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Abstract: Efficient syntheses of complex small molecules often involve speculative experimental 
approaches. The central challenge of such plans is that experimental evaluation of high-risk 
strategies is resource intensive, as it entails iterative attempts at unsuccessful strategies. Herein, 
we report a complementary strategy that combines creative human-generated synthetic plans with 15 
robust computational prediction of the feasibility of key steps in the proposed synthesis.  A neural 
network model was developed to predict the outcome of a generally disfavored transformation, the 
6-endo-trig radical cyclization, and applied to synthetic planning of clovan-2,9-dione, resulting in 
a 5-step total synthesis that improves on a prior 15-step approach. This work establishes how 
machine learning can guide multistep syntheses that employ innovative and high-risk human-20 
generated plans.  

 
One-Sentence Summary: A machine learning model was developed to predict the yield of a 
chemical transformation and guide the total synthesis of complex small molecules.  
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Fig. 1. ML model informs synthetic plan for clovane sesquiterpenoids. (A) Clovane-type 
natural product synthesis proposed via 6-endo-trig radical cyclizations, but the feasibility and 
optimal substrate were uncertain.  (B) Workflow for the development and application of a machine 5 
learning model to guide synthetic planning. 

 The synthesis of small molecules is integral to a variety of disciplines, from materials 
science to medicinal chemistry. For complex small molecules, efficient chemical synthesis 
requires detailed retrosynthetic planning (1) and experimental evaluation. These plans usually 
involve one or more key steps that generate significant structural complexity. When key steps 10 
initially fail, different iterations of the key step are attempted, which is time and resource intensive 
to the extent that strategies are sometimes abandoned. This process has unfortunately been 
necessary as nuanced changes in substrate structure often result in significant changes in chemical 
reactivity that are challenging to predict. 

One exciting approach to address the challenges associated with synthetic design is 15 
computer-aided retrosynthetic planning (2-5) wherein computational approaches are used to 
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provide synthetic routes. Herein, we report a complementary strategy that combines creative 
human-generated synthetic plans with robust computational analysis to predict the feasibility of 
key steps in proposed syntheses. Specifically, we report the development of a neural network 
model that is used to evaluate human-generated synthetic strategies towards clovane 
sesquiterpenoids by predicting the yields of key 6-endo-trig radical cyclization steps (Figure 1A). 5 
Our approach uniquely integrates computation into human retrosynthetic analysis through iterative 
virtual screening. 

Radical cyclizations constitute a powerful method for the construction of hindered or strained 
ring systems and are commonly employed in complex molecule synthesis (6). However, the utility 
of some radical cyclizations, including often unfavorable 6-endo cyclizations, can be limited by 10 
the difficulty of predicting their outcome. Baldwin’s and Beckwith’s rules (7) and other methods 
of analysis can in some cases suggest trends for related systems, but cannot quantitatively inform 
the outcome of diverse proposed transformations. A more sophisticated prediction of synthetic 
feasibility is enabled by the machine learning (ML) model described herein, which was applied to 
the synthetic planning of clovane sesquiterpenoids as a proof-of-concept of this approach. The 15 
clovanes share a common tricyclic bridged-ring skeleton with three quaternary centers, and have 
been a subject of synthesis since the 1960s (8, 9). Additionally, clovanes exist widely in both 
terrestrial and marine organisms (10) and show diverse biological activities: for example, clovan-
2,9-dione (1) and rumphellclovane B (3) inhibit production of superoxide anion and inhibit elastase 
released by human neutrophils (11, 12); clovanemagnolol (6) exhibits excellent neurotrophic 20 
activity at concentrations of 10 nM (13). Stunning biomimetic semi-syntheses have been reported 
of clovanes (13, 14), but semi-synthetic approaches provide limited opportunity for deep-seated 
structural modifications and concise access to related materials (15). Our de novo synthesis 
reported herein provides flexible entry and access to diverse clovanes that complement those 
available from semi-synthetic approaches.  25 

To develop and apply a ML model to complex molecule synthesis, we devised the following 
workflow (Figure 1B): (1) a library of literature examples was collected and annotated with 
chemical descriptors from simple and readily conducted DFT calculations (16); (2) different 
machine learning model architectures were trained and evaluated for predictive performance; (3) 
human-generated retrosynthetic disconnections were evaluated using the trained ML model; (4) 30 
for the selected disconnection, substituents and functional groups were virtually screened with the 
model.  

