximation is generally valid for the investigated systems. Histograms of the

reorganization energies show that most systems have λ St and λ var below 0.5 V (SI Figure S8),

similar to reported values of previous small batch studies.33 However, some outlier systems have

λ St or λ var up to around 2.5 V. For most systems the λ St and λ var show similar values, but we ob-

serve a systematic bias of λ var smaller than λ St by around 0.04 V. We also observe outlier systems

where the λ St and λ var don’t match, possibly caused by the limited number of snapshots utilized.

Differences between λ var and λ St have been previously been reported for metalloproteins,31,63

with non-parabolic shapes of the free-energy surfaces,63 polarizability,64 nonergodic effects65 and

inner-sphere/solute or outer-sphere/solvent effects66 discussed as causes.

Furthermore, we observe a correlation between the size of reorganization energy and the size

of redox potential errors: systems with higher reorganization energies tend to have higher redox

potential errors. The ML corrected MAE for systems with λ St > 0.5 V is 0.38 V, significantly

higher than the 0.15 V MAE for systems where λ St < 0.5 V. Alternatively utilizing λ var as the
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criterion gives consistent results (SI Table S1).

Finally, we examine the counterions as a possible source of error. The counterions are origi-

nally added for neutralizing the charge of the system during MM dynamics in the periodic bound-

ary condition. For most systems, the counterions stayed far from the solute and were not included

in the microsolvated clusters used for TI. However, for some solutes with higher net charges, the

counterions may migrate to be close to the solute and be included in the TI snapshots. Although we

suspect the electrostatic interaction between the counterions and the solute may cause artifacts in

the calculated redox potential, we see only a small increase of MAE when counterions are present

in the microsolvated clusters (SI Table S1).

5 Conclusion

This work exploits machine learning to reduce the errors relative to experimental measurements in

redox potential calculations in both implicit and explicit solvents.

For the implicit solvent approach, we apply ML corrections to mitigate the systematic biases

and reduce the number of outliers. This approach enabled us to reach an MAE of 0.21 V for the

OROP dataset and 0.43 V for the OMROP dataset without any systems excluded, demonstrating

improved accuracy compared to previously reported calculations on the same datasets without ML

correction.25 More importantly, the ML correction decreases the sensitivity of predicted redox

potential values to functional choice, a long-standing challenge affecting the redox potential pre-

diction accuracy for large, diverse datasets. With more experimental redox potential data points

reported and larger experimental datasets available in the future, our ML corrections are expected

to achieve even better performance through model retraining.

For the explicit solvent approach, we embedded the microsolvated clusters in C-PCM to reduce

the computational costs. The redox potential calculated with the combined implicit/explicit model

converges with a 4 Å solvent shell, significantly smaller than the around 10 Å shell required by

the explicit-solvent-only counterpart. The resulting acceleration allowed rapid explicit solvent
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redox potential calculation for 165 OROP compounds, with a smaller number of outliers than

implicit solvent calculations on the same set of systems. We then adapted the aforementioned ML

correction to these combined implicit/explicit calculations to reduce potential artifacts brought in

by C-PCM, and obtained very similar performance compared to the implicit solvent approach after

ML correction.

Finally, we analyzed the potential error sources of the explicit solvent approach. Dimension

reduction analysis of explicitly solvated trajectories indicates a primary source of errors to be the

insufficient thermodynamic sampling of solute conformations. Although the explicit solvent ap-

proach overcomes the drawback of the implicit solvent approach that considers only one optimized

geometry, solutes with multiple minima may not have been sufficiently sampled due to limited tra-

jectory lengths. The second error source is the limited validity of the LR approximation made in

our TI protocol, as revealed by the discrepancy between the reorganization energies λ St and λ var in

our dataset. We observed that counterions are not a large error source since only a small difference

in accuracy was observed between the groups with and without counterions.

We expect that the ML-based correction strategies proposed in this work will enable rapid cura-

tion of computational redox potential datasets with an improved agreement with experimental mea-

surements. The increased robustness to QM method choice will allow automated workflows for

redox potential calculation without post-adjusted, system-specific calculation parameters. These

will enhance the accuracy and efficiency of high-throughput computational design and discovery

in catalysis and energy storage.
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