The feasibility of using machine learning to enable the total synthesis of clovanes is 
supported by complementary research in synthetic methods development using chemoinformatics 
(17-20). These workflows inspired our efforts, but none of them could be directly applied to 35 
complex molecule synthesis. The major differences are summarized here: (a) the substrates used 
in synthetic methodology development are readily available, whereas substrates involved in 
complex molecule synthesis require time consuming multistep synthetic operations to obtain; (b) 
similar substrates, ligands, or catalysts often appear in multiple instances throughout the libraries 
used for synthetic methodology, which cover a relatively narrow region of chemical space, 40 
whereas the substrates and products in our radical cyclization library are highly diverse; (c) the 
datasets generated from a single source (i.e. high-throughput experimentation) or a small number 
of literature references are relatively homogenous, whereas our datasets are derived from highly 
heterogenous sources with considerable variability in protocol and reaction conditions.  
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Fig. 2. ML model development. (A) DFT calculations for radical cyclization towards clovan-2,9-
dione (uB3LYP/6-311++(d,p)). (B) Computed free energies of 6-endo-trig radical cyclization 
(DGrxn) do not correlate with cyclization yields. (C) Performance of different ML models on test 
data set. (D) Control experiments and literature validation for the optimal NNET model. 5 

Although a purely DFT approach was successful for substrate selection in the case of the 
total synthesis of paspaline A and emindole PB (21), methods that evaluate energies of products 
and transition states would be challenging for this radical cyclization due to a complex 
interrelationship between kinetics and thermodynamics. As can be seen in Figure 2A, the 5-exo 
mode of cyclization is kinetically favored whereas the desired 6-endo radical cyclization 10 
intermediate is thermodynamically favored; it was unknown if greater thermodynamic preference 
(ΔGrxn) would result in higher yield of the 6-endo product (22). To investigate this possibility, the 
experimental yields of 125 literature reactions were plotted against their computed free energies 
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of reaction (ΔGrxn). The lack of a correlation suggests that yield is determined by many factors 
besides ΔGrxn. It was thus hypothesized that a multiparameter ML model would allow for accurate 
yield predictions of 6-endo-trig radical cyclizations, which was needed to evaluate synthetic 
feasibility.  

With this hypothesis in mind, we first obtained a library of literature examples of 6-endo-5 
trig radical cyclizations from Reaxys®. Reactions were limited to sp3-centered radicals undergoing 
intramolecular cyclization onto a pendant olefin, resulting in a set of 99 reactions, which include 
a fairly even distribution of yields from 0 to 90%. For each reaction in the library, radical 
intermediates before and after cyclization were subjected to simple and rapid DFT calculations 
(uB3LYP/6-31g(d)) of physical descriptors (16). A total of 340 descriptors per reaction were 10 
extracted to constitute the input parameters, including molecular, atomic, steric descriptors and 
linear combinations (see SI for details). Next, the library was split into training and test datasets 
(70/30) by the Kennard-Stone sampling method (20). As a large number of descriptors (340) were 
used relative to the small library size (99), overfitting was a significant concern. Therefore, feature 
selection with correlation filtering and PCA dimension reduction (23) were employed to transform 15 
340 descriptors into 20 orthogonal parameters.  

An array of supervised ML models was tuned with 10-fold cross-validation on training data 
and then were evaluated against the test dataset to provide R2 and RMSE (root mean square error) 
values. As shown in Figure 2C, SIMPLS (Statistically Inspired Modification of the Partial Least 
Squares), and kNN (k-Nearest Neighbors) algorithms showed moderate predictive performance 20 
on the test dataset with R2 values of 0.56 and 0.59, respectively. A random forest (RF) model 
provided better performance with R2 = 0.79. A single hidden layer neural network (NNET) 
delivered improvement over these methods, providing a R2 value of 0.82, with RMSE of 14.0% 
and MAE (mean absolute error) of 12.1%. 

To evaluate the soundness of our NNET model, two control experiments were conducted: 25 
Y-randomization, in which yields are randomly shuffled across the dataset; and a random data test, 
where chemically meaningful descriptors are replaced with randomly generated values (24). The 
low correlations observed (R2 = 0.02) suggest that the predictions of our NNET model were 
achieved by identifying relationships between yield and chemically meaningful featurization, 
rather than by finding chance correlations.  To test the model’s ability to extrapolate beyond the 30 
template library, literature validation was conducted with an additional 26 examples of 6-endo 
radical cyclization from Reaxys® and SciFinder®; these substrates contained functional groups that 
are not represented in the training or testing datasets, such as heteroatoms (N, O) within the formed 
6-membered ring (see SI for details). We were pleased to find that reasonable correlation was 
observed, even though the model was not trained on these types of substrates. The lower 35 
correlation (R2 = 0.63) and higher MAE (15.7%) are likely due to the different chemical reactivity 
between substrates possessing all-carbon skeletons and those with heteroatoms. For the purposes 
of clovane sesquiterpenoid synthesis, it was not necessary to have high performance for these 
substrate types, but the reasonable performance suggests our model provides synthetically useful 
predictions. 40 

With the trained NNET model, different disconnections corresponding to different synthetic 
routes to clovan-2,9-dione (1) were evaluated (Figure 3A). The predicted yields of 6-endo-trig 
radical cyclizations from precursors 7, 8, and 9 are 46%, 46%, and 34%, respectively. The 
synthetically useful yield predicted for compound 7 is expected as such a disconnection with a 
polarized alkene is the conventional strategy for eliciting the 6-endo mode of cyclization. Although 45 
conventional logic would have discouraged the selection of 8 and 9 due to limited available 
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precedent for cyclizations of this type (25), the model’s encouraging predictions for 8 and 9 
mitigated that concern and neutralized any perceived benefit to the lower risk strategy via 7. 
Finally, compound 8 was selected, as 8 has a comparable predicted yield and represents a more 
innovative disconnection (9) that leads to greater synthetic accessibility (26). 

The next consideration regarded which proximal and remote functionality would be the 5 
optimal choice for the substrate given synthetic accessibility, predicted efficiency, and utility in 
accessing a variety of clovanes. A selection of substrates from over 100 predictions is shown in 
Figure 3A to illustrate the planning considerations that were made. For example, the introduction 
of carbonyl groups stabilizing the radical intermediate in triketone 13, the protection of carbonyl 
group adjacent to the radical center in 14, and the introduction of substituents at the site of radical 10 
cyclization in 15, have predicted yields that are qualitatively in line with expert intuition. 
Compounds 16 and 17, which would readily lead to other clovane natural products, are predicted 
to cyclize in synthetically useful yields.  

 
Fig. 3. ML model informed synthesis of clovan-2,9-dione. (A) ML-guided retrosynthetic 15 
analysis and substrate refinement. (B) Counterintuitive 6-endo-trig radical cyclization enables the 
5-step total synthesis of clovan-2,9-dione (1). 

As shown in Figure 3B, the synthetic route via radical intermediate 8 to clovan-2,9-dione (1) 
starts from commercially available 4,4-dimethylcyclopent-2-en-1-one (18). Vicinal 
difunctionalization with a vinyl cuprate nucleophile and enolate trapping with HC(OMe)3 provided 20 
19. Adduct 19 underwent a Robinson annulation with ethyl vinyl ketone (EVK) to afford 20. An 



 

7 
 

enone-selective Pd-catalyzed hydrosilylation of 20 (27) provided 21. These newly developed 
conditions were necessary as Pt, Cu, and Rh catalysts provided inferior results. Treatment of the 
enoxysilane 21 with PhSeCl provided the radical precursor 22 as an inconsequential mixture of 
diastereomers.  

When 22 was subjected to optimized radical cyclization conditions (AIBN, n-Bu3SnH), 5 
clovan-2,9-dione (1) was produced in 45% yield. This result is in excellent agreement with the 
predicted yield of 46%. Since the literature examples used to train the NNET model are generally 
optimized yields, the predictions are for optimized yields as well. The successful realization of this 
radical cyclization resulted in a 5-step synthesis of 1, which is significantly more efficient than the 
previously disclosed 15-step strategy (8). 10 

   

 
Fig. 4. Experimental validation of NNET model and application to the total synthesis of 
clovane sesquiterpenoids. (A) The first total syntheses of rumphellclovane A (30) and 
canangaterpene II (2). (B) Experimental validation of the NNET model.  15 

 

As shown in Figure 4A, the NNET model predicted the feasibility of radical cyclization from 
27 to form 28 (predicted yield: 51%). The experimental success of this transformation enabled the 
first total syntheses of rumphellclovane A (30) (28) and canangaterpene II (2) (29) in 8 steps from 
commercially available 18. The key elements of the synthesis are selective reduction of 20 to form 20 
24, a Mitsunobu reaction to invert the stereochemistry to 25, and a late-stage Baeyer-Villiger and 
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selective transesterification (28 to 30). The structure of canangaterpene II (2) was revised from the 
previously proposed structure based on biosynthetic considerations (14), NMR calculations, and 
our synthesis of the revised structure (see SI for details).  

To rigorously test the model performance, we examined four radical precursors (8, 10–12) 
as an experimental validation set. As shown in Figure 4B, the experimental yields are in excellent 5 
agreement with the predicted yields, demonstrating the validity of our model. Accurate DFT 
calculations of the full pathway for >100 substrates would be computationally intractable for the 
time scales necessary for retrosynthetic analysis. With the model reported herein, dozens of 
substrates can be evaluated in less than a day, whereas full analysis by DFT of a single substrate 
requires weeks.  10 

In summary, this report describes a platform that combines creative human-generated 
synthetic plans with robust computational analysis for a challenging key step. Machine learning 
models are trained to predict the yields of reactions from diverse literature examples. A neural 
network model was used to guide the retrosynthetic analysis of several sesquiterpenoid natural 
products, resulting in their highly efficient syntheses. We expect that models for other 15 
transformations could be developed following this workflow, which would allow for evaluation of 
retrosynthetic plans with varying key transformations. Moreover, the success of this strategy 
argues for broader use of computational tools as part of the process for synthetic planning. 
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